Production and Decay Properties of ²⁶⁶Bh and its daughter nuclei by using the ²⁴⁸Cm(²³Na,5n)²⁶⁶Bh Reaction

Kouji Morimoto RIKEN, Nishina Center for Accelerator Based Science

^aK. Morita, ^aD.Kaji, ^aH. Haba, ^aK. Ozeki, ^aY. Kudou, ^{ab}N. Sato, ^{ac}T. Sumita, ^aA. Yoneda,
^aT. Ichikawa, ^dY. Fujimori, ^eS. Goto, ^fE. Ideguchi, ^aY. Kasamatsu, ^aK. Katori, ^hY. Komori,
^gH. Koura, ^eH. Kudo, ^hK. Ooe, ⁱA. Ozawa, ^dF. Tokanai, ^gK. Tsukada, ^jT. Yamaguchi and ^aA. Yoshida

^aRIKEN, ^bTohoku Univ., ^cTokyo Univ. of Science, ^dYamagata Univ., ^eNiigata Univ., ^fUniv. of Tokyo, ^gJAEA, ^hOsaka Univ., ⁱUniv. of Tsukuba, ^jSaitama Univ.

7th Workshop on the Chemistry of the Heaviest Elements Oct. 2009, MAINZ

Table of Contents

Introduction

Motivation of this work

Experiments

Experimental Setup Experimental Conditions Experimental results Summary Future Plan

New element search at RIKEN

Introduction

Motivation of this work

Until now, Two decay chains of ²⁷⁸113 were observed by using ²⁰⁹Bi + ⁷⁰Zn. Both Chain consist of four alpha decays and ended by spontaneous fission of ²⁶²Db.

Because the decays of ²⁶⁶Bh and ²⁶²Db are known nuclei already reported, we claimed that the ²⁷⁸113 were clearly determined with Z and A.

However

The statistics of the report of 266Bh are not enough.1 events: (249Bk+22Ne->266Bh),4 events: (243Am+26Mg->266Bh),Imp, Z. Qin et al., Nucl. Phys. Rev. 23 (2006) (Chinese journal in English)

Motivation of this work is

to increase the statistics of the decay of ²⁶⁶Bh and ²⁶²Db. Confirm the connection to the known nuclei for element 113.

Candidate of the reactions

²⁴⁹ Bk, ²⁴³ Am target:	Not available in RIKEN
²⁰⁵ TI(⁷⁰ Zn, n) ²⁷⁴ Rg :	small cross section 1 event/30days
²⁴⁸ Cm(²³ Na, 5n) ²⁶⁶ Bh :	rotating ²⁴⁸ Cm target was just available
	large cross section 10 events /30days

Cross section systematics

Experimental setup

GARIS (Gas-filled recoil ion separator)

Focal plane setup

- \times small recoil energy \rightarrow remove TOF detector (impossible to passing through Mylar foils)
- $\times~$ large counting rate during Beam-On $\rightarrow~$ use beam ON/OFF method

Beam ON/OFF structure

Rotating ²⁴⁸Cm target

- Purification with ion exchange
- Electrodeposition

 0.54 mg of ²⁴⁸Cm in 20 µ L of 0.2 M HNO₃ + 5.5 mL 2-propanol
 1000 V x 11 mA/cm² for 10 min
 → 350 µ g/cm^{2 248}Cm₂O₃
 - on 2.0 μ m Ti backing foil

Summary of Experimental conditions and Experimental results

Experimental conditions:

Method:	Focal plane Silicon Box + Beam On/Off method
Target:	²⁴⁸ Cm, 350 μ g/cm ² , 10cm diameter, 1000rpm
Beam intensity:	²³ Na 4.4 p μ A, average 1p μ A (duty 27.5%)
Beam Energy :	126, 130, 132 MeV
On/Off:	3s On – 3s OFF
Daughter mode:	100sec
GARIS pressure:	33 Pa
GARIS(Bp):	2.07, 2.19 Tm, (estimated by the results of ²⁴⁸ Cm(²² Ne,5n) ²⁶⁵ Sg exp.)

