Solvent Extraction Studies of Molybdenum and Tungsten as Homologues of Seaborgium (Element 106)

<u>K. Ooe</u>,^{1,4} W. Yahagi,¹ Y. Komori,¹ H. Fujisawa,¹

R. Takayama,¹ H. Kikunaga,¹ T. Yoshimura,¹ N. Takahashi,¹

H. Haba,² Y. Kudou,² Y. Ezaki,² K. Takahisa,³ A. Shinohara.¹

¹Osaka Univ., ²RIKEN, ³RCNP, ⁴JSPS Research Fellow

Element 106, Seaborgium (Sg)

- •Seaborgium belongs to the group 6
- •²⁶⁵Sg ($T_{1/2} = 9$ s) is mainly used in the chemical experiment

•Nuclear reaction: ${}^{248}Cm({}^{22}Ne,5n){}^{265}Sg$ σ = several hundreds pb

The chemical properties of Sg are poorly known.

Lighter homologues Molybdenum(Mo) Tungsten(W) Various oxidation states

 $(\mathbf{VI}, \mathbf{V}, \mathbf{IV}, \mathbf{III} \cdots)$

It is expected that Sg can be reduced

There is no report on the redox experiments of superheavy elements

Solution chemistry of Sg

Example of solution chemistry of Sg

There is no report on solution chemistry of Sg following these works

Chemical studies of Mo and W

Investigation of the chemical behavior of mononuclear Mo and W is required for the comparison with that of Sg

Solvent extraction behavior of Mo and W under extremely low concentration was examined to investigate extraction behavior of mononuclear Mo and W

Contents of this study

Solvent extraction experiments with carrier-free Mo and W produced by heavy-ion induced nuclear reactions

Extraction system : Ion-pair extraction from hydrochloric acid (HCl)

Experimental section

1. Dependence of distribution ratios (*D*) of Mo and W on HCl concentration

2. Dependence of *D* values of Mo and W on extractant concentration

Contents of this study

Solvent extraction experiments with carrier-free Mo and W produced by heavy-ion induced nuclear reactions

Extraction system : Ion-pair extraction from hydrochloric acid (HCl)

Experimental section

1. Dependence of distribution ratios (*D*) of Mo and W on HCl concentration

2. Dependence of *D* values of Mo and W on extractant concentration

Dependence of *D* values of Mo and W as a function of HCl concentration

Experimental conditions

Place: RIKEN AVF cyclotron RCNP AVF cyclotron

Nuclear reaction : ${}^{nat}Ge({}^{22}Ne,xn){}^{90}Mo (T_{1/2} = 5.7 h)$ ${}^{nat}Gd({}^{22}Ne,xn){}^{173}W(T_{1/2} = 7.6 min),{}^{174}W(T_{1/2} = 31 min)$ ${}^{nat}Dy({}^{16}O,xn){}^{173}W(T_{1/2} = 7.6 min),{}^{174}W(T_{1/2} = 31 min)$

Aqueous phase: HCl (Wako for Ultratrace analysis Mo, W < 10 ppt) Concentration:0.1–11 M

Organic phase: 0.05 M Tetraphenylarsonium chloride (TPAC)-chloroform solution

0.05 M Aliquat 336-chloroform solution

D value of Mo as a function of shaking time

•Mo concentration was ~ 10^{-13} M (calculated from radioactivity)

•Extraction equilibrium is obtained within 10 min (TPAC) or 1 min (Aliquat 336)

Shaking time for Mo in subsequent experiments : 15 min (TPAC) or 3 min (Aliquat 336) Extraction equilibrium of Mo with TPAC is slow

D value of W as a function of shaking time

•W concentration was ~10⁻¹³ M (calculated from radioactivity)

•Extraction equilibrium is obtained within 1 min with both extractants

3 minutes are selected as shaking time for W in subsequent experiments

Dependence of D values on HCl concentration

• D values of Mo and W increase with an increase of HCl concentration

The anionic chloride complexes of Mo and W are formed Expected extracted species : $MoO_2Cl_3^-$, $MoO_2Cl_4^{2-}$ $WO_2Cl_3^-$, $WO_2Cl_4^{2-}$, $WOCl_5^-$

