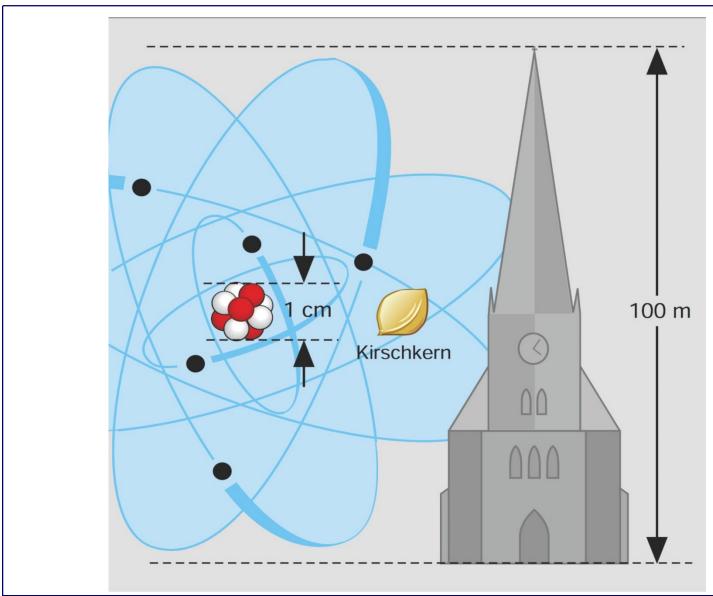

Atomkerne und Radioaktivität

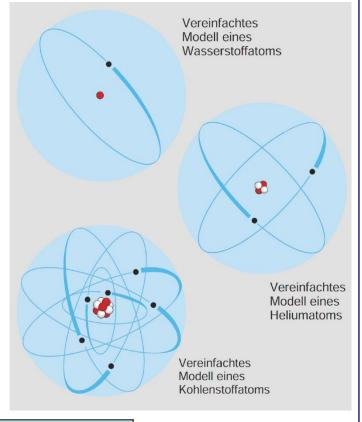
Institut für Kernchemie Universität Mainz

Größenskala Atom und Kern



Größenskala Atom und Kern

Atommodell



Elektronenhülle: ≈ 1x10⁻¹⁰ m

Kern: $\approx 5x10^{-15}$ m

Atomkern besteht aus Neutronen und Protonen

Teilchen	Masse [kg]	Ladung [As]
Elektron	9,10938 x 10 ⁻³¹	- 1,6022 x 10 ⁻¹⁹
Proton	1,67262 x 10 ⁻²⁷	+1,6022 x 10 ⁻¹⁹
Neutron	1,67493 x 10 ⁻²⁷	0

Energieskala Atom und Kern

Zur Abschätzung betrachte eingeschlossenes Teilchen im atomaren Volumen bzw. im Kernvolumen.

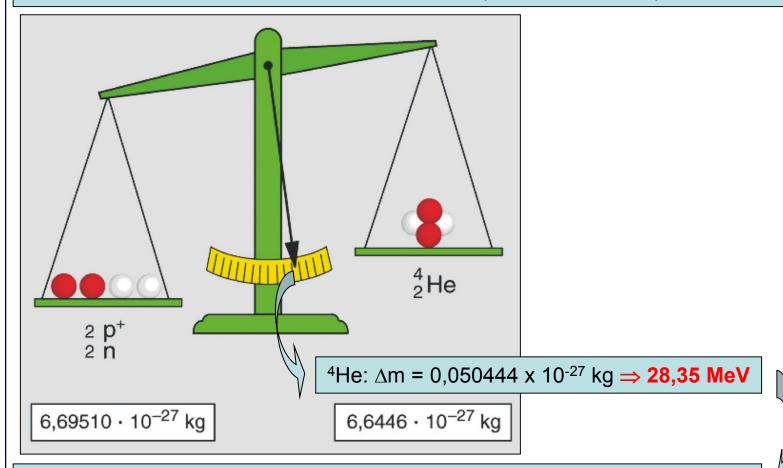
Heisenbergsche Unschärferelation: $\Delta p \cdot \Delta x \ge \hbar$

$$|\Delta p \cdot \Delta x \ge \hbar|$$

$$\Delta E = \frac{(\Delta p)^2}{2m} \implies \Delta E \ge \frac{\hbar^2}{2m(\Delta x)^2} \implies \frac{\Delta E_K}{\Delta E_A} = \frac{m_e(\Delta x_A)^2}{m_n(\Delta x_K)^2}$$

