Measurements of ${ }^{260-262}$ Rf produced in ${ }^{22} \mathrm{Ne}+{ }^{244} \mathrm{Pu}$ fusion reaction at TASCA

Commissioning phase was successfully accomplished:

261 Rf		
2.7 s	68 s	
8.51		
SF	8.28	

- wide knowledge about separator settings
- 2 types of focal plane detectors
- 2 different chemical interfaces Recoil Transfer Chambers (RTCs) for HTM and SIM
- final experiment of the commissioning phase with first transactinide element Rf

Motivation
 B'tforeP200.2

Experimental approaches

${ }^{244} \mathrm{Pu}\left({ }^{22} \mathrm{Ne}, 6 \mathrm{n}\right){ }^{260} \mathrm{Rf}$ and ${ }^{244} \mathrm{Pu}\left({ }^{22} \mathrm{Ne}, 4 \mathrm{n}\right){ }^{262} \mathrm{Rf}$
Short-lived SF decaying Rf isotopes could be detected in a Focal Plain Detector.
${ }^{244} \mathrm{Pu}\left({ }^{22} \mathrm{Ne}, 5 \mathrm{n}\right){ }^{261} \mathrm{Rf}$
To reduce background from Target Like Fragments HTM RTC + ROMA combination was used.

${ }^{244} \mathrm{Pu}$ target wheel

- A rotating target wheel with three banana-shaped segments was holding three ${ }^{244} \mathrm{Pu}$ targets (thickness:390 $\mu \mathrm{g} / \mathrm{cm}^{2}, 481 \mu \mathrm{~g} / \mathrm{cm}^{2}$ and $502 \mu \mathrm{~g} / \mathrm{cm}^{2}$).
- The target material was deposited on $2.2-\mu \mathrm{m}$ thick Ti backing foils.

- The target wheel rotated synchronously with the beam macropulse structure.
- The beam energy in the center of the target was 109,116 , and 125 MeV .

Detection of short-lived ${ }^{22} \mathrm{Ne}\left({ }^{244} \mathrm{Pu}, 4 \mathrm{n}\right)^{262} \mathrm{Rf}$ and ${ }^{22} \mathrm{Ne}\left({ }^{244} \mathrm{Pu}, 6 \mathrm{n}\right){ }^{260} \mathrm{Rf}$ in the focal plane

- No veto detectors in TASCA were installed during the commissioning phase.
- A relative high counting rate from Target Like Fragments originated a high background, which negatively affected search limits for time- and position-correlated EVR-SF decay chains, especially during beam pulses.
- The recoil energy of separated complete fusion products was below 8 MeV , which made distinguishing between an EVR and an alpha within a beam pulse also not possible.

Focal Plane Detector

 (FPD)- To reduce background from target-like fragments TASCA was filled with 1.5 mbar of a $\mathrm{He}: \mathrm{H}_{2}=2: 1$ gas mixture.

Two types of the focal plane detector

- $(80 \times 35) \mathrm{mm}^{2} 16$-strip Position Sensitive silicon Detector (PSD) made by CANBERRA
- (58 x 58) mm^{2} 48-strip Double-Sided Silicon Strip Detector (DSSSD) made in Zelenograd, Russia.

PSD

Thickness $=300 \mu \mathrm{~m}$.
Bias $=40 \mathrm{~V}$.
$-35^{\circ} \mathrm{C}$

DSSSD

Thickness $=300 \mu \mathrm{~m}$.
Bias $=50 \mathrm{~V}$.
Room temperature.

Energy resolution FWHM for $5.8 \mathbf{M e V}$ alpha particles $\boldsymbol{\approx} \mathbf{2 4} \mathbf{~ k e V}$ for the both detectors

Detection of short-lived ${ }^{22} \mathrm{Ne}\left({ }^{244} \mathrm{Pu}, 6 \mathrm{n}\right){ }^{260} \mathrm{Rf}$ in the Position Sensitive Detector

- Beam energy $=125 \mathrm{MeV}$ in the center of the target.
- Nominal vertical position resolution is $\pm 0.2 \mathrm{~mm}$.
- During search for position correlated chain members limits are $\pm 1 \mathrm{~mm} \rightarrow$ \rightarrow pixel size area about (5×2) mm^{2}.