(anion exchange, absorption spectrum measurement

J. Am. Chem. Soc. 77, 3972 (1955). J. South Afr. Chem. Inst. 19, 11 (1966). J. Radioanal. Nucl. Chem. 142, 373 (1990).)

Dependence of D values on HCl concentration

•W is little extracted in 0.1–4 M HCl

W exists as cationic and/or neutral species in the HCl concentration range

•Extraction of Mo is observed in all studied HCl concentration

Dependence of D values on HCl concentration

• The *D* value of Mo is greater than that of W under the studied conditions

•Present results are consistent with previous anion exchange study

•The trend in the chloride complex formation is Mo > W?

exchange experiment

```
Radiochim. Acta 92, 455 (2004).
```

```
J. Radioanal. Nucl. Chem. 142, 373 (1990).
```

•It is required to determine the extracted species for investigation of the trend in the chloride complex formation

Contents of this study

Solvent extraction experiments with carrier-free Mo and W produced by heavy-ion induced nuclear reactions

Extraction system : Ion-pair extraction from hydrochloric acid (HCl)

Experimental section

1. Dependence of distribution ratios (*D*) of Mo and W on HCl concentration

2. Dependence of *D* values of Mo and W on extractant concentration

Dependence of *D* values of Mo and W on extractant concentration

```
Experimental conditions
            Place: RIKEN AVF cyclotron
                   RCNP AVF cyclotron
Nuclear reaction: ^{nat}Ge(^{22}Ne,xn)^{90}Mo(T_{1/2} = 5.7 h)
                   <sup>nat</sup>Dy(<sup>16</sup>O,xn)<sup>173</sup>W(T<sub>1/2</sub> = 7.6 min),<sup>174</sup>W(T<sub>1/2</sub> = 31 min)
 Aqueous phase: 11.1 M HCl (Wako for Ultratrace analysis
                                    Mo, W < 10 ppt)
  Organic phase: Aliquat 336-chloroform solution
                     Extractant concentration 0.01–0.2 M (Mo)
                                                  0.02–0.3 M (W)
```

Experimental procedure

Nuclear reaction products were transported by He/KCl gas-jet system and extracted by batch method

Result and discussion

Expected extracted species $Mo:MoO_2Cl_3^ W:WO_2Cl_3^-, WOCl_5^-$

It is required to investigate the number of chloride ion related to extraction process

Summary

• Ion-pair extraction behavior of carrier-free Mo and W from 0.1–11 M HCl solution was investigated for the chemical experiment of Sg

•The anionic chloride complexes of Mo and W are formed

•W exist as cationic and/or neutral species in 0.1–4 M HCl

•The *D* value of Mo is greater than that of W under the studied conditions

• Dependence of D values of Mo and W on extractant concentration was studied to investigate the charge of extracted species

> The net charges of mainly extracted species of Mo and W are both -1

Expected extracted species $Mo:MoO_2Cl_3^-$ W:WO_2Cl_3^-, WOCl_5^-

Future work

•Further speciation analysis of extracted species of Mo and W

 $\longrightarrow D \text{ values will be studied as a function of chloride ion} \\ \text{concentration under constant proton concentration}$

•Investigation of redox behavior of Mo and W in HCl solution for reduction experiment of Sg

Microchip extraction

We are developing a solvent extraction apparatus with microchips

Microchip extraction

Aqueous phase: acetic acidsodium acetate buffer solution (pH 4.5)

Organic phase: 0.04 M 2-thenoyltrifluoroacetonetoluene solution

Contact time of liquid-liquid interface / s

Extraction equilibria of lanthanides were attained within about 1 s.

Extraction of Mo and W with Aliquat 336 using microchips will be performed for future Sg experiment

Extractions of Mo under high and extremely low concentration with 0.05 M Aliquat 336-chloroform

Mo concentration Extremely low concentration : 10⁻³ M

Extractions of W under high and extremely low concentration with 0.05 M Aliquat 336-chloroform

W concentration (extremely low concentration): 10⁻¹³ M

W concentration (high concentration) 8×10^{-3} M (11.14 M HCl) 1×10^{-3} M (7.77 M HCl) 1×10^{-4} M (5.74 M HCl) 7×10^{-5} M (3.78 M HCl)

$$D = \frac{A_{o}V_{a}}{A_{a}V_{o}}$$

 $A_o \bullet \bullet \bullet$ Radioactivity in organic phase $A_a \bullet \bullet \bullet$ Radioactivity in aqueous phase $V_o \bullet \bullet \bullet$ Volume of organic phase $V_a \bullet \bullet \bullet$ Volume of aqueous phase