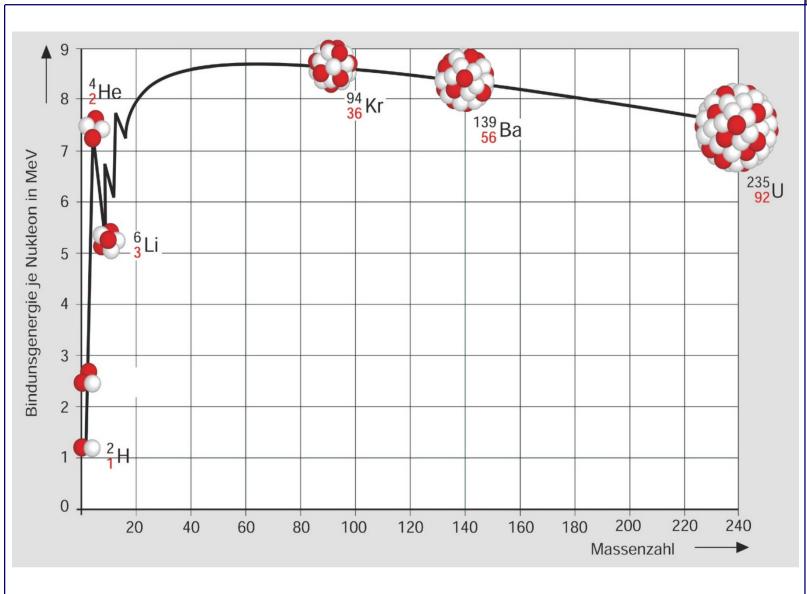
mit $\Delta x A \gg 10^{-10}$ m und $\Delta x K \gg 5 \times 10^{-15}$ m

$$\Rightarrow \frac{\Delta E_K}{\Delta E_A} \approx \frac{0.511 \cdot 10^{-20}}{938 \cdot 25 \cdot 10^{-30}} \approx 2 \cdot 10^5$$


Atomare Prozesse laufen bei einigen eV ab, Kernprozesse bei 100 keV bis einigen MeV

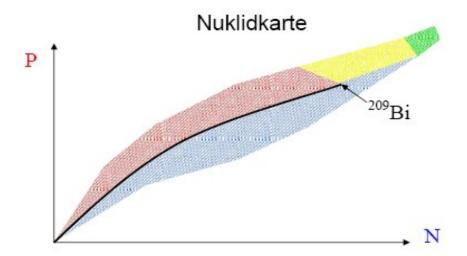
Massendefekt und Bindungsenergie

Beim Zusammenschluss von Protonen und Neutronen zu einem Atomkern tritt ein Massenverlust (Massendefekt) auf.



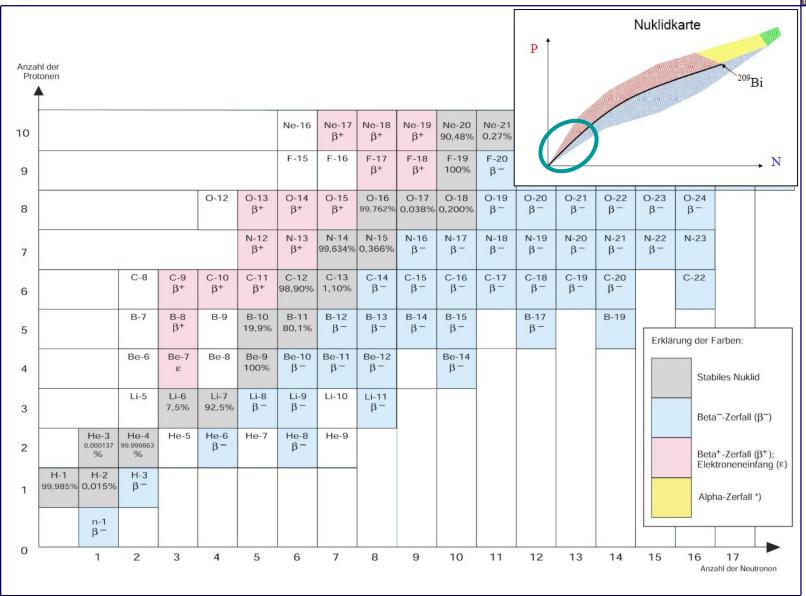
Massendefekt entspricht der Bindungsenergie des Kerns

