Search for short-lived uranium isotopes around N=126 *

J. Khuyagbaatar^{1,2}, Ch.M. Mrosek³, A. Yakushev¹, D. Ackermann¹, L.-L. Andersson^{2,4}, M. Block¹, D.M. Cox⁴, Ch.E. Düllmann^{1,2,3}, J. Dvorak², K. Eberhardt³, P.A. Ellison⁵, N.E. Esker⁵, J. Even^{2,3}, C. Fahlander⁶, U. Forsberg⁶, J.M. Gates⁵, K.E. Gregorich⁵, P. Golubev⁶, O. Gothe⁵, W. Hartmann¹, R.-D. Herzberg⁴, F.P. Heßberger^{1,2}, J. Hoffmann¹, R. Hollinger¹, A. Hübner¹, E. Jäger¹, J. Jeppsson⁶, B. Kindler¹, S. Klein³, I. Kojouharov¹, J.V. Kratz³, J. Krier¹, N. Kurz¹, S. Lahiri⁷, B. Lommel¹, M. Maiti⁷, R.R. Mändl^{1,8}, S. Minami¹, A. Mistry⁴, C. Mokry³, H. Nitsche⁵, J.P. Omtvedt⁹, G.K. Pang⁵, I. Pysmenetska¹, D. Renisch³, D. Rudolph⁶, J. Runke¹, L.G. Sarmiento¹⁰, M. Schädel^{1,11}, B. Schausten¹, A. Semchenkov⁹, J. Steiner¹, P. Thörle-Pospiech³, N. Trautmann³, A. Türler¹¹, J. Uusitalo¹³, D. Ward⁶, N. Wiehl³, M. Wegrzecki¹⁴, V. Yakusheva²

¹GSI, Darmstadt, Germany, ²HIM, Mainz, Germany, ³U. Mainz, Germany, ⁴U. Liverpool, UK, ⁵LBNL+UC Berkeley, CA, USA, ⁶Lund U. Sweden, ⁷SINP, Kolkata, India, ⁸FH Frankfurt, ⁹U. Oslo, Norway, ¹⁰UNAL Bogotá, Colombia, ¹¹JAEA Tokai, Japan, ¹²U. Bern+PSI Villigen, Switzerland ¹³U. Jyväskylä, Finland, ¹⁴ITE Warsaw, Poland,

Production and decay of short-lived 221 U (previously unknown) and 222 U (only the half-life is known) were studied at the gas-filled separator TASCA. These two nuclei have only few neutrons more than the magic number N=126, which leads to high α decay Q-values and, therefore, to very short half-lives (< 10 μ s). To explore this microsecond/sub-microsecond half-life region, digital electronics was implemented into a combined "ANalog" and "DIgital" (ANDI) data acquisition system [1].

A ⁵⁰Ti¹²⁺ beam was accelerated to energies E_{lab}=230 and 240 MeV and irradiated a rotating ¹⁷⁶Yb target wheel to produce ²²²U and ²²¹U in 4n and 5n de-excitation channels of the complete fusion reaction, respectively.

The evaporation residues (ER) were separated from the primary beam by TASCA and implanted into the stop detector consisting of two double-sided silicon-strip detectors. Two signals, one from each side of the stop detector were processed in two different parts of the ANDI system with a common trigger and zero suppression [1]. The signals from 144 vertical front strips were processed by analog amplifiers connected to peak-sensing ADCs [2]. The preamplified signals from 48 horizontal back strips were processed by sampling ADC's (FEBEX2) with 60 MHz frequency. Traces with total length of 50 µs (7 µs before and 43 µs after) were recorded following an accepted trigger. The deadtime of the "analog" part was shorter than 43 µs. Therefore it was always ready to accept the next triggered event [1]. Further, both data were combined into single events by an event builder of MBS [1].

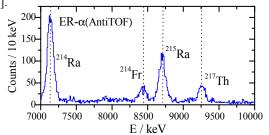


Fig 1: An energy spectrum of α -particles from the ER- α correlation up to 14 s, with both events occurring in the same pixel.

An ER- α correlation analysis was performed to find recoiling nuclei and identify the measured α lines (Fig. 1). Only α -particle events were considered without a signal from the time-of-flight detector. Alpha decays of ²¹⁴Ra, ²¹⁵Ra, ²¹⁴Fr, and ²¹⁷Th were identified. From further analyses the decay of ²¹⁴Fr was found as a member of ER- α (7-18MeV)- α (²¹⁴Fr) chains. The second member of this chain is typically a pile-up of two α decays. These events were investigated using the data from the "digital" part. Clearly two signals were found in traces of them and α decays of ²²²Pa and ²¹⁸Ac were unambiguously determined (see Fig. 2a).

The traces of the ER's from ER- α (214 Ra) were investigated in order to find "missing" α decays of mother 218 Th and grandmother 222 U nuclei. In most cases only single signals were found, pointing to the implantation of 214 Ra. However, traces with two and three signals were also found (see Fig. 2b). These data allow us to unambiguously assign α decays of 218 Th and 222 U.

The traces of the ER's from ER- α (217 Th) were investigated to find the α decay of the new nucleus 221 U. In most cases a single ER signal was seen. However, traces with two signals, which include the α decay of the new nucleus 221 U, were also found (see Fig. 2c). More detailed information will be provided in [3].

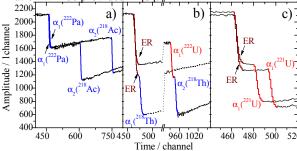


Fig 2: Example of traces of pile-up α -particles correlated with 214 Fr a), ER's correlated with 214 Ra b), and with 217 Th c).

- [1] N. Kurz et al., this Scientific Report (2012).
- [2] J.M. Gates et al., Phys. Rev. C. 83 054618 (2011).
- [3] J. Khuyagbaatar et al., to be published.

^{*} Work supported by HI Mainz