Trends in the Adsorption Behaviour of the Heaviest Element

V. Pershina GSI, Darmstadt J. Anton and T. Jacob University of Ulm A. Borschevsky, E. Eliav and U. Kaldor Tel Aviv University

Periodic Systems of Elements

1	_																18	_
1																	2	
Н	2	-										13	14	15	16	17	Не	
3	4											5	6	7	8	9	10	
Li	Be											В	С	Ν	0	F	Ne	
11	12											13	14	15	16	17	18	
Na	Mg	3	4	5	6	7	8	9	10	11	12	AI	Si	Р	S	CI	Ar	
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	
ĸ	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Хе	
55	56	57+*	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	
Cs	Ва	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	ті	Pb	Bi	Ро	At	Rn	
87	88	89+7	104	105	106	107	108				-112							
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	109	110	111		113	114	115	116		118	
8								Mt	Ds	Rg								
											•)
		*	58	59	60	61	62	63	64	65	66	67	68	69	70	71	1	
			Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu		
			90	91	92	93	94	95	96	97	98	99	100	101	102	103	1	
			Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr		

Gas-Phase Chromatography Experiments with Atoms and Molecules

Isothermal Chromatography

Formation Enthalpies of Group 12-17 Elements $(\Delta H_{sub} \text{ of Metals})$

Relativistic Dirac-Fock and Nonrelativistic Energies of the Valence Orbitals (eV)

Quantum-Chemical Methods

Nastya

- DC(B) ab initio + CCSD(T
- Effective Core Potentials (2*c*-ECP)
 - Relativistic ECP (RECP) + CCSD(T)
 - Pseudo-Potentials (PP) + CCSD(T)
- 4*c*-Density-Functional Theory
 - 4*c*-DFT (*E*^{xc} = B88/P86, etc.)
 - 4*c*-BDF
- Other

Atoms, small molecules - 112, 114, HgAu

- Larger molecules
 - SgO₂Cl₂, 114F₄

 Molecules, complexes, clusters, solid state

-
$$SgO_2Cl_2$$
, 112-Au_n,
 $SgO_n(H_2O)_mL_y^{q-}$, etc.

Adsorption on Inert Surfaces

For weak interactions:

Atom-slab model:

$$E(x) = -\frac{3}{16} \left(\frac{\varepsilon - 1}{\varepsilon + 2}\right) \frac{\alpha_{at}}{\left(\frac{1}{IP_{slab}} + \frac{1}{IP_{at}}\right) x^3}$$

Calculations of atomic properties - IP, α and $x \sim R_{vdW}$

Method	Hg			112			
	AR, a.u.	α, a.u.	IP, eV	AR, a.u.	α, a.u.	IP, eV	Ref.
4 <i>c</i> -DFT(B88/P86)	3.430	-	-	3.260	-	-	Anton
DC(B) CCSD(T)	-	34.15	10.445	-	27.64	11.97	Borschev./Eliav
exp.	3.429	33.92	10.4375	-	-	-	

Adsorption on Inert Surfaces of Group 13 ... 18 Elements

Group 13

Group 14

Atomic Properties of Elements 112, 113 and 114 and Adsorption on Inert Surfaces

Property	112	113	114	115	 118	Rn
Electr. conf.	d ¹⁰ s ²	s ² p _{1/2} ¹	s ² p _{1/2} ²	$s^2 p_{1/2}^2 p_{3/2}^1$	 $s^2 p_{1/2}^2 p_{3/2}^4$	s²p ⁶
IP, eV	11.97	7.31	8.54	5.58	8.91	10.75
α, a.u .	27.4	29.9	29.5	82.0	46.3	35.8
AR, a.u.	3.21	1.22	3.30	4.26	4.55	4.29
R _{vdW} , a.u.	3.75	1.84	3.94	5.09	4.55	4.29
$\Delta H_{ads}(i), kJ/mol$	26.2	~28.2	20.2	~28.3	21.0	~20
$\Delta H_{ads}(T)$, kJ/mol	13.2	14.0	10.4	14.1	10.8	10.7

Adsorption of SHE on Inert Surfaces

Adsorption of Elements 112, 113 and 114 on Gold

- Calculations of the interaction energy with Au
 - MAu
 - MAu_n for Au(100) and Au(111)

Chemical Bond Formation in 112Au

MO Formation in MAu (M = 112, 113 and 114)

1.83

*D*_e 0.51

0.73 eV

Interaction of Element 113 with Gold

Molecule	D _e , eV	R _e , Å	W _e , cm ⁻¹
TIAu	2.67	2.668	141
113Au	1.83	2.716	144

Potential energy curves for TIAu and 113Au

Cluster Calculations M-Au_n

- Au(100)
 - MAu_n and MAu_nAu_m (n= 36; m = 156) too binding
 - C. Sarpe-Tudoran et al. J. Chem. Phys. 126, 174702 (2007)
- Au(111)
 - MAu_n (from n=1 to n=120, convergence) better
 - V. Pershina et al. J. Chem. Phys. 131, 084713 (2009)

Binding Energies and Bond Lengths in M-Au_n for Au(111)

E_b: Pb >> 114 > Hg > 112

Predictions of ΔH_{ads} of Hg, E112, Pb and E114 on gold

		$E_{ m b}$	(M-Au _n)	$-\Delta H_{ads}$				
Μ	top	bridge	hollow1	hollow2	predictio	ns	experiment	
	n=95	n=94	n=120	n=107	value	Ref.	value	Ref.
Hg	0.31	0.56	0.40	0.53	0.56 ^a	this	0.92	B. Eichler
					1.01	Rossbach	1.02 ± 0.03	Soverna
112	0.30	0.42	0.39	0.46	0.46	this	0.54 ± 0.04	R. Eichler
					0.12	Rossbach		
Pb	1.61	2.40	2.07	2.36	2.40	this	2.43	Haennsler
					2.27	Rossbach	2.37	B. Eichler
114	0.47	0.71	0.45	0.59	0.71	this	0.36 ^{+0.2}	R. Eichler
					0.95	Pershina		
					0.97	Rossbach		
Pb 114	1.61 0.47	2.40 0.71	2.07 0.45	2.36 0.59	0.12 2.40 2.27 0.71 0.95 0.97	Rossbach this Rossbach this Pershina Rossbach	2.43 2.37 0.36 ^{+0.2}	Haennsler B. Eichler R. Eichler

^a underestimated

*E*_b: Pb >> 114 > Hg > 112

Predictions of Gas-Phase Chromatography Behaviour of Elements 112, 113 and 114

TIOH and 113OH

Bond lengths (R_e), dissociation energies (D_e) and vibrational frequencies (w_e)

Molecule	R _e , Å	D _{e,} eV	W _e , cm ⁻¹
TIAu	2.69	2.67	141
113Au	2.72	1.83	144
TIOH	2.18	3.68	547
113OH	2.28	2.42	519

Adsorption enthalpies of M and MOH on gold

M-OH

	- ΔH_{ads} , kJ/mol							
Atom	M/Au	M-OH/Au	Exp. cond.	Ref.				
TI	240 ± 5	116 ± 2	He/H ₂	König				
		114 ±5	O ₂					
		113 ±4	on Au					
113	159	?		our				

Thank you for your attention !