Bindungsenergie pro Nukleon



Aufbau des Atomkerns

- Z Protonen ↔ Kernladungszahl, Ordnungszahl
- N Neutronen ⇒ Kerne mit gleichem Z heißen Isotope eines Elements
- $\cdot A = N + Z \leftrightarrow \text{Nukleonenzahl}$
 - \Rightarrow Schreibweise für einen Atomkern: $Z^A X_N$



Mehr als 2500 bekannte Nuklide für 117 Elemente bekannt (2008), von denen 81 stabile Isotope besitzen

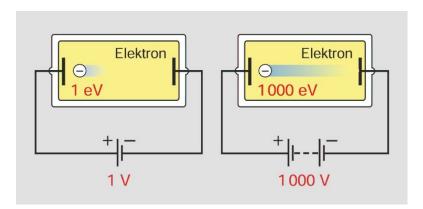
Nuklidkarte

Verteilung der stabilen Isotope

- Z gerade und N gerade (gg-Kerne):...... 158 Nuklide
- Z gerade und N ungerade (gu-Kerne):...... 53 Nuklide
- Z ungerade und N gerade (ug-Kerne):...... 50 Nuklide
- Z ungerade und N ungerade (uu-Kerne):..... 6 Nuklide

⇒ Nukleonenpaare besonders stabil

Radioaktiver Zerfall


Q-Wert (Enthalpie) einer Reaktion:

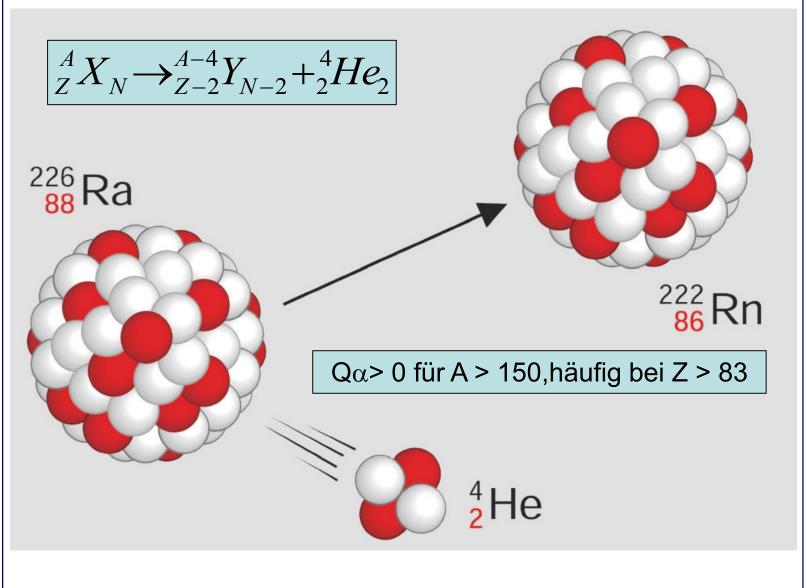
$$Q = (M_{vorher} - M_{nachher}) \cdot c^2$$

Äquivalenz von Masse und Energie wenn Massendifferenz zwischen Ausgangs- und Endprodukten groß genug ist, kann <u>spontaner</u> radioaktiver Zerfall erfolgen

