β⁻ -Tag

Institut für Kernchemie Universität Mainz

Markus Jahn, Klaus Eberhardt, Christian Siemensen, Pascal Schönberg, Daniela Schönenbach

Folie Nr.1Datum:18.01.2017

Der β – Zerfall

UNIVERSITÄT MAINZ

 Folie Nr.
 2

 Datum:
 18.01.2017

Die Isobarenparabel

Datum: 18.01.2017

Theorie des β – Zerfalls

Historisches Problem:

 Δ S ganzzahlig, S_e-=½ \rightarrow Drehimpulserhaltung?

Pauli postulierte daher das *Neutrino* mit der Masse 0, Ladung 0, Spin ½, welches nur schwer nachgewiesen werden kann. Die dissipierte Energie verteilt sich auf Elektron und Neutrino. Die im Detektor gemessenen Elektronen zeigen eine kontinuiertliche Energieverteilung.

IOHANNES GUTENBERG

UNIVERSITAT MAINZ

 Folie Nr.
 4

 Datum:
 18.01.2017

Fermi-Theorie (1934)

Die Zerfallsrate pro Zeit ist gegeben durch Fermis goldene Regel (aus Störungsrechnung 1. Ordnung, analog elektromagnetischer Übergänge):

$$\left| N(p_e) dp_e = W_{i \to f} = \frac{2\pi}{\hbar} \left| \left\langle \psi_f \left| H_I \right| \psi_i \right\rangle \right|^2 \frac{dn}{dE} \right|_{E=cp_e} \right|$$

Wahrscheinlichkeit der Emission eines e⁻ im Impulsintervall zwischen p und p + dp

Anfangszustand $\Psi_i = \varphi_i$ (Ausgangskern) Endzustand $\Psi_f = \varphi_f$ (Endkern)· $\varphi(e^-)$ · $\varphi(\Box)$

H_I: Hamiltonoperator der schwachen Wechselwirkung

dn/dE: Dichte der möglichen Endzustände pro Energieintervall

Experimentell: Form der
-Spektren ist im Wesentlichen durch dn/dE (Zustandsdichte der Endzustände) bestimmt.

 Folie Nr.
 5

 Datum:
 18.01.2017

Fermi-Theorie (1934)

 das Matrixelement □f|H_I|i □ = H_{fi} ist nur schwach energieabhängig; es ist Maß für Übergangswahrscheinlichkeit, also die Halbwertszeit für den β-Zerfall T¹/₂.
 □f| kann auch ein angeregter Zustand des Tochterkerns sein.
 λ(2 MeV-Elektron) □ 10⁻¹¹cm □ Kernradius
 □ φ(e⁻) □ konstant über das Kernvolumen

Fermi-Theorie (1934)

Daraus folgt letztendlich:

$$N(p) \propto F(Z, p) p^2 (E_0 - E)^2$$

bzw.

$$\sqrt{\frac{N(p)}{F(Z,p)p^{2}}} \propto (E_{0} - E); \quad F(Z,p) = \frac{\left|\varphi_{e}(0,p)_{coul}\right|^{2}}{\left|\varphi_{e}(0,p)_{frei}\right|^{2}}$$

Für m_v=0 ergibt sich eine Gerade (Fermi-Kurie-Plot)

Damit erhält man sehr genau die Endpunktsenergie E₀

Folie Nr. 11 Datum: 18.01.2017

Endliche Neutrinomasse

tritium ß-decay and the neutrino rest mass

 $^{3}\text{H} \rightarrow ^{3}\text{He} + e^{-} + \bar{\nu}_{e}$

superallowed

half life : $t_{1/2} = 12.32 \text{ a}$ *B* end point energy : $E_0 = 18.57 \text{ keV}$

Datum: 18.01.2017

Das KATRIN Spektrometer

Folie Nr. 13 Datum: 18.01.2017

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Das KATRIN Spektrometer

Folie Nr. 14 Datum: 18.01.2017

Heute im Praktikum: 1. Das -Spektrum

- Aufnahme des energieabhängigen

 –Spektrums von ³²P mit einem Halbleiterdetektor
- Kanal-Energie-Kalibration des Spektrums mit Hilfe von Konversionselektronen (¹³⁷Cs, ²⁰⁷Bi)
- Umformung von Energie- in Impulsspektrum:

$$N(p) = N(E) \cdot c \cdot \sqrt{1 - \frac{511^2}{(511 + E(keV))^2}} \qquad \qquad \frac{p}{m_0 c} = \sqrt{\left(\frac{E(keV) + 511}{511}\right)^2 - 1}$$