The relatively large pixel size of the PSD didn't allow detection of EVR-SF decay chains with a correlation time longer than 250 ms under the experimental conditions.

The detection efficiencies are:

- for an EVR near 100\%
- for an alpha particle 50-55\%
- for a SF fragment 100\%.

Time distribution of observed EVR-SF correlations from ${ }^{260}$ Rf

- 15 time and position correlated EVR-SF events
- Time window of $\Delta t \leq 250 \mathrm{~ms}$ and a position window $\pm 1 \mathrm{~mm}$.
- EVR-SF events with correlation time > 250 ms in the PSD could not be found, because of high probability to observe a random correlation.

- $T_{1 / 2}$ is in good agreement with the half-life published by Somerville et all.,(1985).

Detection of short-lived ${ }^{22} \mathrm{Ne}\left({ }^{244} \mathrm{Pu}, 4 \mathrm{n}\right){ }^{262} \mathrm{Rf}$ in the Double-Sided Silicon Stripe Detector

- Beam energy was 109 MeV in the center of the target.
- Each two of 16 first and last strips on each side are connected to one channel.
- 3 different pixel sizes: $(1.2 \times 1.2) \mathrm{mm}^{2},(1.2 \times 2.4) \mathrm{mm}^{2},(2.4 \times 2.4) \mathrm{mm}^{2}$.

However, the largest pixel size in the DSSSD was only a half of the pixel size of the PSD.

The detection efficiencies are:

- for an EVR near 100\%
- for an alpha particle 50-55\%
- for a SF fragment 100%.

Time distribution of EVR-SF correlations from ${ }^{262}$ Rf

 244 a 4 : 1 246m Am: $T_{1 / 2}=73 \mu \mathrm{H}$ (Nuclear Data Sheets 84, 901 (1998).

Observed EVR-SF events and random event analysis

Number of random events in DSSSD within Δt of 1 s

Detection of long-lived ${ }^{261}$ Rf

TASCA filling gas - pure He (pressure 0.4 mbar)

Detection of long-lived ${ }^{261}$ Rf in ROMA

- Mylar window - $1.2 \mu \mathrm{~m}$ thick (140×40) mm²
- 17 mm-deep RTC flushed with He jet

Rotating wheel On-line Multidetector Analyzer (ROMA)

- The particles were deposited on $40-\mu \mathrm{g} / \mathrm{cm}^{2}$ thick polyethylene foils.
- ROMA wheel diameter $=85 \mathrm{~cm}$.
- The wheel periodically stepped and transported the sample fr lection position to eight counting positio equipped with $(20 \times 10)-\mathrm{mm}^{2}$ large PIN diodes.

- For measurements of ${ }^{26 \text { ta }}$ Rf, a stepping time was 35 s .
- For ${ }^{261 b}$ Rf experiments were performed with a stepping time 1.5 s .

${ }^{22} \mathrm{Ne}\left({ }^{244} \mathrm{Pu}, 5 \mathrm{n}\right){ }^{261 \mathrm{a}} \mathrm{Rf}$ in ROMA

${ }^{261} \mathrm{Rf}$ was produced in the 5 n channel at $\mathrm{E}_{\mathrm{c} .0 \mathrm{t}}=116 \mathrm{MeV}, t_{\text {step }}=35 \mathrm{~s}$.
149 single α-particles $\left(\mathrm{E}_{\alpha}=7.8-8.5 \mathrm{MeV}\right)$ from ${ }^{261 \mathrm{a} R f}$ and ${ }^{257} \mathrm{No}$ were registered; among these $28 \alpha-\alpha$ correlations.

Time analysis of single alpha-particles and correlations confirmed, that detected events originated from ${ }^{261 a} \mathrm{Rf}$.