Energieeinheit [eV]:

$$1 \text{ eV} = 1.6 \cdot 10^{-19} \text{ As} \cdot 1 \text{ V}$$

= $1.6 \cdot 10^{-19} \text{ J}$



- Chemische Prozesse im Bereich von eV
- Nukleare Prozesse im Bereich von MeV

α -Zerfall

α-Zerfall

$$_{Z}^{A}X_{N} \rightarrow_{Z-2}^{A-4}Y_{N-2} +_{2}^{4}He_{2}$$

 $Q\alpha > 0$ für A > 150, vor allem bei Z > 83

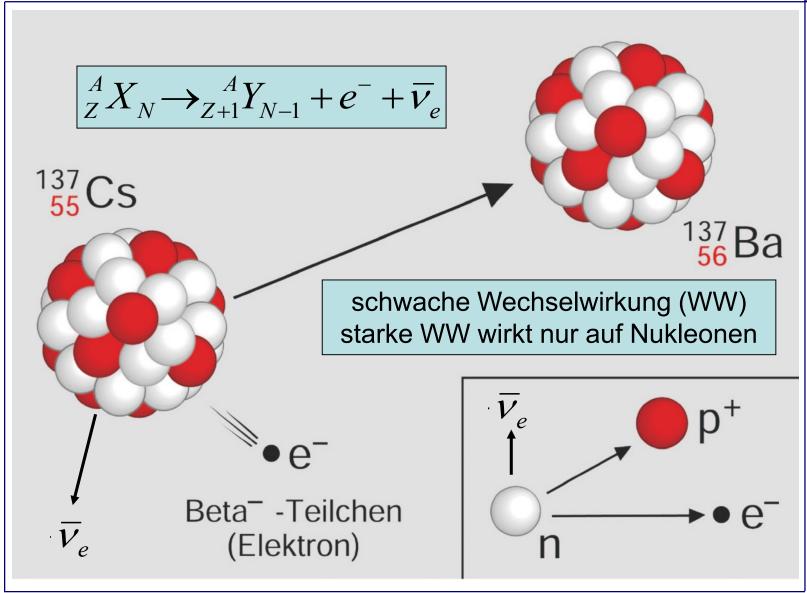
p-Zerfall (1981)

$$_{Z}^{A}X_{N} \rightarrow_{Z-1}^{A-1}Y_{N} + _{1}^{1}p_{0}$$

2006: 62 p-Strahler bekannt, (nur sehr protonenreiche Kerne)

¹⁴C-Zerfall (1983), Clusterradioaktivität

$$_{Z}^{A}X_{N} \rightarrow _{Z-6}^{A-14}Y_{N-8} + _{6}^{14}C_{8}$$


Konkurrenzprozess zum α -Zerfall, wesentlich seltener

- → Gamov-Theorie (3. Tag):
- α-Teilchen bzw. ¹⁴C muß Coulomb-Wall durchtunneln
- Tunnelwahrscheinlichkeit korreliert mit Höhe des Coulombwalls
- Höhe des Coulombwalls skaliert mit Z₁·Z₂

β-Zerfall (neutronenreiche Kerne)

β-Zerfall

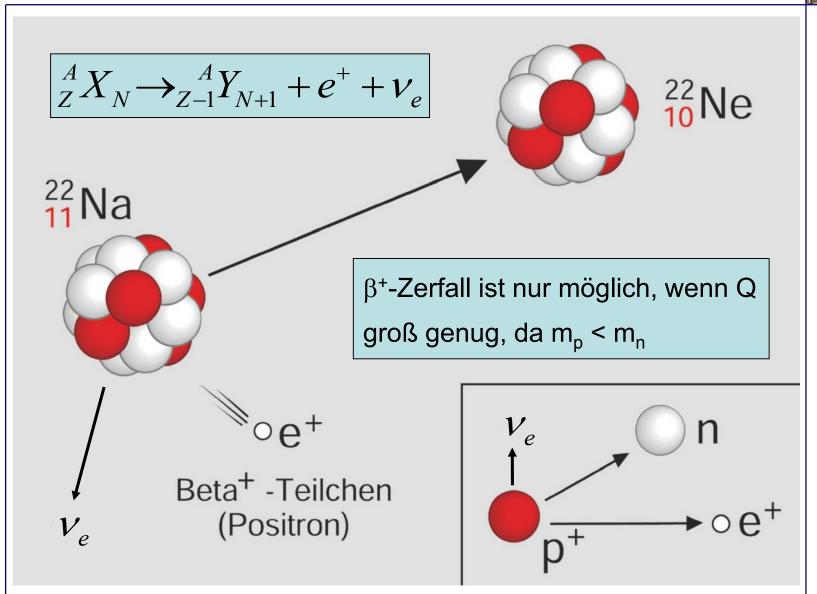
β-Zerfall (neutronenreiche Kerne)

