# β-Zerfall, radioaktives Gleichgewicht und γ-Spektroskopie

Institut für Kernchemie Universität Mainz



 Folie Nr.
 1

 Datum:
 18.01.2017

# Tröpfchenmodell / Weizsäckerformel

### Idee:

- Kerne verhalten sich wie Tropfen einer geladenen Flüssigkeit
- Kernmaterie hat eine konstante Dichte:  $\rho \approx 2.8 \cdot 10^{14} \text{ g/cm}^3 \approx 0.17 \text{ Nukleonen/fm}^3$  $\Rightarrow \text{Volumen} \propto \text{A}, \text{ Radius} \propto \text{A}^{1/3}, \text{ Oberfläche} \propto \text{A}^{2/3}$

Bindungsenergie eines Kerns (Weizsäcker):

$$E_{B} = a_{V} \cdot A - a_{O} \cdot A^{2/3} - a_{C} \frac{Z^{2}}{A^{1/3}} - a_{S} \frac{(N-Z)^{2}}{A} + a_{P}$$

#### Volumenterm:

Bindungsenergie  $\propto$  A, nicht  $\propto$  A<sup>2</sup>

- ⇒ Sättigungscharakter der Kernkraft
- ⇒ Bindungsenergie eines Nukleons ist unabhängig von der Gesamtzahl an Nukleonen

### Oberflächenterm:

Schwächere Bindung der Nukleonen an der Oberfläche

- $\Rightarrow$  negativer Korrekturterm  $\propto A^{2/3}$
- $\Rightarrow$  "Oberflächenspannung"

 Folie Nr.
 2

 Datum:
 18.01.2017



# Tröpfchenmodell / Weizsäckerformel

- Nukleonen am Kernrand  $\Rightarrow$  resultierende Kraft in Richtung Kernmitte,
- Nukleonen im Kerninneren  $\Rightarrow$  gleichmäßige Kraft in alle Richtungen

### Coulombterm

- Abstoßende Coulombkraft der Protonen
- Negativer Korrekturterm  $\propto Z^2/A^{1/3}$



### Asymmetrieterm

- innerhalb des Tröpfchenmodells zunächst empirische Korrektur
- Kerne mit hohem Neutronenüber- oder Neutronenunterschuss sind instabil
- $\Rightarrow \beta$ -Instabilität, negativer Korrekturterm  $\propto (N-Z)^2$







Folie Nr. 3 Datum: 18.01.2017

#### Paarungsterm

- empirische Korrektur innerhalb des Tröpfchenmodells
- gepaarte Nukleonen derselben Sorte haben besonders hohe Bindungsenergie (zwei getrennte Potentialtöpfe für Protonen und Neutronen, die nach dem Pauli-Prinzip besetzt werden)
- ⇒ Kerne mit gerader Neutronen- und Protonenzahl (gg-Kerne) sind besonders stabil
- $\Rightarrow$  a<sub>P</sub> = + $\delta$  für gg-Kerne
  - $a_P = 0$  für gu- und ug-Kerne
  - $a_P = -\delta$  für uu-Kerne



Folie Nr.4Datum:18.01.2017

### Zerfall und Nachbildung radioaktiver Kerne

#### Zerfall einer einzelnen Komponente

 $\Rightarrow$  Anzahl der vorhandenen Kerne:

$$N(t) = N_{0} \cdot e^{-\lambda t}$$

 $\Rightarrow$  Anzahl der zerfallenden Kerne pro Zeiteinheit:

$$A(t) = -\frac{dN}{dt} = \lambda N(t) = \lambda N_{0}e^{-\lambda t} = A_{0}e^{-\lambda t}$$



Datum: 18.01.2017

# Zerfall und Nachbildung radioaktiver Kerne

• Zerfall zweier unabhängiger Komponenten



t



Folie Nr. 6 Datum: 18.01.2017 Mutter - Tochter - Zerfall

Mutter  $\xrightarrow{\lambda_1}$  Tochter  $\xrightarrow{\lambda_2}$  Enkel

Zeitgesetz der Mutter bleibt unverändert:

$$\frac{dN_{1}}{dt} = -\lambda_{1}N_{1}; \ N_{1}(t=0) = N_{10} \implies N_{1}(t) = N_{10}e^{-\lambda_{1}t}$$

Zeitgesetz der Tochter wird durch Speisung aus dem Zerfall der Mutter modifiziert:

$$N_{2}(t) = N_{20}e^{-\lambda_{2}t} + \frac{\lambda_{1}}{\lambda_{2} - \lambda_{1}}N_{10}(e^{-\lambda_{1}t} - e^{-\lambda_{2}t})$$

