

pureCOLD for β-α pile-up suppression a status report

R. Dressler, P. Rasmussen, R. Eichler, N. Schlumpf

Pile-Up Rejection Electronics for Cryo On-Line Detector pureCOLD

Outline

Introduction
Final hardware design
First measurements
Outlook

Preamplifier / Shaper / Amplifier

🗆 gain 10

shaping time 220 ns

main amplifier

 \Box separate α - and SF-branch

- fixed gains
 α: 7.5MeV, 15MeV, 30MeV
 SF: 75MeV, 150MeV, 300MeV
- □ fast timing amplifier
- fixed gains 3MeV, 9MeV, 15MeV
- signal width
 - 375 ns timing signal
 - 650 ns spectroscopic signal

ADC / Comparator / FPGA

- 16 × fast comparators
 - □ 150 ps delay, 10 ps jitter
 - run-time matching via cable delay better 0.7 ps
 - Ievels adjustable via DAC
- 8 phase clock
 - \Box 4 × 250 MHz DDR clock
 - ☐ 45° phase shift
 - run-time matching via cable delay better 0.3 ps
 - time resolution 0.5 ns

- 2 × ADC
 - □ 500 kSamples/s
 - □ 16 bit conversion depth

Outlook

Fist measuren

Hardware design

roduction

- 2.5 V bipolar range
- 120 ns conversion time
- □ 1.8 µs serial read-out time
- Spartan 3 FPGA
 - □ 340 event FIFO
 - \Box 110 μ s serial transfer to MB
 - □ max. rate 9 kevents per sec
 - □ time between consecutive events 4 µs
 - 7x free programmable interconnection signals

Main-board $16 \times front end PCBs$ Spartan 3 FPGA Independent read-out for each FE 20 event FIFO for each FE 12 µs parallel transfer to GigaSTaR max. through put 83.3 kevents per sec multiplexed test pulse output 5x free programmable interconnection signals up to 16 MB = 256 spectroscopic channels

Event structure

			Outloc
No	31(MSB)	(LSB)0	Ň
1	Event state (16bit)	Event type (8bit) FE no (8 bit)	
2	Alpha ADC conv. time (16bit)	Alpha ADC (16bit)	ist n
3	Fiss ADC conv. time (16bit)	Fiss ADC (16bit)	nea
4	Thresh. Time 1 (16bit)	Thresh. Time 0 (16bit)	sure
5	Thresh. Time 3 (16bit)	Thresh. Time 2 (16bit)	ä
6	Thresh. Time 5 (16bit)	Thresh. Time 4 (16bit)	
7	Thresh. Time 7 (16bit)	Thresh. Time 6 (16bit)	ard
8	Thresh. Time 9 (16bit)	Thresh. Time 8 (16bit)	war
9	Thresh. Time 11 (16bit)	Thresh. Time 10 (16bit)	e de
10	Thresh. Time 13 (16bit)	Thresh. Time 12 (16bit)	Sig
11	Thresh. Time 15 (16bit)	Thresh. Time 14 (16bit)	
18	Beam counter (32bit)		
19	I/O state (16bit)	Beam counter (16bit)	odu
20	Time stamp (32bit)		ctio
21	nn (8bit) ss (8bit)	Time stamp (16bit)	
22	yy (8bit) mm (8bit)	dd (8bit) hh (8bit)	

PC interface / DAC pulser

Event interface to PC

□ Inova GigaSTaR point to point connection

1.32 GBit/s via fiber optics

4096 event FIFO

□ max. through put 1.85 Mevents per sec

- DAC test pulse generator
 - □ Fujitsu MB86064 14-bit 800 MSamIpes/s DAC
 - \Box 2 × free programmable waveforms up to 20.48 μ s

adjustable reference voltage via 8 bit DAC

Fist measuren Hardware design

oduction

Outlook

Micro controller unit

Motorola MC68HC12

- 16 MHz clock, 32 kByte RAM
- 512 MB Compact Flash Memory
- control start up phase of FPGAs and comparators
- each MB or FE FPGA independently configurable
- 256 × firmware configurations for MB and FE FPGAs on CF
- 256 × threshold settings for all FE comparators on CF
- Control DAC test pulse generator
- 256 × wave-forms on CF
- communication with PC via serial ports RS-232 copper, fiber optics or USB 1.1

oduction

5 × MB modules manufactured

oduction