$$_{Z}^{A}X_{N} \rightarrow_{Z+1}^{A}Y_{N-1} + e^{-} + \overline{\nu}_{e}$$

verantwortlich: schwache Wechselwirkung

⇒ starke Wechselwirkung wirkt nur auf Nukleonen (Hadronen)

Beim β -Zerfall entsteht ein Element höherer Ordnungszahl \rightarrow künstlich erzeugte Elemente


β⁺-Zerfall (neutronenarme Kerne)

$$_{Z}^{A}X_{N} \rightarrow_{Z-1}^{A}Y_{N+1} + e^{+} + \nu_{e}$$

β*-Zerfall (protonenreiche Kerne)

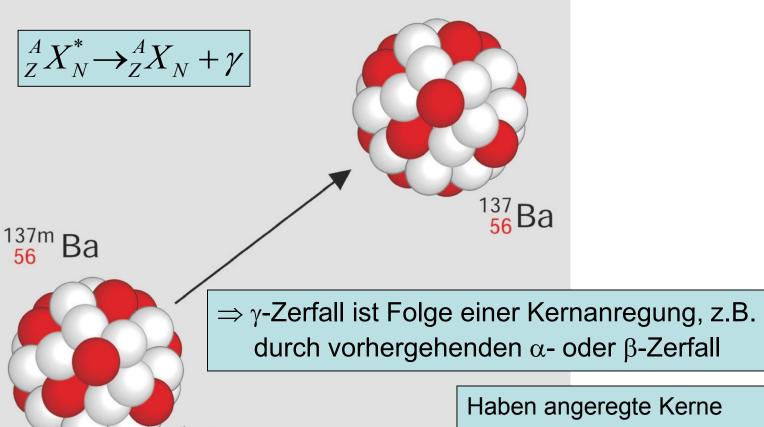
Elektroneneinfang (ΕC,ε)



$$\begin{array}{c} {}^{A}ZX_{N} + e^{-} \longrightarrow_{Z-1}^{A}Y_{N+1} + \nu_{e} \\ \\ \text{Hüllelektron} \\ \bullet \ e^{-} \end{array}$$

K-Einfang eines Hüllelektrons

z.B. bei $^{40}_{19}$ K


Ein Hüllelektron vereinigt sich mit einem Proton des Kerns zu einem Neutron

Emission charakteristischer Röntgenstrahlung. Konkurrenz zum β^+ -Zerfall. Dieser ist nur möglich, wenn Q groß genug, da $m_p < m_n$

γ-Zerfall

Gammaquant (Photon)

(Photon)

(Photon)

(Someric transitions, IT)

γ-Zerfall

$$_{Z}^{A}X_{N}^{*} \longrightarrow_{Z}^{A}X_{N} + \gamma$$

keine Nuklidumwandlung, sondern Übergang in tieferliegenden Kernzustand unter Emission von elektromagnetischer Strahlung

kernanaloger Prozess zu (Röntgen-)fluoreszenz im Atom: Abregung eines angeregten Zustandes unter Emission von Photonen

 \Rightarrow γ-Zerfall ist Folgeprozess einer vorherigen Kernanregung, z.B. durch vorhergehenden α - oder β -Zerfall

Innere Konversion

$$_{Z}^{A}X_{N}^{*} \rightarrow_{Z}^{A}X_{N} + e^{-}$$

Konkurrenzprozess zum γ-Zerfall, wenn γ-Übergänge "verboten" (\rightarrow Auswahlregeln beim γ-Zerfall)