Aktivität der Tochter:

$$\Rightarrow A_{2}(t) = A_{20}e^{-\lambda_{2}t} + \frac{\lambda_{2}}{\lambda_{2} - \lambda_{1}}A_{10}(e^{-\lambda_{1}t} - e^{-\lambda_{2}t})$$



Folie Nr. 7 Datum: 18.01.2017

### Zerfall und Nachbildung radioaktiver Kerne

### Grenzfallbetrachtung

1.) Sehr langlebige Mutter: Ist bei natürlicher Radioaktivität gegeben

$$\lambda_{1} \ll \lambda_{2} \iff T_{H1} \gg T_{H2}; \ \lambda_{1}t \ll 1 \rightarrow A_{1}(t) = A_{10} = const.$$
$$\implies A_{2}(t) = A_{10}(1 - e^{-\lambda_{2}t})$$



Säkulares Gleichgewicht (Dauergleichgewicht)

bei  $\mathbf{t} \approx 10\mathbf{T}_{\mathbf{H}2}$  ist GG eingestellt  $\mathbf{A}_2(\mathbf{t}) \approx \mathbf{A}_{10} = \mathbf{const.}$ 



Folie Nr. 8 Datum: 18.01.2017

### Zerfall und Nachbildung radioaktiver Kerne

#### Grenzfallbetrachtung

2.) Sehr langlebige Tochter:

$$\lambda_{1} >> \lambda_{2}; T_{H1} << T_{H2}; \lambda_{2} \cdot t << 1$$
$$A_{2}(t) = \frac{\lambda_{2}}{\lambda_{1} - \lambda_{2}} A_{10}(e^{-\lambda_{2}t} - e^{-\lambda_{1}t}) \approx \frac{\lambda_{2}}{\lambda_{1}} A_{10}(1 - e^{-\lambda_{1}t})$$





Folie Nr. 9 Datum: 18.01.2017

# Praktikumsversuch (Vormittag)

Zerfall und Nachbildung von <sup>137m</sup>Ba (säkulares Gleichgewicht)

30,17 a



- V1: Abtrennung von <sup>137m</sup>Ba aus dem GG (Fällung als BaSO<sub>4</sub>)
  - γ-Messung des Filtrats
  - Beobachtung der Nachbildung von <sup>137m</sup>Ba (indirekte HWZ-Bestimmung)
- V2: Abtrennung von <sup>137m</sup>Ba aus dem GG (Fällung als BaSO<sub>4</sub>)
  - γ-Messung des Niederschlags
  - direkte Bestimmung der HWZ von <sup>137m</sup>Ba



Folie Nr. 10 Datum: 18.01.2017

### Entstehung von γ-Strahlung

Emission von Photonen aus angeregtem Kern





Folie Nr. 11 Datum: 18.01.2017

| Geladene Teilchen ( $\alpha$ , $\beta$ ,p)                                                                                                                            | Ungeladene Teilchen (γ,n)                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Energieabgabe kontinuierlich (durch<br>Wechselwirkung mit elektrischem Feld<br>ca. 30 eV Energieverlust pro Ionisation)                                               | Energieabgabe diskontinuierlich<br>(Energieverlust durch Stoß, statistisch<br>bestimmt) |
| <ul> <li>⇒ maximale Reichweite</li> <li>Energieabgabe pro Wegstrecke:</li> <li>→ Anwendung von <sup>12</sup>C- Strahl in der</li> <li>Tumor-therapie (GSI)</li> </ul> | ⇒ Reichweite nicht definiert<br>Energieabgabe pro Wegstrecke:                           |





Folie Nr. 12 Datum: 18.01.2017

# Wechselwirkung mit Materie

Wechselwirkung mit Materie



 $\Delta I \propto \Delta x$ 

 $\Rightarrow \Delta I = -\mu \cdot I_0 \cdot \Delta x$  (Mit Absorptionskoeffizient  $\mu$  [cm<sup>2</sup>/g] und Schichtdicke x [g/ cm<sup>2</sup>])

$$\Rightarrow \mathbf{I}(\mathbf{x}) = \mathbf{I}_0 \cdot \mathbf{e}^{-\mu \mathbf{x}}$$

 $\Rightarrow$  Absorptionsgesetz, vgl. Lambert-Beer  $\Rightarrow$  analog zur Halbwertszeit T<sub>1/2</sub> Definition der *Halbwertsdicke*:

$$D_{1/2} = \frac{\ln 2}{\mu}$$



Folie Nr. 13 Datum: 18.01.2017 Photoeffekt

 $\gamma$ -Quant gibt gesamte Energie an gebundenes Elektron ab:

 $\mathsf{E}_{\mathsf{e}}\text{-}=\mathsf{E}_{\gamma}\text{-}\mathsf{E}_{\mathsf{B}}$ 

 $\Rightarrow$  wenn E<sub>y</sub> > E<sub>B</sub>, kann das Elektron den Atomverband verlassen.