Experimental results:

Total beam dose:	1.9 х 10 ¹⁹		
Counting rate:	Beam ON	3 x 104 /s	
	Beam OFF	5-10 /s	
Observed events:	32 (Correlat	ed events)	
Cross section:	50pb for 266	^b Bh and ²⁶⁷ Bh	(included the events of tentative assignment)

Decay chains observed in this experiment

(result of \pm 2mm and 300s correlation analysis)

			α,		α_{2} or S	SF			α_{2}					
ID	Ebeam	Strip	E(M)	FWHM	E(D)	FWHM	dPos	$\tau(D)$	E(GD)	FWHM	dPos	τ (GD)	Group	Assignment
3 <u>5</u>	MeV		MeV	MeV	MeV	MeV	mm	S	MeV	MeV	$\mathbf{m}\mathbf{m}$	S		
1	126^{a}	2	9.05	0.11	8.71^{s}	0.18	-0.45	54.91	8.71	0.11	0.98	9.23	AC	$^{266}Bh \rightarrow ^{262}Db \rightarrow ^{258}Lr$
2	130^{b}	11	9.12^{s}	0.16	8.748	0.16	3.53	13.76	8.60	0.09	-7.16	9.36	AC	$^{266}Bh \rightarrow ^{262}Db \rightarrow ^{258}Lr$
3	132^{a}	7	9.20	0.07	8.67	0.07	0.86	13.71	8.70^{s}	0.14	-0.22	4.72	AC	$^{266}Bh \rightarrow ^{262}Db \rightarrow ^{258}Lr$
4	132^a	7	8.82	0.07	8.54^{s}	0.14	1.45	95.45	8.69	0.07	-1.45	3.94	BC	$^{266}Bh \rightarrow ^{262}Db \rightarrow ^{258}Lr$
5	132^{b}	13	8.84 ^s	0.12	8.42	0.05	-0.12	11.95	169.5^{s}		-0.53	27.22	DGI	$^{267}\text{Bh} \rightarrow ^{263}\text{Db} \rightarrow ^{259}\text{Lr}$
6	130^{b}	3	9.14	0.12	8.70	0.12	-0.06	66.23					Α	$^{266}Bh \rightarrow ^{262}Db \text{ or } ^{258}Lr$
7	132^a	6	9.23	0.07	8.65	0.07	0.43	22.04					A	$^{266}Bh \rightarrow ^{262}Db$ or ^{258}Lr
8	132^{a}	8	9.14^{s}	0.13	8.60	0.06	3.50	7.29					Α	$^{266}Bh \rightarrow ^{262}Db$ or ^{258}Lr
9	132^{b}	12	9.22^{s}	0.11	8.61	0.04	-0.66	60.40					Α	$^{266}Bh \rightarrow ^{262}Db \text{ or } ^{258}Lr$
10	130^{b}	10	8.60^{s}	0.17	8.70	0.10	-1.72	6.93					С	$^{262}\text{Db} \rightarrow ^{258}\text{Lr}$
11	130^{b}	6	8.55	0.09	8.57	0.09	0.12	2.53					С	$^{262}\text{Db} \rightarrow ^{258}\text{Lr tentative}$
12	130^{b}	10	8.40	0.11	8.80^{s}	0.18	2.99	3.73					С	$^{262}\text{Db} \rightarrow ^{258}\text{Lr}$
13	132^{a}	4	8.43	0.10	8.69	0.10	-0.08	5.69					С	$^{262}\text{Db} \rightarrow ^{258}\text{Lr}$
14	132^{b}	8	8.84	0.04	8.51	0.04	0.77	82.15					В	$^{266}Bh \rightarrow ^{262}Db$ tentative
15	126^{a}	1	9.07	0.07	154.6^{s}		0.52	5.67					E	$^{266}Bh \rightarrow ^{262}Db$
16	130^{b}	9	9.09^{s}	0.15	157.9		-0.56	5.34					E	$^{266}Bh \rightarrow ^{262}Db$
17	132^{b}	8	9.23	0.06	180.4		1.89	121.53					Е	$^{266}Bh \rightarrow ^{262}Db$
18	126^{a}	7	8.99	0.09	185.8^{s}		0.16	8.42					\mathbf{F}	$^{266}Bh \rightarrow ^{262}Db$ tentative
19	126^{a}	11	8.97	0.05	157.1		1.53	141.86					\mathbf{F}	$^{266}Bh \rightarrow ^{262}Db$ tentative
20	126^{a}	12	8.95^{s}	0.13	162.8		-1.56	68.35					\mathbf{F}	$^{266}Bh \rightarrow ^{262}Db$ tentative
21	126^{a}	7	8.93	0.08	173.9^{s}		0.61	84.30					\mathbf{F}	$^{266}Bh \rightarrow ^{262}Db$ tentative
22	130^{b}	7	8.97	0.08	131.1		-1.20	43.99					\mathbf{F}	$^{266}Bh \rightarrow ^{262}Db$ tentative
23	132^{a}	1	8.95	0.06	107.5		-0.06	151.36					\mathbf{F}	$^{266}Bh \rightarrow ^{262}Db$ tentative
24	132^{b}	13	8.98	0.04	162.8		-0.72	156.99					\mathbf{F}	$^{266}Bh \rightarrow ^{262}Db$ tentative
25	132^{b}	10	8.95^{s}	0.14	133.8		3.05	26.85					F	$^{266}Bh \rightarrow ^{262}Db$ tentative
26	126^{a}	4	8.76	0.10	124.3^{s}		0.14	112.21					H	$^{267}Bh \rightarrow ^{263}Db$ tentative
27	130^{b}	10	8.71	0.08	68.2		0.26	5.38					H	$^{267}Bh \rightarrow ^{263}Db$ tentative
28	132^{b}	11	8.75	0.07	139.9^{s}		-0.49	55.57					Н	$^{267}Bh \rightarrow ^{263}Db$ tentative
29	132^{b}	10	8.44	0.07	89.4		0.64	35.96					I	263 Db or 258 Lr
30	130^{b}	12	8.84	0.04	173.8^{s}		0.76	176.77					G	$^{267}Bh \rightarrow ^{263}Db \text{ or } ^{259}Lr$
31	132^{a}	7	8.09	0.07	161.7^{s}		-1.52	294.39					J	not assigned
32	132^{b}	14	8.098	0.13	164.8^{s}		0.28	208.30					J	not assigned