Das Elektron wird i.a. aus der K-Schale emittiert, d.h. $E_e = E_\gamma - E_B$ ⇒ monoenergetische e im Gegensatz zu β-Zerfall

Auf innere Konversion erfolgt Emission charakteristischer Röntgenstrahlung (Wiederauffüllen der Schalen)

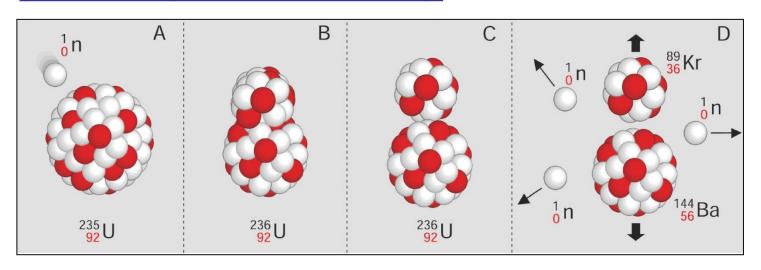
Kernanaloger Prozeß zu Auger-Elektronenemission: Energieüberschuss wird auf ein Elektron übertragen, das emittiert wird

Innere Paarbildung

$$_{Z}^{A}X_{N}^{*} \rightarrow_{Z}^{A}X_{N} + e^{+} + e^{-}$$

Konkurrenzprozess zum γ -Zerfall, wenn γ -Übergänge "verboten" (\rightarrow Auswahlregeln beim γ -Zerfall)

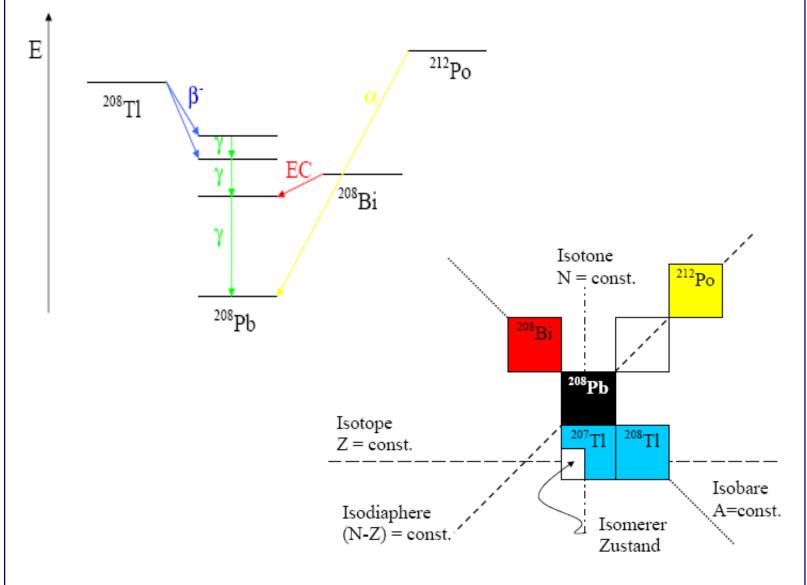
Elektron-Positron-Paar wird im Coulombfeld des Kerns spontan gebildet


Nur möglich, wenn $E\gamma > 2 m_e c^2$

Kernspaltung (spontan / induziert)

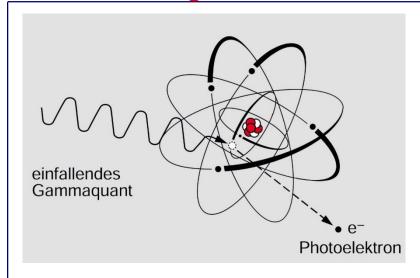
(Neutronen-) induzierte Spaltung:

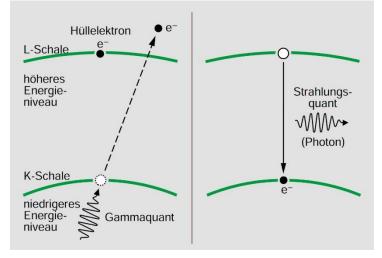
Spontanspaltung tritt bei ²³²Th und schwereren Kernen auf