- nach Ionisation ist ein "Loch" in der Elektronenschale
- Elektronen "fallen aus höheren Schalen nach unten"
- Emission von charakteristischer Röntgenstrahlung

 $(\rightarrow R \ddot{o} ntgenfluoreszenz), z.B.$ 

L $\rightarrow$ K K $\alpha$ -Linie M $\rightarrow$ K K $\beta$ -Linie



Folie Nr.14Datum:18.01.2017

# Wechselwirkung mit Materie

Comptoneffekt

Streuung eines  $\gamma$ -Quants an "freiem" Elektron ( $E_{\gamma}$ >> $E_B$ )



Aus Impulserhaltung folgt: 
$$E'_{\gamma} = \frac{E_{\gamma}}{\frac{E_{\gamma}}{m_0 c^2} (1 - \cos \theta) + 1}$$
 (mit Elektronen-Ruhemasse m<sub>0</sub>)

 ⇒ Elektron und gestreutes γ-Quant bewegen sich unter definierten Winkeln
 ⇒ maximaler Impulsübertrag erfolgt bei Θ = 180°, Elektronen aus der Comptonstreuung haben also eine Maximalenergie (→Comptonkante)

JOHANNES GUTENBERG

UNIVERSITAT MAINZ

Folie Nr. 15 Datum: 18.01.2017

#### Paarerzeugung

Durch Wechselwirkung mit Coulombfeld des Kerns werden Elektron-Positron-Paare gebildet



Paarerzeugung nur möglich, wenn

 $E_{\gamma} > 1022 \text{ keV} = 2 \text{ m}_0 \text{c}^2$ 

Paarerzeugung induziert Vernichtungsstrahlung durch Positronenannihilation (E = 2x 511 keV)



Folie Nr. 16 Datum: 18.01.2017

# Wechselwirkung mit Materie

### Abhängigkeiten der verschiedenen Absorptionskoeffizienten

|               | Z-Abhängigkeit   | Energieabhängigkeit                   |
|---------------|------------------|---------------------------------------|
| Photoeffekt   | $\propto Z^4Z^5$ | ∝ E <sup>-3.5</sup> E <sup>-1</sup>   |
| Comptoneffekt | ∞ Z              | ∝ E <sup>-1</sup>                     |
| Paarerzeugung | ∞Z²              | $\propto$ ln E (E $\gamma$ >1.02 MeV) |

 $\Rightarrow$ Materialien mit großem Z schirmen  $\gamma$ -Strahlung besser ab

 $(\rightarrow Pb-Abschirmung)$ 

 $\Rightarrow$ Gesamtabsorptionskoeffizient  $\mu$ 





Folie Nr. 17 Datum: 18.01.2017 We cheelwirkung von  $\gamma$ -Strahlung mit Materie ist abhängig von Z

- $\Rightarrow$  Geiger-Müller-Zähler sind nicht geeignet
  - (Zählgas Argon, Z=18)
- ⇒ geeignet sind Szintillationszähler, z.B. NaI(TI), (I: Z=53; TI: Z=81) Halbleiterdetektoren, z.B. Ge-Li (Ge: Z=32)

### Szintillationszähler

Prinzip: Anorganische oder organische Kristalle oder Lösungen werden durch ionisierende Strahlung zur Emission von Licht angeregt; Licht wird mit Photomultiplier verstärkt.

Vorteil: Hohe Efficiency (Geometriefaktor/hohes Z)

### Halbleiterzähler

Prinzip: In einer in Sperrrichtung geschalteten Diode werden Elektronen ins Leitungsband angehoben, die auftretende Spannung verstärkt. (=Festkörper-Ionisationskammer)

Vorteil: Hohe Energieauflösung



Folie Nr. 18 Datum: 18.01.2017

# Szintillationszähler

Nal-Einkristall mit TI dotiert:



- 1. Elektronen werden aus dem Valenzband in das Leitungsband angehoben
- Die verbleibenden Löcher wandern zu Aktivatorzentren (TI) und ionisieren diese
- Das freie Elektron wandert zum Aktivatorzentrum und "fällt die Niveauleiter" des TI hinab; dabei wird sichtbares Licht ausgesandt. Lebensdauer des angeregten Zustands: ca. 230 ns (Nal(TI)-Detektor)
- 4. Lichtquant wird mit Photomultiplier verstärkt;  $300 \text{ eV } \gamma$ -Quant  $\Rightarrow$  ca. 10 Lichtquanten  $\Rightarrow$  ca. 1 Photoelektron  $\Rightarrow \gamma$ -Energie  $\propto$  Anodenstrom



Folie Nr. 19 Datum: 18.01.2017

### Form eines γ-Spektrums

 $\gamma$ -Quanten haben diskrete Energie  $\Rightarrow$  Linienspektrum



PP: Photopeak – gesamte γ-Energie wird im Detektor deponiert

CK/RP: Comptonkante/Rückstreupeak aus Comptoneffekt.

- CK: Maximalübertrag von Energie auf Elektron durch 180°-Streuung, Nachweis der Elektronen. Unterhalb CK bis E=0 Comptonkontinuum
- RP: Comptonstreuung außerhalb des Detektors (in der Probe), Nachweis der gestreuten Photonen;



Folie Nr. 20 Datum: 18.01.2017

 $E_{CK} + E_{RP} = E_{PP}$ 

### Form eines γ-Spektrums

 $\gamma$ -Quanten haben diskrete Energie  $\Rightarrow$  Linienspektrum



SE/DE: single-escape/double-escape-Peak

Bei hohen γ-Energien Paarerzeugung. Positron wird i.d.R. im Detektor vernichtet

- $\Rightarrow$  2  $\gamma$ -Quanten (511 keV).
- $\Rightarrow$  Entweicht eines: SE (ESE= EPP-511 keV)
- $\Rightarrow$  Entweichen beide: DE (EDE= EPP- 1022 keV)
- ⇒ Entweicht keines, wird wegen der Zeitauflösung die Energie des Photopeaks gemessen.



Folie Nr.21Datum:18.01.2017

### Form eines γ-Spektrums

 $\gamma$ -Quanten haben diskrete Energie  $\Rightarrow$  Linienspektrum



VS: Vernichtungsstrahlung bei Paarerzeugung außerhalb des Detektors  $\Rightarrow$  Nachweis von  $\gamma$ -Quanten bei 511 keV

 SP: Summenpeak
 Durch gleichzeitigen Nachweis von 2 γ-Quanten entsteht ein Summenpeak (E<sub>SP</sub>=E<sub>γ1</sub>+E<sub>γ2</sub>)
 Diskriminierung des Summenpeaks durch größeren Abstand Detektor - Probe (Nachweiswahrscheinlichkeit für 1 γ fällt mit 1/R<sup>2</sup>, für 2 γ mit 1/R<sup>4</sup>)



UNIVERSITAT MAINZ

JOHANNES GUTENBERG

 Folie Nr.
 22

 Datum:
 18.01.2017

<sup>60</sup>Co

### Zerfallsschema von 60Co

Ε





 $\gamma$ -Emission = Energieabgabe ohne Kernumwandlung

$${}^{A}_{Z}X^{*} \xrightarrow{\gamma} {}^{A}_{hv} Z^{A}X$$

ß

E\_=1.17 MeV

4+

2+

 $\gamma$ -Linien "von <sup>60</sup>Co"

stammen eigentlich aus Abregung von <sup>60</sup>Ni\* sind charakteristisch für die Kernstruktur von <sup>60</sup>Ni

JGU JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Folie Nr. 23 Datum: 18.01.2017

# Bestimmung von Peakflächen

- Peakgrenzen festlegen
- Summieren der Counts aller Kanäle des Peaks
- Abziehen des Untergrunds
  - (Cts<sub>linke Grenze</sub> + Cts<sub>rechte Grenze</sub>) / 2
  - Annahme eines linearen Untergrunds





Folie Nr.24Datum:18.01.2017

### Praktikumsversuch

- Messung des <sup>137</sup>Cs-Spektrums (Energiekalibrierung)
- Messung des <sup>60</sup>Co-Spektrums (Bestimmung der Peaks, Energiekalibrierung)
- Messung + Interpretation des <sup>24</sup>Na-Spektrums
- Messung <sup>60</sup>Co-Spektrums (Messgeometrie, Abstandsabhängigkeit)
- Messung <sup>60</sup>Co-Spektrums (Bestimmung der Halbwertsschichtdicke für Blei)



Folie Nr.25Datum:18.01.2017