 $a B \rho$ of GARIS was set to 2.19 $b B \rho$ of GARIS was set to 2.07 s Sum of PSD and SSD signals

The assignment was based on the reports of P.A Wilk et al., Phys. Rev. Lett. 85(2000)

and R. Dressler et al., Phys. Rev. C 59(1999).

Example of the observed decay chains of ²⁶⁶Bh

Singles spectrum (beam off period)

16.4 h, 3.1 x 10¹⁷ beam dose

Comparison of ²⁶⁶Bh decay, from ²⁷⁸113 and present data

Summary of result

32 correlation events were observed in total 14 events were assigned to the decay from ²⁶⁶Bh

²⁶⁶Bh

```
E \alpha: 8.82 and 9.05-9.23 MeV
```

 \rightarrow consistent with one of the E α observed in the ²⁷⁸113 decay chain E α ²⁶²Db

```
Eα: 8.40 – 8.74 MeV
```

```
Branch: α -decay: 11 events (79%), S.F.: 3 (21%)
```

 $\rightarrow\,$ consistent with the decay time observed in the $^{278}113$ decay chain $^{258}{\rm Lr}$

 $E \alpha$: 8.57 – 8.80 MeV, $T_{1/2}$: 4.0^{+2.2}_{-2.0} s

```
→ R. Dressler et al., 8.565, 8.595, 8.621 MeV, 3.92^{+0.35}_{-0.42} s
```

A state in ²⁶⁶Bh, which decays by α -emission with the energies ranging from 9.05 – 9.23 MeV, feeds a state in ²⁶²Db, which decays by α -emission and by SF with a previously known half life.

The result provided a further confirmation of the production and identification of the isotope of the ²⁷⁸113, studied by RIKEN.

