

"Reaction studies about the Q-value influence on the production of superheavy elements"

Reimar Graeger Seventh Workshop on the chemistry of the heaviest elements Mainz, Germany October 11th - 13th, 2009

Hs - Element 108

- Transactinide –
 group VIII element
- ²⁷⁰Hs is double magic nucleus with closed deformed shell at Z=108, N=162
- Forms volatile tetroxide HsO₄ – very high yield of chemical separation!
- First synthesized at GSI (Darmstadt) in year 1984
 ²⁰⁸Pb(⁵⁸Fe, 1n)²⁶⁵Hs

4n-channel Excitation functions (270Hs)

Z.H. Liu and J.-D. Bao, Physical Review C 74, 057602 (2006)

Hassium separator experiment at DGFRS ²²⁶Ra(⁴⁸Ca, xn)^{274-x}Hs

U400 cyclotron

FLNR and TUM collaboration DGFRS @ FLNR, Dubna June 2008 - August 2008 November 2008 - February 2009

ЪШ

Experimental setup:

Yu

ТШП

²²⁶Ra(⁴⁸Ca, x*n*)^{274-x}Hs: experimental details

Beam:	⁴⁸ Ca @ 0.7-1.1 pμA (typical intensities)
Target: Targetwheelarea: 36 α Backing: 1.5 μm Ti	$234 \ \mu\text{g/cm}^2$ ^{226}RaO (1st experiment) $362 \ \mu\text{g/cm}^2$ ^{226}RaO (2nd experiment)
Detector:	detection efficiency: $\epsilon_{\alpha} = 87\%$ $\epsilon_{SF} \sim 100\%$
	energy resolution: 50-110 keV (FWHM, α -particles, FPD) 130-310 keV (FWHM, α -particles, side)
	position resolution: 1.1-1.9 mm (α -particles, FPD) 0.6-1.6 mm (SF, FPD) 2.0-3.5 mm (α -particles, E $_{\alpha}$ > 3 MeV, side) 3.4-5.8 mm (α -particles, E $_{\alpha}$ < 3 MeV, side)
Separator efficier	ncy: $\epsilon_{DGFRS} = (40\pm5)\%$
Ts. Oganessian <i>et al.</i> , to	be published

ТШП

Technische Universität München

Hassium chemistry experiment at GSI ²³⁸U(³⁶S, x*n*)^{274-x}Hs

Hs production and separation

Experimental setup

Overall efficiency 50 %

Thermochromatography

- Longitudinal negative temperature gradient is established along the thermochromatography (TC) column
- Different species borne by carrier gas are slowed down and deposited at different positions (temperatures) in TC column according to their volatilities
- From the adsorption temperature T_a the value of the adsorption enthalpy ∆H_{ads} can be evaluated
- Standard sublimation enthalpy ∆H_{subl} can be evaluated based on the empirical correlation

"COMPACT"

Cryo On-line Multidetector for Physics And Chemistry of Transactinides

Hs-chemistry - May 2008 - Results

ТШП

Technische Universität München

A. Parkhomenko, A. Sobiczewski Acta Physica Polonica 36, No. 10 (2005)

Excitation function: ²³⁸U(³⁶S, xn)^{274-x}Hs

Paper in preparation

Excitation function: ²⁴⁸Cm(²⁶Mg, xn)^{274-x}Hs

J. Dvorak et al., Phys. Rev. Lett. 100, 132503, 2008

Exp. Data: Yu.Ts. Oganessian *et al.*, to be published

A. Gorshkov A. Türler A. Yakushev D. Ackermann Ch. E. Düllmann E. Jäger F. P. Heßberger J. Khuyagbaatar J. Krier D. Rudolph M. Schädel B. Schausten J. Dvorak H. Nitsche M. Chelnokov V. Chepigin A. Kuznetsov J. Even D. Hild J. V. Kratz J. P. Omtvedt F. Samadani K. Nishio Q. Zhi

THANK YOU!