Upgrade of the gas-filled recoil separator TASCA and first search experiment for the new element 120 in the reaction ${}^{50}\text{Ti} + {}^{249}\text{Cf}$

Ch.E. Düllmann^{1,2,3}, A. Yakushev², J. Khuyagbaatar^{2,3}, D. Rudolph⁴, H. Nitsche⁵, D. Ackermann², L.-L. Andersson^{3,6}, M. Block², D.M. Cox⁶, J. Dvorak³, K. Eberhardt¹, P.A. Ellison⁵, N.E. Esker⁵, J. Even^{1,3}, C. Fahlander⁴, U. Forsberg⁴, J.M. Gates⁵, K.E. Gregorich⁵, P. Golubev⁴, O. Gothe⁵, J. Even^{1,*}, C. Fahlander^{*}, U. Forsberg^{*}, J.M. Gates^{*}, K.E. Gregorich^{*}, P. Golubev^{*}, O. Gothe^{*}, W. Hartmann², R.-D. Herzberg⁶, F.P. Heβberger^{2,3}, J. Hoffmann², R. Hollinger², A. Hübner², E. Jäger², J. Jeppsson⁴, B. Kindler², S. Klein¹, I. Kojouharov², J.V. Kratz¹, J. Krier², N. Kurz², S. Lahiri⁷, B. Lommel², M. Maiti⁷, R.R. Mändl^{2,8}, S. Minami², A. Mistry⁶, C. Mokry¹, J.P. Omtvedt⁹, G.K. Pang⁵, I. Pysmenetska², D. Renisch¹, J. Runke², L.G. Sarmiento¹⁰, M. Schädel^{2,11}, B. Schausten², A. Semchenkov⁹, J. Steiner², P. Thörle-Pospiech¹, N. Trautmann¹, A. Türler¹², J. Uusitalo¹³, D. Ward⁴, N. Wiehl¹, M. Wegrzecki¹⁴, V. Yakusheva³

¹U. Mainz, Germany, ²GSI, Darmstadt, Germany, ³HIM, Mainz, Germany, ⁴Lund U, Sweden, ⁵LBNL+UC Berkeley, CA, USA, ⁶U. Liverpool, UK, ⁷SINP, Kolkata, India, ⁸FH Frankfurt, ⁹U. Oslo, Norway, ¹⁰UNAL Bogotá, Colombia, ¹¹JAEA Tokai, Japan, ¹²U. Bern+PSI Villigen, Switzerland ¹³U. Jyväskylä, Finland, ¹⁴ITE Warsaw, Poland

The heaviest elements were discovered in ⁴⁸Ca-induced fusion reactions with actinide targets [1]. The observation of the hitherto heaviest element 118 was claimed from irradiations of targets of ²⁴⁹Cf, which is the highest-Z nucleus that is available in sufficient quantities. Hence, to search for elements beyond Z=118, reactions induced by projectiles with Z>20 are required. Previously, ⁶⁴Ni+²³⁸U [2], 58 Fe+ 244 Pu [3], and recently 54 Cr+ 248 Cm [4] were studied, but element 120 is yet to be discovered. Theoretical predictions [5-8] agree on the ${}^{50}\text{Ti}+{}^{249}\text{Cf}$ reaction to have the highest cross section. Accordingly, the TASCA collaboration selected this reaction to search for element 120. Maximum predicted cross sections range from 0.04 pb [5] to 0.75 pb [6, 8]. For comparison, the ${}^{48}Ca+{}^{249}Cf$ \rightarrow Z=118 experimental cross section is 0.5^{+1.6}_{-0.3} pb [9].

On the way to a first search experiment for element 120 at TASCA, upgrades of several key components were performed, compared to the setup as used for the ²⁴⁴Pu(⁴⁸Ca,3-4n)^{288,289}114 reaction [10, 11]. These include the implementation of a larger-area target wheel with 100 mm diameter comprising four targets [12]. The heat of each 5-ms long UNILAC macropulse is now dissipated over a four times larger area (6 cm^2) than in the old system (1.4 cm^2) used for element 114.

The separation from unwanted nuclear reaction products was increased by a factor of ~10 [13] by (i) implementing a carbon stripper foil in front of the target to increase the beam charge state, (ii) a fixed scraper mounted in the center of the first quadrupole magnet, and (iii) a second, moveable scraper mounted behind the second quadrupole. Both scraper positions were chosen based on ion-optical simulations, which predicted significant background suppression without loss in EVR efficiency due to the scrapers. Measurements, e.g., of the ⁴⁸Ca+²⁰⁸Pb reaction, confirmed the expectations (see also [14]). The efficiency of TASCA for element 120 produced in the reaction ${}^{50}\text{Ti}+{}^{249}\text{Cf}$ was calculated to be $(62\pm6)\%$. Discrimination between various event types was enhanced by improving the multi-wire proportional counter veto detector efficiency compared to the element 114 experiment. Several predictions of decay properties of isotopes produced in the ${}^{50}\text{Ti}+{}^{249}\text{Cf}$ reaction suggest their half-lives, $T_{1/2}$, to be on the order of µs. This is shorter than the dead-time of the data acquisition (DAQ) system used in 2009 [11]. Therefore, a fast digital sampling pulse processing system was built and integrated into the DAQ system [15]. This allowed registering events with $T_{1/2}$ as short as 100 ns, as confirmed in a study of the reaction ${}^{50}\text{Ti}{+}{}^{176}\text{Yb}$, which yields decay chains with very short-lived members [16].

Old ²⁴⁹Cf samples were chemically reprocessed and electrodeposited on ~2.2-µm thick Ti backings by molecular plating [17], yielding ~ 0.5 -mg/cm² thick targets.

In August-October 2011, a first experiment to search for element 120 was conducted. Intense beams (0.5-1.0 μA_{part}) were applied on the Cf targets during 39 days of beamtime. The data analysis is in progress.

Acknowledgments: We thank the ion source and accelerator staff for providing stable and intense ⁵⁰Ti beams, and the experimental electronics department for making the digital DAQ system available on a short time-scale.

References

- [1] Y. Oganessian, Radiochim. Acta 99, 429 (2011).
- [2] S. Hofmann et al., GSI Sci. Rep. 2008 (2009) p. 131.
- [3] Yu.Ts. Oganessian et al., Phys. Rev. C 79, 024603 (2009).
- [4] S. Hofmann et al., this Scientific Report (2012).
- V. Zagrebaev et al., Phys. Rev. C 78, 034610 (2008). [5]
- [6] G. G. Adamian et al., Eur. Phys. J. A 41, 235 (2009).
- [7] A. K. Nasirov et al., Phys. Rev. C 84, 044612 (2011).
- [8] K. Siwek-Wilczynska et al., IJMPE 19, 500 (2010).
- [9] Yu.Ts. Oganessian et al., Phys. Rev. C 74, 044602 (2006).
- [10] Ch.E. Düllmann et al., Phys. Rev. Lett. 104, 252701 (2010).
- [11]J.M. Gates et al., Phys. Rev. C 83, 054618 (2011).
- [12]T. Torres et al., GSI Sci. Rep. 2010 (2011) p. 236.
- [13]J. M. Gates et al., this Scientific Report (2012).
- [14]U. Forsberg et al., this Scientific Report (2012).
- [15]N. Kurz et al., this Scientific Report (2012).
- [16]J. Khuyagbaatar et al., this Scientific Report (2012).
- [17]J. Runke et al., this Scientific Report (2012).