- Produkte sind weit vom Ausgangskern entfernt
- Breite Verteilung von Produkten
- Sehr großer Energieumsatz (>200 MeV)

$${}_{Z}^{A}X_{N} \rightarrow {}_{Z1}^{A1}Y_{N1} + {}_{Z2}^{A2}Z_{N2} + x_{0}^{1}n_{1}$$

Beispiel für ein Zerfallsschema

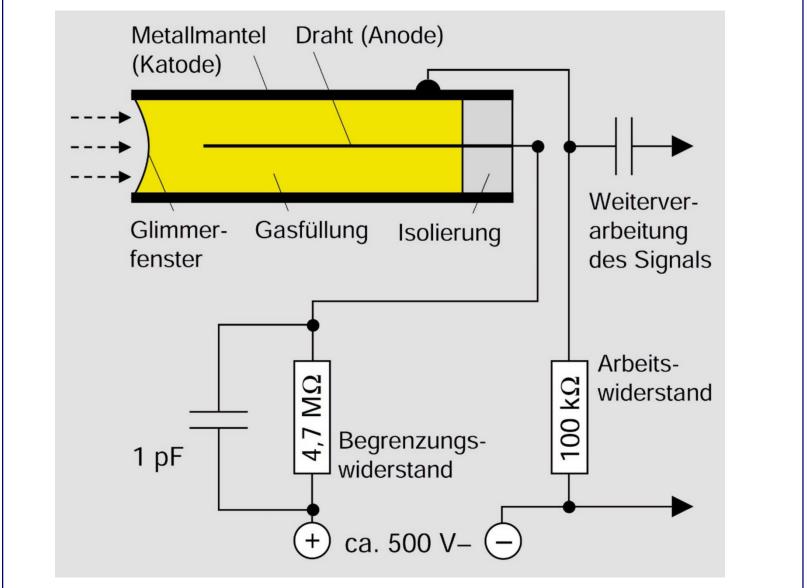




Wechselwirkungen von Strahlung mit Materie

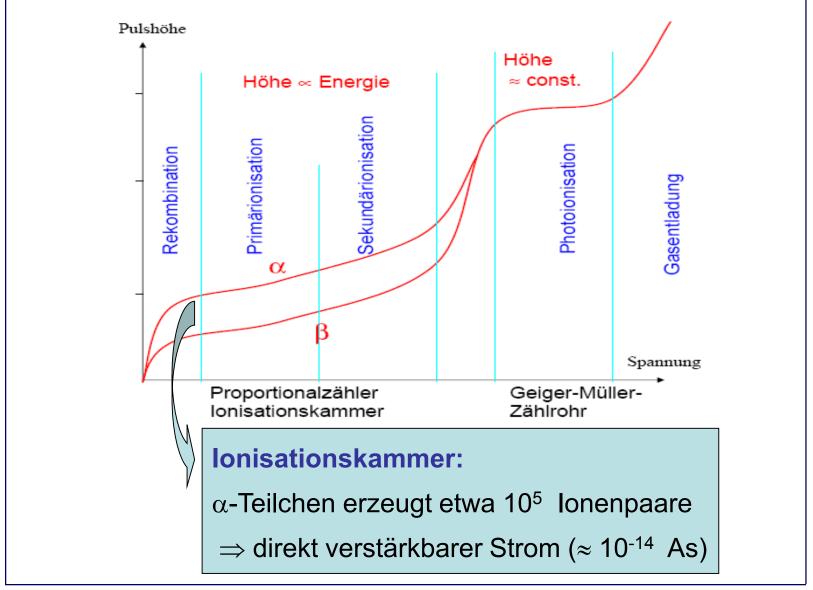
Ionisation: $M \rightarrow M^+ + e^-$

Anregung: $M \rightarrow M^*$

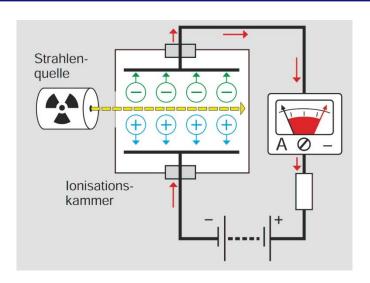

Erzeugung eines Ionenpaares in Luft: ca. 30-35 eV.

