

PositronenEmissionsTomographie oder "homöopathische Chemie heute"

Institut für Kernchemie Universität Mainz

Markus Piel

Einleitung

Albrecht Dürer: Adam und Eva

Wer sind wir? In einem körperlichen Sinne:

- Anatomie und Physiologie
- Bau und Funktionen der Organe
- Bau und Funktionen der Zelle

Klinische Diagnostik: -Röntgenuntersuchungen -Magnetresonanztomographie (MRT) -Computertomographie (CT)

 \Rightarrow Morphologie

Einleitung

Idee der PET:

Visualisierung eines biochemischen Prozessesohne ihn dabei zu beeinflussen U

geeignete "Sonde"

 \downarrow

Sehr hohe, störungsfreie Nachweismöglichkeit

 \downarrow

Radioaktive Sonden

Inhalt

- 1. Messprinzip und Messung der Signale
- 2. Herstellung geeigneter Radioisotope
- 3. Biochemische Konzepte
- 4. Synthese geeigneter Moleküle
- 5. Medizinische Bewertung (Diagnostik)

- 2. Herstellung geeigneter Radioisotope
- 3. Biochemische Konzepte
- 4. Synthese geeigneter Moleküle
- 5. Medizinische Bewertung (Diagnostik)

Schema des Messverfahrens Koinzidenz Verarbeitung/Detektion Datenerfassung & Sun 이번 같았 (Sun))=> 5. 7 10. D e⁺/e⁻ Annihilation **Bild Rekonstruktion**

Geeignete Radionuklide

Positronenemission: Variante des β-Zerfalls neutronendefizitärer Kerne

$${}^{1}_{+1}p \longrightarrow {}^{1}_{0}n + {}^{0}_{+1}\beta + {}^{0}_{0}v$$

Aufbau einer PET-Kamera

Aufbau einer PET-Kamera

Aufbau des Blockdetektors

Funktionsweise eines Blockdetektors

Bildrekonstruktionsverfahren

- 2. Herstellung geeigneter Radioisotope
- 3. Biochemische Konzepte
- 4. Synthese geeigneter Moleküle
- 5. Medizinische Bewertung (Diagnostik)

Produktion von Positronenemittern Target Target Stripper 11-19 MeV Ionen-quelle Protonen •**⊕**• •**⊕**• Orbit (H⁻) Negativionenbeschleuniger

Herstellung der Positronenemitter

Wichtige Kernreaktionen

Target	Radio- isotop	Kern- reaktion	Produkt
¹⁴ N ₂	¹¹ C	¹⁴ N(p,a) ¹¹ C	[¹¹ C]CO ₂
H ₂ ¹⁶ O	¹³ N	¹⁶ O(p,a) ¹³ N	[¹³ N]NH ₃
¹⁵ N ₂	¹⁵ O	¹⁵ N(p,n) ¹⁵ O	[¹⁵ O]O ₂
H ₂ ¹⁸ O	¹⁸ F	¹⁸ O(p,n) ¹⁸ F	[¹⁸ F]F ⁻ aq
Ne +0.1%F ₂	¹⁸ F	²⁰ Ne(d,a) ¹⁸ F	[¹⁸ F]F ₂

Aufbau eines H₂¹⁸O-Targets

Wichtige Positronenemitter

Isotop	T _{1/2} [min]	β ⁺-Zweig	E _{β+} ,mittl. [MeV]	Reichw. _{β+} , mittl. [mm]	Quelle
¹¹ C	20.38	> 99%	0.39	1.6	Zyklotron
¹³ N	9.96	> 99%	0.49	2.2	Zyklotron
¹⁵ O	2.03	> 99%	0.74	3.3	Zyklotron
¹⁸ F	109.7	96.9%	0.24	1.0	Zyklotron, (Reaktor)
⁸² Rb	1.27	95%	1.41	5.8	g (⁸² Sr: 25.6 d)
⁶² Cu	9.74	97%	1.28	5.3	g (⁶² Zn: 9.26 h)
⁶⁸ Ga	68	90%	0.70	3.3	g (⁶⁸ Ge: 271 d)

Wahl des Radioisotops ist abhängig von untersuchtem biochemischen Prozess (biologische Halbwertszeit des Prozesses, Struktur des Moleküls, Hirngängigkeit, etc...)

