Anion-exchange experiment of **Db** with AIDA-II

RIKEN Y. KASAMATSU

JAEA

Y. NAGAME, K. TSUKADA, M. ASAI, I. NISHINAKA, T. K. SATO, A. TOYOSHIMA, Z. LI, Y. ISHII, T. KIKUCHI, N. SATO

RIKEN

H. HABA, Y. KUDOU

Tokyo Metropolitan Univ. Y. OURA, K. AKIYAMA

Osaka Univ. A. SHINOHARA, K. OOE, H. FUJISAWA

> Niigata Univ. H. KUDO, S. GOTO

Kanazawa Univ. A. YOKOYAMA, M. ARAKI, M. NISHIKAWA

2009 / 10 / 12 CHE7

Contents

I. Introduction

II. Batch experiment (Nb, Ta, Pa) **III.** On-line experiment (Nb, Ta) → Conditions of Db experiment IV. On-line experiment (Db) V. Results and discussion **VI.** Summary

Introduction

	1		Low production rates & Short half-lives														18		
[1		\rightarrow	on	e-at	om-	om-at-a-time chemistry												
1	Н	2									•		13	14	15	16	17	He	
	3	4	Multistep process (Chromatography) Comparison with the lighter hemology and B C N O F Ne															10	
2	Li	Be																Ne	
	11	12	Companson with the lighter nomologues														18		
3	Na	Mg	3	4	5	6	7	8	9	10	11	12	AI	Si	Р	S	CI	Ar	
4	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	
	Κ	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
5	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	
	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe	
6	55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	
	Cs	Ba	Ln	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	ΤI	Pb	Bi	Po	At	Rn	
	87	88	•	104	105	106	107	108	109	110	111	110	1 1 0			1 1 0	447	1 1 0	
	Fr	Ra	An	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	112	113	114	115	110		811	
]	
			57	58	59	60	61	62	63	64	65	66	67	68	69 	70	71		
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	۱b	Dy	Ho	Er	Im	Yb	Lu		
			80						QE	96	97	90	90	100	101	102	102]	
			Δ_	90	91	92	93	94	Δm	Cm	BL	°°	Fc	Em	Md	No	103 r		
			AC	Th	Pa	U	Np	Pu	AIII	UIII	DK		LS	ГШ	wiu	NO	Lſ		
				132.83		2 com	a dillo							100					

<u>Purpose</u>

Observation of the fluoride complexation of **Db** in diluted fluoride ion concentration solution.

Nb

Ta

Dh

Pa

Systematic study on **Db** as a function of concentration of the ligand ion and that of the counter ion

Chemical Properties of Db Fluoride complexation, Relativistic effects, ••

Present work

Anion-exchange chromatography of Nb, Ta, Pa, and **Db** in **HF/HNO**₃ solutions

with the newly developed rapid ion-exchange and alpha detection apparatus AIDA-II !!

Batch experiment

Estimation of the Kd value of Db

On-line experiment (Db)

AIDA- II

ARCA part is the same as that in the Nb and Ta experiment (AIDA). Equipment of the alpha-particle detection was improved.

AIDA- II

- Rapid evaporation
- Increasing elution volume

Conditions of Db experiments

Beam: ${}^{19}F^{7+}$ 103 MeV on target, 270 - 440 pnATarget: ${}^{248}Cm$ 560 or 1400 µg/cm² containing Gd1st solution:(a) 0.31 M HF/0.10 M HNO3: [F⁻] = 0.003 M (1222 cycles)
(b) 1.7 M HF/0.10 M HNO3: [F⁻] = 0.01 M (985 cycles)
(c) 0.89 M HF/0.3 M HNO3: [F⁻] = 0.003 M (3160 cycles)2nd solution:0.015 M HF/6.0 M HNO3 (Stripping)Elution speed:1.2 mL/min for 1st solution
0.8-1.0 mL/min for 2nd solutionColumn:S size (1.0 mm $\phi \times 3.5$ mm)

AIDA-II operation (a, b)

<u>Cycle time</u>: 83, 84 s <u>Measurement duration</u>: 75.0 s <u>Cooling time 1st</u>: 14-30 s <u>2nd</u>: 38-57 (-62) s

AIDA-I (c)

<u>Cycle time</u>: ~73 s <u>Measurement duration</u>: 1st : 233 s 2nd : 215 s <u>Cooling time</u>: 1st : 48 s 2nd : 66 s

Results and discussion

Average chemical yield (Ta) : ~60%

 α -particle spectra of ²⁶²Db and ²⁵⁸Lr (a)

(a) Db-Lr alpha counts (8.1-8.7 MeV)

Adsorption on the resin in the HF/HNO_3 solutions at $[F^-] = 0.003$ M.

Ta >> Nb ≥ Db ≥ Pa

DbOF₄⁻?, DbOF₅²⁻?, (DbF₇²⁻?), DbF₆⁻?

Summary

- Anion-exchange behavior of Nb, Ta, Pa, and Db in HF/HNO3 solutions was investigated.
- By employing new apparatus AIDA-II and improving the irradiation setup (beam current, thickness of the target), we were able to obtain enough α counts of ²⁶²Db to determine the Kd value of the anion-exchange reaction.
- It was found that the adsorption of **Db** on the anion-exchange resin was clearly weaker than that of **Ta** and similar to that of **Nb** and **Pa**.