(oder ablesen aus Skript)

- Ablesen der zugehörigen Fermifunktion F(16,p) (Skript)
- Berechnung von:

$$\sqrt{\frac{N(p)}{p^2 \cdot F(Z, p)}} = C(E - E_{\beta \max})$$

- Erstellung eines Fermi-Kurie-Plots durch auftragen gegen E
- Bestimmung der
 --Endpunktsenergie aus linearem, hochenergetischem Teil
 IG

Folie Nr. 15 Datum: 18.01.2017

2.
-Spektroskopie von Os-Isotopen

3. ß-verzögerte Neutronen-Messungen

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Folie Nr. 16 Datum: 18.01.2017

2. -Spektroskopie von ^{190m}Os

- In (n,□)-Reaktionen entsteht ^{190m}Os.
 ^{190m}Os → ^{190g}Os + □
- Die niedrigliegenden metastabilen Zustände sind Rotations- und Vibrationseigenzustände
- Ein halbklassisches Modell für die Rotationszustände:

$$E_{rot}(I) = \frac{\hbar^2}{2\theta} \cdot (I \cdot (I+1)) \bigg|_{\text{ist } k}$$

mit I = 0, 2, 4,...

ist konstant

- Durch Bestrahlung im Reaktor: ^{nat}Os-Proben (n,) $\Box^{190m}Os$; T¹/₂ = 9,9 min

 \Box Aus \Box -Spektrum Bestimmung von T_{1/2} und \Box von ^{190m}Os

Folie Nr. 17 Datum: 18.01.2017

Kernniveauschema von ^{190m}Os

UNIVERSITÄT MAINZ

Folie Nr.18Datum:18.01.2017

3. -verzögerte Neutronen

Spaltung von ²³⁵U:

2,4 prompte Neutronen Emission ~ 10^{-15} s Moderation ~ 10^{-3} s

Inicht geeignet zur Regelung

Folie Nr. 21 Datum: 18.01.2017

Gruppen von Vorläufern

Gruppe	T _{1/2} [s]	Energie [keV]	Verzweigungsverhältnis bei thermischer Spaltung [%] ²³³ U ²³⁵ U ²³⁹ Pu		
1	55	250	0,022	0,021	0,007
2	23	560	0,077	0,140	0,063
3	6,2	430	0,065	0,126	0,044
4	2,3	620	0,072	0,253	0,068
5	0,61	420	0,013	0,074	0,018
6	0,23		0,009	0,027	0,009

 Folie Nr.
 22

 Datum:
 18.01.2017

Apparativer Aufbau DNAA

Bestimmung von spaltbaren Elementen (U, Pu) in Urin, Böden, Pflanzen und huminsäurehaltigen Lösungen

Zyklus: 2 min. (100 kW/RP) – 20 sec. Abklingzeit – 1 min. Messzeit

Messung D-verzögerter Neutronen in speziellem n-Detektor ³He(n,γ)T+p:

12 ³He-Zählrohre Effizienz: 18 % Untergrund: 4 counts/60 s

Vorläufernuklide: ^{87/89}Br, ⁹⁴Rb, ¹³⁵Sb, ¹³⁷I (T_{1/2} = 2 - 56 s)

Folie Nr. 23 Datum: 18.01.2017

Spektrum eines ³He-Zählrohres

Jede Gruppe bestrahlt 3 Proben mit und ohne Cd-Abschirmung: 2 Standards mit bekanntem ²³⁵U bzw. ²³²Th -Gehalt; 1 Probe mit unbekanntem ²³⁵U-Gehalt.

Messzyklus: 2 min Bestrahlung, 20 s Abklingen, 1 min Realtime messen. Lifetime-Korrektur wegen Totzeit.

Alle Standardwerte werden in Diagramm eingetragen und ergeben Kalibrationskurve. ²³⁵U-Gehalt der unbekannten Probe wird bestimmt.

Datum: 18.01.2017