Übung zum Grundpraktikum organische Chemie WS19/20 - Woche 3

Aufgabe 1)

Vervollständigen Sie die Tabelle. Überlegen Sie dazu, ob und wenn ja nach welchem Mechanismus die Kombinationen aus Substrat und Nucleophil bzw. Base vermutlich reagieren (E1, E2, E1cB, S_N1 , S_N2). Wie können Reaktionen in Grenzfällen zu Eliminierungen begünstigt werden? (X = Halogenide, Tosylat, Mesylat)

	Schwaches Nucleophil (z.B H ₂ O, ROH)	Schwach basisches Nucleophil (z.B. I ⁻ , RS ⁻)	Stark basisches, sterisch ungehindertes Nucleophil (z.B. RO ⁻)	Stark basisches, sterisch gehindertes Nucleophil (z.B. DBU, t-BuO ⁻)
X-CH ₃				
^x				
x				
X				
<i>→</i> x				
× o				

Aufgabe 2)

Beschreiben Sie die Mechanismen und Bedingungen der 3 verschiedenen Eliminierungsreaktionen. Vergleichen Sie anhand der beschriebenen hypothetischen Reaktion die Mechanismen E1 und E2 hinsichtlich folgender Aspekte:

Mechanismus/Kinetik/potentielle Nebenreaktionen/Einfluss von Substratstruktur, Abgangsgruppe, Base, Lösungsmittel

Aufgabe 3)

An dem abgebildeten Molekül soll eine Eliminierung mit NaOEt durchgeführt werden. Welche Struktur wird das Produkt haben? Gehen Sie dazu wie folgt vor:

- a) Zeichnen Sie sechs relevante Konformationen in der Newman-Projektion.
- b) Aus welcher Konformation wird die Eliminierung erfolgen und warum? Wird dabei HBr oder DBr eliminiert? (Hinweis: Betrachten sie H und D als chemisch gleichwertig; Entscheidend ist die Konformation!)
- c) Zeichnen Sie die Struktur des Produkts und benennen Sie die Konfiguration.

Aufgabe 4)

Formulieren Sie einen plausiblen Mechanismus für die nachfolgende Reaktion. Um welchen Eliminierungstyp handelt es sich? Wann kann ein solcher Mechanismus auftreten? Warum kann OH- hier eine Abgangsgruppe sein?

$$CH_3$$
 O OH KOH CH_3 O Ph

Aufgabe 5)

a) Warum kann nur eine der beiden Eliminierungen zu Struktur 1 führen?

b) Warum kann Struktur 2 nicht gebildet werden?

Aufgabe 6)

Bei der beschriebenen Eliminierung können zwei Regioisomere auftreten. Über welche Faktoren können diese Regioselektivitäten beeinflusst werden? Benennen Sie die Produkte.