- 1. Messprinzip und Messung der Signale
- 2. Herstellung geeigneter Radioisotope
- 3. Biochemische Konzepte
- 4. Synthese geeigneter Moleküle
- 5. Medizinische Bewertung (Diagnostik)

Tumordiagnostik

	Gehirn	Computer
Anzahl der Verarbeitungselemente	10 ¹¹ Neuronen	10 ⁹ Transistoren
Schaltzeit der Elemente	10 ⁻³ s	10 ⁻⁹ s
Schaltvorgänge	10 ³ s	10 ⁹ s
Schaltvorgänge insgesamt (theor.)	10 ¹⁴ / s	10 ¹⁸ / s
Verarbeitungsart	Massiv parallel	Primär seriell
Vernetzungsfaktor	10 ³	1

Das dopaminerge System

Schizophrenien

Schizophrenien

Psychiatrische Langzeitpatienten

- Wie und wo wirken Neuroleptika ?
- Wie bestimme ich die effiziente Dosis (der Patient als "black box")
- Minimierung von Nebenwirkungen!

Das dopaminerge System

Dynamisches PET am Beispiel [¹⁸F]DMFP

Spezifische Bindung von [¹⁸F]DMFP

Rezeptordichte

Bindungspotential

DDD: Determination of Dosages of Drugs

[¹⁸F]DMFP: D₂-Rezeptorbelegung durch Amisulpride

Tumordiagnostik

Rezeptorligand-Rezeptor-Interaktion

HO O

0

(D)Phe - Cys - Tyr - (D)Trp-

Thr(ol) - Cys - Thr - Lys-

ОН

HO

hSSTR5 7.3 nmol / L

Liganden für den Somatostatinrezeptor Somatostatin Ala -Gly - Cys - Lys- Asn - Phe - Phe - Trp Cys - Ser - Thr - Phe - Thr - Lys -

Octreotid

(D)Phe - Cys - Phe - (D)Trp - Lys - Thr - Cys - Thr(ol)

- 1. Messprinzip und Messung der Signale
- 2. Herstellung geeigneter Radioisotope
- 3. Biochemische Konzepte
- 4. Synthese geeigneter Moleküle
- 5. Medizinische Bewertung (Diagnostik)

Arbeitsplan zur Darstellung eines Radioliganden

- Identifizierung geeigneter Leitstrukturen
- Modifikation des Liganden bezüglich der Markierung
- Synthese der Referenzverbindung
- In vitro-Evaluierung

(Bestimmung der Affinität, Lipophilie, etc.)

- Synthese des Markierungsvorläufers
- Optimierung der Markierungsreaktion
- Tierversuche

Optimierung der Markierung

Ex vivo-Biodistributionen

	100			
	1	PI		20
			11 P	1
		1	Sec.	in i
1000			T T I	
CONTRACT OF	++	H	HT	
	++	++		
	++	11		1
	++	11		
	++	11		
	11			
			HH	
		11		
		++	11	
ATT S	113		12 0	
the second				

PARAMETER	NaI	BGO	LSO
Dichte [g/mL]	3,67	7,13	7,4
Ordnungszahl [Z _{eff}]	50	73	65
Mittlerer freier Weg [cm]	2,88	1,05	1,16
Hygroskopisch	Ja	Nein	Nein
Robust	Nein	Ja	Ja

PARAMETER	NaI	BGO	LSO
Zerfallszeit [ns]	230	300	40
Spitzenemissions- wellenlänge [nm]	410	480	420
Lichtleistung relativ zu NaI	1	0,15	0,75
Energieauflösung bei 511 keV	7,8%	10,1%	10%

Time p.i. [sec]

(left) Bone images acquired on a microPET; bone images (right) acquired on a microCAT. Images courtesy of Crump Institute for Molecular Imaging, Los Angeles, CA.

Probandenstudien

Vollautomatisierte Module:

- Geringe Strahlenbelastung des Personals
- Bessere Reproduzierbarkeit der Synthesen
- GMP leichter umsetzbar

- 1. Messprinzip und Messung der Signale
- 2. Herstellung geeigneter Radioisotope
- 3. Biochemische Konzepte
- 4. Synthese geeigneter Moleküle
- 5. Medizinische Bewertung (Diagnostik)

Tumordiagnostik

Demenz-Risiko (Rotterdam-Studie)

Dopamin-Rezeptorsystem: **Parkinson**, ...

