RIKEN GARIS as a Promising Interface for Superheavy Element Chemistry –Production of ²⁶¹Rf Using the GARIS/Gas-jet System–

RIKEN Nishina Center

H. Haba, D. Kaji, Y. Kasamatsu, Y. Kudou, K. Morimoto, K. Morita, K. Ozeki, T. Sumita, and A. Yoneda

Osaka Univ. Y. Komori, K. Ooe, and A. Shinohara

> JAEA N. Sato and K. Tsukada

1. Introduction

RIKEN Gas-filled Recoil Ion Separator GARIS as a pre-separator

for superheavy element (SHE) chemistry

Startup of SHE chemistry in RIKEN

Breakthroughs in SHE chemistry

Chemical experiments under low background condition Stable and high gas-jet transport efficiency New chemical systems Commissioning with a prototype gas-jet transport system coupled to GARIS

Haba *et al.*, JNRS 8(2007)55. ¹⁶⁹Tm(⁴⁰Ar,3*n*)²⁰⁶Fr (*Z*=87) ²⁰⁸Pb(⁴⁰Ar,3*n*)²⁴⁵Fm (*Z*=100) Haba *et al.*, JNRS 9(2008)27. ²³⁸U(²²Ne,5*n*)²⁵⁵No (*Z*=102)

The GARIS/gas-jet system is a powerful tool for the next-generation SHE chemistry.

Extremely low background condition Beam-independent high gas-jet efficiency

For the SHE chemistry coupled to the recoil separator

• Berkeley Gas-filled Separator (BGS)@LBNL

Omtvedt et al., JNRS 3(2002)121.

²⁰⁸Pb(⁵⁰Ti,*n*)²⁵⁷Rf (4.7 s)

- → Identification of ²⁵⁷Rf with a liquid scintillator after a liquid-liquid solvent extraction
- TransActinide Separator and Chemistry Apparatus (TASCA)@GSI Even *et al.*, GSI Sci. Rep. 2008, p. 143 (2009).
- ²⁴⁴Pu(²²Ne,5*n*)²⁶¹Rf (68 s)
- \rightarrow Anion-exchange chromatography of ²⁶¹Rf in diluted HF solution with ARCA

• GARIS@RIKEN

→ ²⁴⁸Cm-based hot fusion reactions

Ζ	Reaction	T _{1/2} (s)	<u>σ (pb)</u>
104	²⁴⁸ Cm(¹⁸ O,5 <i>n</i>) ²⁶¹ Rf ^{a/b}	68/3	13000
105	²⁴⁸ Cm(¹⁹ F,5 <i>n</i>) ²⁶² Db	34	1500
106	²⁴⁸ Cm(²² Ne,5 <i>n</i>) ²⁶⁵ Sg ^{a/b}	9/16	240
107	²⁴⁸ Cm(²³ Na,5/4 <i>n</i>) ^{266/267} Bh	1.7/17	50
108	²⁴⁸ Cm(²⁶ Mg,5 <i>n</i>) ²⁶⁹ Hs	9	7

In this work

- Developments of a rotating ²⁴⁸Cm target system and a gas-jet chamber for asymmetric hot fusion reactions
- Productions of ²⁶¹Rf^{a/b} and its homologues ¹⁶⁹Hf and ⁸⁵Zr for chemical studies using the GARIS/gas-jet system
 ²⁴⁸Cm(¹⁸O,5*n*)²⁶¹Rf^{a/b} (68 s/3 s)
 ^{nat}Gd(¹⁸O,xn)¹⁶⁹Hf (3.24 min) and ^{nat}Ge(¹⁸O,xn)⁸⁵Zr (7.86 min)
- Production of ²⁶⁵Sg

²⁴⁸Cm(²²Ne,5*n*)²⁶⁵Sg^{a/b} (9 s/16 s)

• ¹⁸O⁵⁺ beam

Energy: 95 MeV Intensity: 6 pµA

• ²⁴⁸Cm target

- 280-µg/cm^{2 248}Cm₂O₃ on 2.0-µm Ti × 8 1000 rpm He/water-cooled
- GARIS
 - *B*ρ = 1.58, 1.73, 1.86, and 2.01 Tm He: 34 Pa

- Gas-jet chamber for hot fusion reactions
 Size of the entrance window: Ф100 mm
 Chamber depth: 20 mm
 Window: 0.5-µm Mylar foil
 Support mesh: 78% transparency
- He/KCl gas-jet
 He: 2.0 L min⁻¹
 Aerosol generator: 620 °C
 Teflon capillary: 2 mm i.d. × 10 m