${ }^{22} \mathrm{Ne}\left({ }^{244} \mathrm{Pu}, 5 \mathrm{n}\right){ }^{261 \mathrm{~b}} \mathrm{Rf}$ in ROMA

At the same beam energy 11 SF -events were registered and are attributed to ${ }^{261 b} \mathrm{Rf}$. The time analysis revealed $\mathrm{T}_{1 / 2}\left({ }^{261 \mathrm{~b} R f}\right)$ of $2.2_{-0.5}^{+1.0} \mathrm{~s}$. $t_{\text {step }}=1.5 \mathrm{~s}$.

The SF activity assigned in Lane et al.(1996) to ${ }^{262}$ Rf most likely originated from then unknown ${ }^{261 b} R f$.

Monte-Carlo simulation

 ${ }^{22} \mathrm{Ne}\left(\mathrm{E}_{\mathrm{lab}}=115 \mathrm{Mev}\right.$ CofT $)+{ }^{244} \mathrm{Pu}\left(400 \mathrm{mg} / \mathrm{cm}^{2}\right)->{ }^{261} \mathrm{Rf}+5 \mathrm{n}$

Horizontal size $X, \mathrm{~cm}$

Pressure $=0.3$ mbar

Transmission to the

 Focal Plane =12.0\% 53% inside $8 \times 4 \mathrm{~cm}^{2}$ PSD 81\% inside $14 \times 4 \mathrm{~cm}^{2}$ RTC window

* Based on TRANSPORT ion-optic calculations (from A. Semchenkov)

X coordinate	Fraction covered
$\pm 8 \mathrm{~cm}$	99%
$\pm 7 \mathrm{~cm}$	90%
$\pm 6 \mathrm{~cm}$	80%
$\pm 5 \mathrm{~cm}$	70%
$\pm 4 \mathrm{~cm}$	60%
$\pm 3 \mathrm{~cm}$	53%
$\pm 2 \mathrm{~cm}$	33%
$\pm 1 \mathrm{~cm}$	17%
Y coordinate	Fraction covered
$\pm 4 \mathrm{~cm}$	99%
$\pm 3 \mathrm{~cm}$	97%
$\pm 2 \mathrm{~cm}$	90%
$\pm 1 \mathrm{~cm}$	19

TASCA transmission for ${ }^{22} \mathrm{Ne}\left({ }^{244} \mathrm{Pu}, \mathrm{xn}\right){ }^{266-\mathrm{x}} \mathrm{Rf}$

$$
E_{\text {TASCA }}=\frac{N_{\text {measured }}}{N_{\text {produced }} \cdot \varepsilon_{R T C} \cdot \varepsilon_{\text {jet }} \cdot \varepsilon_{\text {decay }} \cdot \varepsilon_{\text {detection }}}
$$

From measured ${ }^{261 a}$ Rf event number, cross section of 4.4 nb from Lazarev et al. (2000), $\varepsilon_{R T C}=80 \%, \varepsilon_{j e t}=60 \%$ and ROMA detection efficiency transmission of Rf through TASCA to the Focal Plane is 10.5%.

Considering Monte-Carlo calculations, transmission of Rf through TASCA:

- to the RTC window $140 \times 40 \mathrm{~mm}^{2}$ is 8.5%.
- to the PSD area $80 \times 35 \mathrm{~mm}^{2}$ is 5.3%.
- to the DSSSD area $58 \times 58 \mathrm{~mm}^{2}$ is 5.1%.

HIVAP prediction for ${ }^{22} \mathrm{Ne}\left({ }^{244} \mathrm{Pu}, \mathrm{xn}\right){ }^{266-x} \mathrm{Rf}$

4n channel: 0.75 nb @ 109 MeV
Cross section for 22Ne 2 24ipah published cross section por