- α-Strahlung ≈ 10⁴ Paare / cm Weglänge
- β-Strahlung ≈ 10² Paare / cm Weglänge
- γ-Strahlung ≈ 1 Paar / cm Weglänge

Ionisationskammer (Zählgas z.B. Ar/CH₄) **GUTEN**



Eigenschaften eines Zählrohrs


Proportionalzähler

Bei erhöhter Spannung werden die primär erzeugten Elektronen zur Anode beschleunigt

⇒ Stoßionisation, sekundäre Ionenpaare

⇒ Verstärkung um 3-5 Größenordnungen (mV Bereich) α- und β-Strahlung lassen sich elektronisch diskrimieren (Impulshöhe):

Impulshöhe ∞ Teilchenenergie

⇒ oft Durchflusszähler (Zählgaserneuerung): Kontamat, Hand-Fuß-Monitor

Geiger-Müller-Zählrohr (GMZ)

Weitere Erhöhung der Spannung: Verstärkt Stoßionisation

Außerdem: Elektronische Anregung des Zählgases:

Ar
$$(+e^-) \rightarrow Ar^* \rightarrow A + h \cdot v$$

dadurch lawinenartige **Photoionisation**:

$$M (+ h \cdot v) \rightarrow M^+ + e^-$$

Um Kathode bildet sich **lonenwolke** (lonen driften langsamer als e⁻):

- ⇒ Pulshöhe wird unabhängig von der Teilchenart
- ⇒ Totzeit: Zeit, in der das Zählrohr kein weiteres Teilchen registrieren kann. Zugabe von "Löschgas" (Alkohol, Halogene) zur schnelleren Neutralisation der Ionenwolke (100-400 μs)

Vorteil GMZ: Hohe Impulsraten, keine Verstärkung notwendig

Nachteil GMZ: Pulshöhe energieunabhängig. Keine Spezifität

Totzeit τ

Gemessene Impulsanzahl ist kleiner als wahre Impulsanzahl

(kurz aufeinanderfolgende Teilchen ergeben nur ein Signal):

$$I_g < I_w \implies I_w - I_g = Verlust an Impulsen pro Zeit$$

Zeitbruchteil, den der Detektor "tot" ist:

$$I_g \cdot \tau$$
; $I_w - I_g = I_w \cdot I_g \cdot \tau$; $\tau = (I_w - I_g)/(I_w \cdot I_g)$

Bestimmung von τ

Herstellung fester radioaktiver Präparate durch Fällungsreaktionen

Herstellung eines ³⁵S-Präparates \Rightarrow (³⁵S $-(\beta^{-}) \rightarrow$ ³⁵CI)

- Bestrahlung von 1,5 mg NH₄CI im TRIGA-Reaktor: ³⁵CI(n,p)³⁵S
 - \Rightarrow A(35S) = 500 kBq mit T_{1/2}=87,5 d
- N=(AxT_{1/2})/ln2 = $(5x10^5 \text{ s}^{-1} \text{ x } 7,6x10^6 \text{ s})/0,693 \Rightarrow \text{ca. } 5,5x10^{12} \text{ Atome}$ 35S pro Versuch werden ca. 10^{10} Atome (10^{-15} mol) 35S eingesetzt
- Glasoberfläche enthält –SiOH Gruppen.

Ionenaustauscherkapazität

ca.10⁻¹⁰ Mol/cm². Es werden aber nur ca. 10⁻¹⁵ mol ³⁵S eingesetzt.

Zum quantitativen Ausfällen von [35]BaSO₄ muß inaktiver Sulfatträger zugegeben werden

Praktikumsversuch


$$|^{35}S \rightarrow^{35}Cl + e^- + \overline{\nu}_e|$$

Zerfallsenenergie verteilt sich auf Elektron und Antineutrino

⇒ kontinuierliches Elektronenspektrum

Bei abgedeckten Präparaten zählt der GMZ jeweils den

transmittierten Anteil der Elektronen