• MANON at the chemistry laboratory Aerosol coll. on 0.5-µm Mylar foil 30 s for 261 Rf^a ($T_{1/2} = 68$ s) 1.5 s for 261 Rf^b ($T_{1/2} = 3$ s) Hamamatsu Si PIN photodiode S3204-09 (18×18 mm²)×7 pairs \rightarrow Counting eff.: 76% DAQ: Iwatsu A3100 (LIST mode)

Focal plane Si detector
Hamamatsu Si PIN photodiode
S3584 (28×28 mm²)×9
→ Counting eff.: 50%
DAQ: Iwatsu A3100 (LIST mode)
Cycle of beam ON (100 s) and OFF (100 s)
→ Evaluation of a gas-jet yield

- 2.2. *nat*Gd(18O, *xn*)¹⁶⁹Hf and *nat*Ge(18O, *xn*)⁸⁵Zr
- ¹⁸O beam (¹⁶⁹Hf/⁸⁵Zr)
 Energy: 95 MeV
 Intensity: 6/0.5 pµA
- natGd₂O₃/natGe target
 300-μg/cm² natGd₂O₃ on 2.0-μm Ti × 2
 290-μg/cm² natGe on 2.0-μm Ti × 2
- GARIS (¹⁶⁹Hf/⁸⁵Zr)
 - *B*ρ = 1.48–1.63/0.88–1.04 Tm He: 34 Pa
- He/KCI gas-jet
 See the ²⁴⁸Cm(¹⁸O,5*n*)²⁶¹Rf exp.
- γ-ray spectrometry with Ge detector
 Glass filter ADVANTEC GB-100R
 ¹⁶⁹Hf: 60-s coll., 60-s cool., 60-s meas.
 ⁸⁵Zr: 300-s coll., 60-s cool., 300-s meas.
 Direct catch of ERs with 20-µm Al
 → Evaluation of a gas-jet yield

3. Results and Discussion

3.1. ²⁴⁸Cm(¹⁸O, 5*n*)²⁶¹Rf^a

3.2. ²⁴⁸Cm(¹⁸O, 5*n*)²⁶¹Rf^b

Correlated events on 8.52-MeV α

No.	1st α (8.52-MeV)		2nd α	
	E_{α} (keV)	∆T(s)	E_{α} (keV)	∆T(s)
1	8467	4.6	8289	0.6
2	8538	1.2	8306	34.6
3	8455	2.5	8233	34.0
4	8541	6.4	8223	8.3
5	8439	0.4	8178	32.0
6	8511	4.0	8225	77.3

 $E_{\alpha 2} = 7900 - 8600 \text{ MeV}; E_{\text{SF}} > 20 \text{ MeV}$ $\Delta T_2 = 250 \text{ s}$

Confirmation of ²⁶¹Rf^b by ²⁴⁸Cm(¹⁸O,5*n*)²⁶¹Rf^b

- $E_{\alpha} = 8.52 \pm 0.03 \text{ MeV}$
- $T_{1/2} = 2.1 \pm 0.5$ s
- Branching ratio $(SF/\alpha) = 72 \pm 7\%/28 \pm 7\%$
- $\sigma = 6.8 \pm 1.5 \text{ nb}$ assumptions: $\sigma(^{261}\text{Rf}^a) = 12 \text{ nb}$, transport time of 2.2 s $\rightarrow \sigma \text{ ratio}(^{261}\text{Rf}^a/^{261}\text{Rf}^b) = 1.8 \pm 0.4$

2nd α $E_{\alpha} = 8.18 - 8.31 \text{ MeV}$ $T_{1/2} = 22^{+14} - 6 \text{ S}$

Düllmann and Türler: PRC **77**, 064320 (2008). 3.3. *nat*Gd(18O,*xn*)¹⁶⁹Hf

- 167 Hf ($T_{1/2}$ = 2.05 min), 168 Hf (9.458 min), 169 Hf (3.24 min) 168 Lu (6.7 min)
- $B\rho = 1.57 \pm 0.01 \text{ Tm}, \Delta B\rho/B\rho = 11.0 \pm 0.5\%$
- Gas-jet eff.: 85±2%

Ranges of ¹⁶⁹Hf: 21–34 mm \approx 100-mm chamber depth

3.4. *nat*Ge(18O, *xn*)85Zr

• ⁸⁵Zr (7.86 min)

²⁷Mg (9.458 min), ²⁸Al (2.2414 min), ²⁹Al (6.56 min), ³⁴Cl (32.00 min), ⁸¹Sr (22.3 min), ⁸³Y (2.85 min), ⁸⁴Y (40 min), ⁸⁶Y (48 min)

