MicroSISAK – **Improvements of a device for** continuous liquid-liquid-extraction on a microliter scale **D. Hild**, K. Eberhardt, J.V. Kratz Institut für Mikrotechnik P. Löb, B. Werner G. Skarnemark

- low production rates from atoms per minute (for Rf Z=104) to a few atoms per week (for element 112)
- short half-lives in order of seconds
- decay mode: α-decay and spontaneous fission (SF)

→ fast and efficient apparatus for chemical separation and detection

gas chem	istry aqueou	s chemistry
liqui	d-liquid-extrac	tion
lon chromatography	electrodeposition	liquid-liquid-extraction

=> this concept works with liquid-liquid-extraction as shown with SISAK

SISAK - Short-lived Isotops Studied by the AKUFVE technique

Pro:	Con:	
centrifuges made of Ti/Pd or PEEK small inner volume: 0,3 ml	minimum flow rate ~ 0,3 ml/s	
traction efficiency: 80-90 % clides with half-lifes < 1 s can be udied	 high consumption of chemical detection of transactinides restricted to liquid scintillation counting (LSC) in a fast 	
successfully applied for chemical studies on the properties of Rf	flowing liquid	
\rightarrow MicroSISAK approach: fa	ast extraction on a μ l scale	

use of microreaction technology for efficient mixing of the two phases

first prototype, that combine a mixer and a separation unit

Daniel Hild – 7th Workshop on the chemistry of the heaviest elements – 12.-13.10.2009 Mainz, Germany

Daniel Hild – 7th Workshop on the chemistry of the heaviest elements – 12.-13.10.2009 Mainz, Germany

Results of the experiments

separation experiments with a pressure regulator

for the phase system 1 mol/I TOA in toluene vs. 0.5 mol/I sulfuric acid (taken from successful SISAK experiments with Zr, Hf and Rf)

for a complete separation at higher flow rates more back pressure at the outlet of the aqueous phase is needed

Results of the experiments

Results of the experiments

Summary and Outlook

Summary:

- with the aid of a pressure regulator, complete phase separation achieved (0.1 ml/min – 2.0 ml/min)
- design of the mixer unit is still a crucial factor

Outlook:

- tests with further extraction systems for the elements Hf and Zr as lighter homologues for Rf, plus Tc and Re as the lighter homologues for Bh
- searching for an appropriate detection system (LSC/SBD)
- experiments with Rf behind TASCA at the GSI Darmstadt

