

Theory

Adsorption of elements 112 and 114 on inert surfaces

J. Chem. Phys. 128, 024707 (2008)

TABLE VI. Radii of the maximum charge density of the $np_{1/2}$ AOs, $R_{max}(np_{1/2})$ (in a.u.), van der Waals radii R_{vdW} (in a.u.), polarizabilities α (in a.u.), and adsorption enthalpies $-\Delta H_{ads}$ (in kJ/mol) of group 14 elements on inert surfaces.

Radius	С	Si	Ge	Sn	Pb	114
$R_{\max}(np_{1/2})$	1.217	2.174	2.233	2.540	2.471	2.251
$R_{\rm vdW}$	3.21	3.968 ^a	3.921 ^b	4.1ª	4.062 ^b	3.94 ^b
			4.61 ^c		3.82 ^a	
α	11.877	36.31	40.96	51.96	45.89	29.52 ^d
$-\Delta H_{ads}$ (quartz)	18.15	24.57	28.19	29.92	27.34	20.97
$-\Delta H_{\rm ads}$ (ice)	17.56	23.65	27.13	28.76	26.29	20.20
$-\Delta H_{\rm ads}$ (Tefion)	8.91	12.22	14.04	14.94	13.65	10.41

^aReference 26.

^bThis work via correlation (Fig. 5).

^cReference 35.

^dCorrected for the difference with experiment for Pb.

Vacuumchromatography of elemental Pb IVAC 2009

10⁻⁶ mbar

Vacuum chromatography of elemental Pb

Chemical investigation of element 114 R. Eichler

for a PSI-University of Bern-FLNR-LLNL-FZD-ITE collaboration

Laboratory for Radiochemistry and Environmental Chemistry, Paul Scherrer Institute, CH-5232 Villigen, Switzerland Department for Chemistry and Biochemistry, University Bern, CH-3012 Bern, Freiestr. 3, Switzerland

PSI-University of Bern-FLNR-LLNL-ITE collaboration:

R. Dressler, R. Eichler, H.W. Gäggeler, D. Piguet, P. Rasmussen, A. Serov, D. Wittwer PSI and University Bern

F.Sh. Abdullin, N.V. Aksenov, Yu.V. Albin, A.V. Belozerov, G.A. Bozhikov, V.I. Chepigin, S.N. Dmitriev, V.A. Gorshkov, M.G. Itkis, V.Ya. Lebedev, Yu.V. Lobanov, O.N. Malyshev, Yu.Ts. Oganessian, O.V. Petrushkin, A.N. Polyakov, A.G. Popeko, R.N. Sagaidak, I.V. Shirokovsky, S.V. Shishkin, A.M. Sukhov, A.V. Shutov, A.I. Svirikhin, E.E. Tereshatov, Yu.S. Tsyganov, V.K. Utyonkov, G.K. Vostokin, A.V. Yeremin FLNR Dubna

R.A. Henderson, A.M. Johnsen, J.M.Kenneally, K.J. Moody, D.A. Shaughnessy, M.A. Stoyer, N. J. Stoyer, P. A. Wilk LLNL Livermore

> S. Hübener FZD Rossendorf

M.Wegrzecki ITE Warzaw

Chemistry of Transactinides

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Η He Li Be BCNOFNe Al Si P S Cl Ar NaMg K Ca Sc Ti V Cr Mn FeCo Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba La* Hf Ta W Re Os Ir Pt Au Hg TI Pb Bi Po At Rn Fr RaAc** Rf Db Sg Bh Hs Mt Ds Rg112113114115116 118 Closed shell atoms???

- * Ce Pr NdPmSmEu Gd Tb Dy Ho Er Tm Yb Lu
- ** Th Pa U Np Pu AmCm Bk Cf Es Fm Md No Lr

Thermochromatography with SHE

Hg and Rn ? Deposition of ¹⁸⁵Hg and ²¹⁹Rn along COLD

¹⁴²Nd(⁴⁸Ca,5n)¹⁸⁵Hg admixture ^{nat}Nd (50µg/cm²) From multinucleon transfer reactions

The Observation of ²⁸³Cn @ FLNR 2006/2007

The Adsorption on Gold

Result was used to improve the prediction models.

R. Eichler CHE, Mainz October 2009

The Observation @ FLNR 2001-2004

Preliminary results (2007/2008)

diffusion in the carrier gas Gilliland eqn.

for short-lived isotopes radioactive decay: $t_{1/2}/\ln(2)$ else: t_{exp}

Monte Carlo Simulation

Kinetic model of linear gas adsorption chromatography

Summary chemisty results (2007)

Simultaneously measured!!!

Preliminary results (2007/2008)

R. Eichler et al. Radiochimica Acta 2009 resubmitted

Dubna 2009

Results (2007-2009)

Preliminary results (2009)

Dubna 2009

Target on 1.7 μm Rh backing Target on 1.5 μm Ti backing 3*10^{18 48}Ca 1*10^{18 48}Ca

Target on 1.7 μm Rh backing 6*10^{18 48}Ca

Acknowledgements

Accelerator and ECR crews: U400, Philips cyclotron LMN, Electronics group @ PSI Tech-shops @ University Bern, PSI, FLNR US Department of Energy (244Pu) U\$ Department of Energy Ru\$\$ian Foundation for Ba\$ic Re\$earch *\$wi\$\$ National \$cience Foundation*

 $u^{\scriptscriptstyle b}$