- $B\rho = 0.930 \pm 0.002 \text{ Tm}, \Delta B\rho/B\rho = 8.75 \pm 0.57\%$
- Gas-jet eff.: 36±4%

Ranges of ⁸⁵Zr: 103–114 mm ≈ 100-mm chamber depth

3.5. Simultaneous chemical experiments with ²⁶¹Rf^a, ¹⁶⁹Hf, and ⁸⁵Zr

Mixed ²⁴⁸Cm/^{nat}Gd/^{nat}Ge/ targets

→ Ready for chemistry experiments of Rf together with its homologues Change of the magnet setting of GARIS: <1 min</p>

 248 Cm \times 6

natGd 100 mm

Yie <mark>ld</mark> s of ²⁶¹ Rf ^a	, ¹⁶⁹ Hf, and	⁸⁵ Zr at the	chemistry	laboratory
---	--------------------------	-------------------------	-----------	------------

	²⁴⁸ Cm(¹⁸ O,5 <i>n</i>) ²⁶¹ Rf ^a	^{nat} Gd(¹⁸ O, <i>xn</i>) ¹⁶⁹ Hf	^{nat} Ge(¹⁸ O, <i>xn</i>) ⁸⁵ Zr
Beam energy (MeV)	95	\leftarrow	\leftarrow
Beam intensity (pµA)	6	1	1
Target thickness (µg/cm ²)	250	300	300
Magnetic rigidity (Tm)	1.75	1.57	0.93
GARIS He (Pa)	32	\leftarrow	\leftarrow
Mylar window (µm)	0.5	\leftarrow	~
Support mesh (%)	78	\leftarrow	←
Gas-jet He (kPa)	49	\leftarrow	←
He flow rate (L/min)	2	\leftarrow	\leftarrow
KCI generator (°C)	620	~~	\leftarrow
Gas-jet eff. (%)	52 ± 12	85 ± 2	36 ± 4
Yield at Chem Lab.	0.5 atoms/min	9.4 kBq/60-s coll.	1.1 kBq/300-s coll.

4. Production of ²⁶⁵Sg^{a/b} using the GARIS/gas-jet system

4.1. Experimental conditions

Reaction	²⁴⁸ Cm(²² Ne,5 <i>n</i>) ²⁶⁵ Sg	
Cross section	200-300 pb [*]	
Beam energy (MeV)	118	
Beam intensity (pµA)	3	
²⁴⁸ Cm ₂ O ₃ thickness (µg/cm ²)	250	
Recoil energy (MeV)	9.4	
Magnetic rigidity (Tm)	1.73, 1.94, 2.05, 2.16	8
GARIS He (Pa)	32	С Г
Mylar window (µm)	0.65	
Support grid (%)	78	
Gas-jet He (kPa)	48	
He flow rate (L/min)	2	k
KCI generator (°C)	600	D
*Düllmann and Tüler: Phys. Rev. C 77, 064320 (2008).		

Düllmann and Türler: PRC 77, 064320 (2008). 4.2. Results of ²⁴⁸Cm(²²Ne, 5*n*)²⁶⁵Sg

- No background peaks above 8 MeV
- 14 correlations on ²⁶⁵Sg^{a/b}
- $B\rho = 2.07 \pm 0.01 \text{ Tm}, \Delta B\rho/B\rho = 8.4 \pm 1.1\%$

Observed decay chains on ²⁶⁵Sg

- σ(²⁶⁵Sg^a/²⁶⁵Sg^b) = ~400 pb/~200 pb at 118 MeV
- Yield at the chemistry laboratory: ~4 atoms/h

5. Summary

- The target and gas-jet transport systems for asymmetric ²⁴⁸Cm-based hot fusion reactions have been installed on GARIS to start SHE chemistry at RIKEN.
- The group-4 isotopes of ²⁶¹Rf, ¹⁶⁹Hf, and ⁸⁵Zr for chemical studies were produced in the ¹⁸O-induced reactions on ²⁴⁸Cm, ^{nat}Gd, and ^{nat}Ge targets, and were successfully extracted by the gas-jet to the chemistry laboratory after the physical preseparation by GARIS.
- The present result demonstrates that the GARIS/gas-jet system is promising to explore new frontiers in SHE chemistry.
 - (i) The background radioactivities originating from unwanted reaction products are strongly suppressed.
 - (ii) The intense primary heavy-ion beam is absent in the gas-jet chamber and hence high gas-jet transport efficiency is achieved.
 - (iii) The beam-free conditions make it possible to investigate new chemical systems that were not accessible before.