Conclusion

- $\mathrm{T}_{1 / 2}$ for ${ }^{260} \mathrm{Rf}=21_{-4.3}^{+7.3} \mathrm{~s}$ is in good agreement with the half-life published by Somerville et all.,(1985).
- Cross section for ${ }^{22} \mathrm{Ne}\left({ }^{244} \mathrm{Pu}, 6 \mathrm{n}\right)^{260} \mathrm{Rf} \sigma=1.5_{-0.3}^{+0.5} \mathrm{nb}$. New!
- $T_{1 / 2}$ for ${ }^{261 \mathrm{~b}} \mathrm{Rf}=2.2_{-0.5}^{+1.0} \mathrm{~s}$ is in good agreement with the half-life published by Dvorak et all.,(2008).
- Cross section for ${ }^{22} \mathrm{Ne}\left({ }^{244} \mathrm{Pu}, 5 \mathrm{n}\right){ }^{261 \mathrm{~b}} \mathrm{Rf} \sigma=1.8_{-0.4}^{+0.8} \mathrm{nb}$. New!
- The production ratio of ${ }^{261 \mathrm{a} R f}:{ }^{261 \mathrm{~b}} \mathrm{Rf}=2.5: 1$.
- Transmission of Rf through TASCA to the Focal Plane $=\mathbf{1 0 . 5} \%$.
- $T_{1 / 2}$ for ${ }^{262} \mathrm{Rf}=190_{-50}^{+100} \mathrm{~ms}$, in contradiction with values published by Lane et al. (1996) and Somerville et al. (1985). New!
- Cross section for ${ }^{22} \mathrm{Ne}\left({ }^{244} \mathrm{Pu}, 4 \mathrm{n}\right){ }^{262} \mathrm{Rf} \quad \sigma=500_{-130}^{+260} \mathrm{pb}$ New!

Acknowledgments

A. Yakushev, R. Graeger,
A. Türler,

Ch. E. Düllmann, M. Schädel, J. Khuyagbaatar, D. Ackermann, W. Brüchle, M. Block, E. Jäger, J. Krier, B. Schausten, E. Schimpf, D. Rudolph,
K. Eberhardt, J. Even,
J. Ballof, J.V. Kratz,
D. Liebe, P. Thörle,
I. Dragojević, J.M. Gates, H. Nitsche, L. Stavsetra,
J.P. Omtvedt, Sabelnikov, F. Samadani,
J. Uusitalo,
A. Toyoshima,

Current working hypothesis of the decay patterns observed in the chain ${ }^{269} \mathrm{Hs} \rightarrow{ }^{265} \mathrm{Sg} \rightarrow{ }^{261} \mathrm{Rf} \rightarrow\left({ }^{257} \mathrm{No} \rightarrow\right)$

* Ch. E. Düllmann, A. Türler. Phys. Rev. C 77, 064320 (2008).

TASCA filling gas

-Predicted values of B• ρ of EVRs in the range of $1.90 \mathrm{~T} \cdot \mathrm{~m}-1.98 \mathrm{~T} \cdot \mathrm{~m}$.

- Predicted magnetic rigidities for elastically scattered ${ }^{244} \mathrm{Pu}$ nuclei recoiling from the target with twice the momentum of the beam are about $1.86 \mathrm{~T} \cdot \mathrm{~m}$.

Charge states of slow heavy EVRs in H_{2} are much lower than in He -> high $B \cdot \rho$ values. DGFRS can reach B• p more than $3 \mathrm{~T} \cdot \mathrm{~m}$. TASCA - $2.4 \mathrm{~T} \cdot \mathrm{~m}$ only, which is not enough to bend Rf EVRs from the reaction ${ }^{22} \mathrm{Ne}+{ }^{244} \mathrm{Pu}$. To reduce background from target-like fragments TASCA was filled with 1.5 mbar of a $\mathrm{He}: \mathrm{H}_{2}=2: 1$ gas mixture.
As will be described in already prepared article of J. Khuyagbaatar the use of such gas mixtures indeed combines the advantages of both gas components.

Measured yield dependence from magnetic rigidity

Used settings: $D=555 \mathrm{~A}(1.99 \mathrm{~T} \mathrm{~m}), \mathrm{Q}_{1}=\mathrm{Q}_{2}=508 \mathrm{~A}$
Probable best settings: $\mathrm{D}=535 \mathrm{~A}(1.94 \mathrm{~T} \mathrm{~m}), \mathrm{Q}_{1}=\mathrm{Q}_{2}=490 \mathrm{~A}$

