Synthese eines Myokard-affinen Chelators für ⁶⁸Ga

V. Nagel¹, F. Rösch¹

¹Institut für Kernchemie, Johannes Gutenberg-Universität Mainz, Deutschland

Einleitung: Die koronare Herzkrankheit (KHK) ist eine der häufigsten Todesursachen in den Industriestaaten. Daher ist das Myokardiale Perfusions Imaging (MPI) eine wichtige nicht-invasive Methode in der Diagnose. In klinischer Anwendung werden die SPECT-Tracer [99mTc]Sestamibi und [99mTc]Tetrofosmin dazu genutzt. Ein neuerer Ansatz ist die Verwendung von Insektiziden wie Pyridaben oder Rotenon als Myokardtracer, da sie als MC-I-Inhibitoren eine hohe selektive Aufnahme ins Herzgewebe ermöglichen. Mitochondrien, die Energiekraftwerke der Zellen, kommen verstärkt in Geweben mit hohem Energiebedarf wie dem Herzen- vor. Vier Komplexe der Atmungskette liegen hier in der inneren Mitochondrienmembran. Komplex I, die NADH-Dehydrogenase ist das erste Enzym der mitochondrialen Komplexe (MC) und ein mögliches Target für einen MPI-Tracer^[1]. Das ¹⁸F-markierte Pyridabenderivat Flurpiridaz zeigt in mikro-PET-Studien eine hohe Myokardaffinität und befindet sich in der 3. Phase von klinischen Studien^[2].

Ziel: Ziel dieses Projektes ist die Entwicklung eines entsprechenden ⁶⁸Ga-Insektizid-Tracers.

Abb. 1: Struktur des Pyridabenderivates ¹⁸F-Flurpiridaz.

Methoden: Um eine Kupplung an den Chelator DOTA-NHS-ester zu ermöglichen, wurde das Flurpiridaz zu einem primären Amin derivatisiert. Variationen in der Spacerlänge erlauben den Einfluss auf die Affinität sowie Pharmakokinetik zu untersuchen.

Abb. 2: Syntheseweg der Amino-Pyridabenderivate

Abb. 3: Kupplung der Pyridabenderivate an DOTA-NHS-ester.

Ergebnisse: Alle DOTA-Pyridaben-Verbindungen wurden mittels HPLC erfolgreich aufgereinigt. Sowohl die Markierung mit ⁶⁸Ga, als auch die Lipophiliebestimmung werden zurzeit durchgeführt. Zusätzlich wird die Komplexstabilität untersucht.

Um die synthetisierten Chelatoren auf ihre Myokardaffinität zu testen, sind mikro-PET Versuche an gesunden Ratten geplant.

Referenzen

- [1] I. Madar et al., J. Nucl. Med. 47, 1359 (2006).
- [2] http://www.cxvascular.com