

From New Actinide Target Technology to Heavy Element Chemistry

Heino Nitsche

University of California, Berkeley and Lawrence Berkeley National Laboratory

7th Workshop on the Chemistry of the Heaviest Elements, October 13, 2009, 12:15-12:40 p.m.

Acknowledgements

- The Need for New Target Technology
 - Overview of Target Methodologies
 - Polymer-Assisted Deposition
 - Electrochemical Molecular Deposition of 242 Pu
- The First Direct Verification of Element 114
- A new A and Z measuring facility at the BGS

- Upcoming new, higher beam intensities will require targets that can withstand substantially higher heat loads
- LBNL's superconducting AECR source will soon provide beams with substantially higher intensities
 - this is a current trend world wide
 - ⁴⁸Ca beams with 2 pµA will be delivered at LBNL
- Currently available targets may be unable to properly perform under these conditions
 - molecular plated targets will definitely not be adequate
 - flaking and pin hole development threatens accellerators and separators

Overview of Target Preparation Methods

	<u>Target</u> <u>Thicknesses</u>	<u>Homogeneity</u>	<u>Efficiency</u>	<u>Contamination</u>
Molecular Plating / Electro- deposition ¹	0.1-2 mg/cm ²	Granular growth at 1-3 mg/cm ²	20-90%	Minimal
Vacuum Deposition ¹	Thin targets	Homogeneous	1% for a 1mm circular target	Significant
Painting ¹	Up to 8 mg/cm ²	Homogeneous >90%		Minimal

¹ Glover et al., Nuclear Instruments and Methods **102**, 443–450 (1972)

Nuclear Targets by Polymer-Assisted Deposition (PAD)

 Spin coating of metals chelated to a multi-dentate aqueous polymer (polyethylenimine (PEI))

rrrrr

- Annealing of spin-coated films yields a crack-free, uniform and homogenous metal oxide film
- PAD reapplication can produce film of desired thickness

M. Garcia, M. Ali, T. Parsons-Moss, P. Ashby, H. Nitsche, Thin Solid Films, 2008

1.0 -

0.8 -

0.6 -

0.4 -

0.2 —

0.0 -

0.0

Ę

Stability of PAD-prepared Nuclear Targets

 Targets were tested with heavy-ion irradiation (⁴⁰Ar, 1.3 x 10¹⁵ particles). Surface homogeneity only changed by a few nanometers as determined by Atomic Force Microscopy (AFM). <u>Thulium(III) Oxide Target (250 µg/cm²)</u>

M. Garcia, M. Ali , N. Chang, T. Parsons-Moss, P., Ashby, J. Gates, L. Stavsetra, K. Gregorich, H. Nitsche, Nucl. Instr. Meth. A., 2008

Several Generations of Spin Coaters

- ²⁴²Pu-nitrate in 23-mL isopropanol
- Calcination reaction:

 $Pu(NO_3)_4 * 5H_2O \rightarrow PuO_2 + 3.4 NO_2 + 0.6 NO + 1.3 O_2 + 5 H_2O$

• One layer deposition < 1.0 mA/cm², 150-200 V for 3-5 hours

BGS Plutonium Target Assembly PuO₂ (>99.9% ²⁴²Pu)

Upstream side of cassette

440, 340, 320, and 270 μg/cm², 2.4 mm Ti

Cooling water channel inside

²⁴²Pu Experiments at the Berkeley Gas-filled Separator

BGS upgrades: (1) Radioactivity Containment Facility at BGS target

(2) Ge clover γ -ray detector behind BGS detectors

RKELEY NATIONAL LABORATORY

Results: ²⁶**Mg** + ²⁴²**Pu**

E _{beam} /E* _{CN} (MeV)	²⁶² Sg	റ(6n) (pb)	²⁶³ Sg	ര(5n) (pb)	²⁶² Sg + ²⁶⁴ Sg	σ (4n+6n) (pb)
157 / 57	6	79+47 -31	1	34+77 -28		
149.5 / 50			4	135⁺¹⁰⁶ -71	6	79+47 -31

-increased fusion cross sections for compound nucleus formation with higher Z targets

Dubna Results of ²⁴²Pu(⁴⁸Ca,2-4*n*)²⁸⁸⁻²⁸⁶114

• 24 decay chains in 2-4 *n* channels

ILLUND

BERKELEY

• σ_{3n} = 3.6 pb, σ_{4n} = 4.5 pb at E_{LAB} = 244 MeV / E* = 41 MeV

 ${}^{48}Ca + {}^{242}Pu \rightarrow {}^{286,287}114$

•January 21-30, 2009, at Berkeley Lab

- •Eight days of ⁴⁸Ca ¹¹⁺ beam from AECR source
- •Average beam intensity: I = 300-400 pnA
- •Energy in the center of the target : $E_{LAB} = 244 \text{ MeV}, E^* = 41 \text{ MeV}$

•Beam intensity and target integrity controlled on-line by Rutherford detectors

•Two decay chains observed + 4 SF-like events Lawrence Berkeley National Laboratory

Independent Verification of Element 114 Production

rrrrr

L. Stavsetra, K. E. Gregorich, J. Dvorak, P.A. Ellison, I. Dragojević, M.A. Garcia, H. Nitsche, Independent verification of element 114 production in the ⁴⁸Ca + ²⁴²Pu reaction. Phys. Rev. Lett., 103, 132502, 2009,.

TABLE III. Expected numbers of random correlations for sequences: EVR-like event followed by SF, α -SF, and α - α -SF, for the two parts of the experiment, referred to by the magnetic settings of the separator. The evaluated random rates are calculated for a ± 1.5 -mm vertical position window and a time window of 20 seconds.

	2.18 Tm setting	2.24 Tm setting		
EVR-SF	0.022	$6.3 imes 10^{-4}$		
EVR- α -SF	$4.3 imes 10^{-7}$	3.7×10^{-8}		
EVR- α - α -SF	$1.0 imes 10^{-10}$	$2.8 imes 10^{-12}$		

Stavsetra et al., Phys. Rev. Letters, 103, 132502 (2009)

+ Liv Stavsetra

Determination of Z and A of Single Atoms RF gas catcher and mass analyzer after the BGS

Produce SHE in reaction such as ²⁴⁴Pu(⁴⁸Ca,3*n*)²⁸⁹114

Isolate with Berkeley Gas-filled Separator

²⁸⁹114 passes through MYLAR window and stops in high-purity He (retains 1+ charge)

Focusing RF field directs 1+ ion toward exit orifice, where it is carried by gas flow

Gas skimming, differential pumping, and acceleration to ground potential results in "beam" of 1+ ions

1+ ion is sent through mass analysis magnet for determination of *A*

1+ ion is stopped on rotating wheel system for measurement of α - γ coincidences

α-decay of odd-*N* SHE populates analog
state in daughter. Internal conversion of
analog state γ-decay produces k X-ray

k X-ray of daughter is detected in coincidence with γ-decay, providing Z identification

New capability at the BGS for operation after completion of heavy element studies with **GRETINA @ BGS** in late 2011

- Targets produced by the PAD method are superior to traditional targets in regards to homogeneity, physical and beam stability
- LBNL ready for highest intensity beams from AECR at 88-inch cyclotron
- First direct verification of ²⁴²Pu(⁴⁸Ca,3,4*n*)^{287, 286}114
 - two decay chains observed + 4 SF-like events
- A new A and Z measuring facility is being planned at the BGS

LAWRENCE BERKELEY NATIONAL LABORATORY