A SISAK Extraction System for Chemical Studies of Hassium

> Fereshteh Samadani University of Oslo Oct. 2009

Outline

- SISAK system
- Element 108, Hs
- Developing stage at Oslo Cyclotron Laboratory (OCL)
- Pilot experiment at GSI
- Comparing Ru and Os, Hs predictions

SISAK system

- Fast online automated solvent extraction system suitable for study of short-lived isotopes with one-atom-at-a-time sensitivity.
 - Successfully performed several 4-s ²⁵⁷Rf chemistry experiments.
 - Successfully tested detection of 4-s ²⁵⁸Db.

Previous Hs experiments

- Formation of HsO₄ analogous to OsO₄ and RuO₄ (gas phase experiments) [1,2]
- Evidence for formation of hassate [HsO₄(OH)₂]²⁻ analogous to osmate [OsO₄(OH)₂]²⁻ (gas phase experiments) [3]

[1] Düllmann et.al. Nature **418**, 859 (2002)

[2] Dvorak et. Al. Phys. Rev. Lett.

- **24**, 242501/1-242501/4 (2006)
- [3] von Zweidorf et.al. Radiochim Acta **92**, 855 (2004)

System Developed at OCL

System developed based on known chemical properties of Hs:

 Transportation is based on in situ formation of volatile tetroxides of group VIII elements.

 Solvent extraction based on formation of hydroxo complexes of tetroxides.

Os forms OsO_4 in a He/O_2 gas jet.

OsO₄ dissolved in diluted NaOH and extracted into toluene.

Results of Oslo experiments

Where K_D is the distribution constant of OsO₄ between toluene and water and K_1 and K_2 are the equilibrium constant for the complex formation reactions.

Fitting of the results

GSI experiments

 Pilot experiment performed at GSI to test the entire SISAK setup with double α-detector arrays.

The setup at GSI

α emitting Os isotopes at GSI experiments

Isotope	¹⁷² Os		¹⁷³ Os		¹⁷⁴ Os	
Mode	ε + β+	α	ε + β+	α	ε+β+	α
Branching (%)	99.02	1.02	99.979	0.021	99.980	0.020
Half-life	45 s	•	22.4 s		19.2 s	
	100 - 200 - 300 - 300 - (sigue 500 - 500 - 700 - 800 - 900 - 1030 - - 3 100 20		events Pile-up events			

Energy (channels)

Results of GSI experiments

Transport time measurements

Performed by pulse bombardment of the target followed by a break (beam pulse =10 s, break=190 s) repeated for about 1 hour

Transport time curve

Transport time measurement

- Both ¹⁷³Os and ¹⁷⁴Os are transported to the degasser.
- Both are short-lived. Thus, the ¹⁷³W and ¹⁷⁴Re daughter products were measured.

792/0.5 ^{t/45}	$\frac{601/0.5^{t/22.4}}{22.4}$		
3801	1519		

• From this the transport time = 41 s was calculated.

The Yield Measurements

 Was measured by calculating the ratio of activity of ¹⁷⁴Re the daughter of ¹⁷⁴Os in an Al catcher foil to its activity in the samples from degasser.

• Yield for the transferring from RTC to the liquid phase was (75±15)% independent of oven temperature.

Off-line SISAK experiment

Comparing Ru and Os

- D value for RuO₄ is higher than for OsO₄
- According [1] predicted trend for the formation of Na₂[MO₄(OH)₂] in the reaction: 2NaOH+HsO₄→Na₂[HsO₄(OH)₂] in group 8 is:

Os > Hs >> Ru

• The trend in D value then can be predicted to be like this:

Ru >> Hs > Os

[1] Pershina. Radiochim Acta 93,373(2005)

Conclusion

- In this work an extraction system for chemical study of Hs was developed using Os as a model.
- The full system was tested using αemitting Os.
- The system is basically ready for an Hs experiment.

Acknowledgement

- Oslo group: J. Alstad, T. Bjørnstad, J. Nilssen, J.P. Omtvedt, K. Opel, H.B. Ottesen, S. Qureshi, F. Schulz
- GSI group: Ch.E. Düllmann, J.M. Gates, E. Jäger, J. Khuyagbaatar, J. Krier, M. Schädel, B. Schausten
- University of Mainz: K. Eberhardt, J. Even,, D. Hild, J.V. Kratz, Ch. Roth, N. Wiehl
- Munich group: A.Türler, A.Yakushev

Thank you all!