[¹⁸F]Fluordopa (Differentialdiagnostik)

Patient A

Patient B

[¹⁸F]Fluordopa (Differentialdiagnostik)

Patient A

Patient B

M. Parkinson

F18-Dopa

präsynaptisch

F18-DMFP

postsynaptisch

DAT: Parkinson...

DAT: Parkinson...

[18F]Fluorethyl-diprenorphin

Opiat-Rezeptorsystem: Schmerz, Sucht, ...

[18F]Fluorethyl-diprenorphin

[¹⁸F]Fluorethyl-flumazenil

GABA-Rezeptorsystem: Alkoholabhängigkeit, Angst, ...

 \mathbf{O}

Das serotonerge System

H N

S

Das serotonerge System

А

[¹⁸F]Altanserin

- Fluorierung erlaubt "Satellienkonzept"
- Langer Gleichgewichtszustand
- Schnelle Metabolisierung
- Hohe MV-Konzentration => Teuer!!
- Lange Synthesezeit

[¹¹C]MDL 100907

- Metaboliten passieren BHS nur geringfügig
- Höhere Selektivität als Altanserin

В

B′

A [¹⁸F]Altanserin B [³H]MDL 100907 C [¹⁸F]MH.MZ

C'

Das serotonerge System

Links:

Repräsentative µPET Bilder von [¹⁸F]MH.MZ (n=1) with **A**) transversaler, **B**) sagittaler and **C**) coronarer Orientierung <u>Rechts</u>:

SUV von [18F]MH.MZ im Cerebellum und frontalen Cortex

Tumordiagnostik

Onkologische PET-Tracer

¹⁸F-Fluorethyl-Tyrosin PET Rezidiv Astrocytom III

Proteinsyntheserate: Zellproliferation

Somatostatin-Rezeptoren: neuroendokrine Tumore

[¹⁸F]FDG

[⁶⁸Ga]DOTATOC

PET-CT

Der Praktikumsversuch

•Elution des Ga-Generators

•Untersuchung der Reaktionskinetiken (Abhängigkeit der RCA von der Temperatur)

•Auswertung der RCA mittels Radio-DC

Der Positronenemitter ⁶⁸Ga

p,2n EC β + 69Ga \rightarrow 68Ge \rightarrow 68Ga \rightarrow 68Zn

- t¹/₂ : 69Ga : stabil
- t¹/₂ : 68Ge : 270 d
- t¹/₂: 68Ga: 68 min*
- t¹/₂ : 68Zn : stabil

* MeV	[%]		
0.511	178	γ	
1.077	3	γ	
1.8	88	β	

Aufbau des Ga-Generators

Elution des Ga-Generators

	Schritte	Verwendete Lösungen		Temp.	Zeit
		Тур	Volumen		min
1	Generator- Elution	0.1N HCl	6 mL	RT	2
2	Konditionierung der KX	80% Aceton / 0.15 N HCl	5 mL	RT	0.5
3	⁶⁸ Ga-Elution vom Harz	97% Aceton / 0.05 N HCl	400 µL	RT	3
4	KX Reinigung	4 N HCl / H ₂ O	1 mL / 1 mL	RT	
5	Markierung	5 mL H ₂ O + 10 μg DOTA + 3	6 mL	95°C	10
6	Konditionierung der C-18	Ethanol/ H ₂ O	2 mL /2 mL	RT	
7	Beladung C-18	5		95°C	4
8	Waschen der C-18	H ₂ O	2 mL	RT	0.5
9	Elution des ⁶⁸ Ga-DOTA	Ethanol	0.5 mL	RT	1.5
10	Verdünnung	0.15 M NaCl + 9	5 mL	RT	1
11	Filtration	10		RT	5
12	Radio-DC	0.1 M Na ₃ Citrat		RT	

Synthese von ⁶⁸Ga-DOTA-Derivaten

Reaktionskinetiken der Darstellung von ⁶⁸Ga-DOTA-Derivaten hängen von verschiedenen Reaktionsparametern ab (t, T, pH,...)

Auswertung der ⁶⁸Ga-Reaktionskinetiken

