Radiosynthesis of [18F]fluoromethyl tosylate for 18F-fluoromethylation F. Beyerlein, T.L. Ross, F. Rösch Institute of Nuclear Chemistry, Johannes Gutenberg-University Mainz, D-55128 Mainz, Germany **Objectives:** [¹⁸F]Fluoromethyl tosylate is particularly suitable for ¹⁸F-fluoromethylation of radiopharmaceuticals, but labelling of *bis*(tosyloxy)methane with [¹⁸F]F in general gives tosyl [¹⁸F]fluoride as a by-product. Addition of small amounts of water resulted in poor radiochemical yields in contrast to previous reports¹. Therefore, optimization of the RCY and the [¹⁸F]fluoromethyl tosylate-to-tosyl [¹⁸F]fluoride-ratio was the aim of our work. Methods: As common radiolabelling strategies, using [18F]KF/K₂₂₂, seem to lead to degradation of the bis(tosyloxy) methane precursor², in this work the reaction was carried out in MeCN/tBuOH using tetrabutylammonium bicarbonate (TBABC) instead of K₂CO₃. Diverse stoichiometric compositions of solvents, varying amounts of TBABC and 2 different precursors, bis(tosyloxy) methane and bis(tosyloxy) d_2 -methane, were examined. The use of 10mg of precursor, 15mg of TBABC and 800µl of MeCN/tBuOH 3/1 gave promising results. [18F]Fluoromethyl phenolate was prepared using sodium phenolate in DMSO at a reaction temperature of 120°C with 20-50 MBq d_2 -[¹⁸F]fluoromethyl tosylate in DMSO were added. The reaction mixture was quenched with water and analyzed by TLC and analytical HPLC. O-[18F]fluoromethyl harmol was prepared at 120 °C within 20 min from harmol and d_2 -[¹⁸F]fluoromethyl tosylate in DMSO. Figure 1: RCY of d_2 -[18 F]fluoromethyl- and [18 F]fluoromethyl tosylate from 18 F-fluorination in MeCN/tBuOH 3/1 at 85 °C. **Results:** Radiofluorination of bis(tosyloxy) methane in MeCN/tBuOH 3/1 at 85 °C resulted in a significant increase in the formation of [18 F]fluoromethyl tosylate compared to radiosynthesis in MeCN with small amounts of water. In addition, for the formation of d_2 -[18 F]fluoromethyl tosylate higher yields could be observed. The two products were analyzed by TLC and analytical HPLC and purified by semi-preparative HPLC with a decay-corrected yield of $36\pm8\%$ (n=8) and $42\pm4\%$ (n=5) for the deuterated analogue. The reaction of d_2 -[18 F]fluoromethyl tosylate with sodium phenolate as a model compound was examined and reaction temperatures were varied. Only poor RCYs could be observed at 100 °C and 110 °C. Increased yields were obtained at 120 °C, while higher temperatures (130°C) led to decomposition and defluorination of d_2 -[18 F]fluoromethyl tosylate. Figure 2: RCYs of [18 F]fluoromethyl phenolate at (a) 100°C, (b) 110°C, (c) 120°C, (d) 130°C **Conclusions:** [18 F]Fluoromethyl tosylate and d_2 -[18 F]fluoromethyl tosylate were labelled in reproducible yields by nucleophilic radiofluorination in MeCN/tBuOH and successfully separated from by-products. The reaction of d_2 -[18 F]fluoromethyl tosylate with sodium phenolate lead to the formation of [18 F]fluoromethyl phenolate in 50% after 15 minutes, the reaction with harmol resulted in the formation of O-[18 F]fluoromethyl harmol. According to a lack of reactivity of d_2 -[18 F]fluoromethyl tosylate compared to [18 F]fluoromethyl iodide, higher reaction temperatures (120°C) and reaction times (20 min) were required. ## References - [1] Neal TR et al., J Label Compd Radiopharm 48, 557 (2005) - [2] Smith G et al., Nuclear Medicine and Biology 38, 39 (2011)