

## Adsorption Interaction of <sup>113m</sup>In and <sup>200-202</sup>Tl Isotopes with Quartz

**Alexey Serov** 

Laboratory for Radiochemistry and Environmental Chemistry Paul Scherrer Institute and University of Bern















#### Outline

- 1) Introduction
- Methods for studying chemical properties of superheavy elements (SHE)

#### 2) Experiments with lighter analogues of SHE

- Preparation and purification of <sup>113</sup>mIn and <sup>200-202</sup>Tl
- Model experiments with <sup>113m</sup>In and <sup>200-202</sup>Tl
- 3) Summary
- 4) Way to go

Outline





 $u^{\scriptscriptstyle b}$ 

UNIVERSITÄT

- 1) Gas phase methods: thermochromatography and isothermal chromatography
- 2) "Wet-chemical" methods
- 3) Electrochemical methods *etc*

#### Main methods used in the present research:

Isotope separation – "wet chemistry" and gas phase method

**Chemical properties – thermochromatography** 



A. Serov Laboratory for Radiochemistry and Environmental Chemistry PSI





## Motivation: Unclear speciation of p- and s- elements (quartz)

#### [500 400 data 400 ada 300 Linear fit 95% confidence limit Pt Au Adsorption enthalpy Te Aq • Ge Zn Cd Bi Ha 0 100 200 300 500 400 600 0 Sublimation enthalpy $\Delta H^{298}_{subl}$ [kJ/mol]

A. Serov Laboratory for Radiochemistry and Environmental Chemistry PSI

In-113m and TI-200-202





# Experiments with lighter analogues of SHE

### **Isotope production and purification**

- 1) Neutron activation method
- "+" available at PSI upon request
- "+" high specific activities of isotopes can be reached
- "-" only long lived isotopes can be studied (exception generators)
- "-" good separation methods for specific isotopes are needed
- "-" contaminations with carrier amounts
- 2) Cyclotron produced isotopes:
- "+" practically no limitation in half-lives
- "+" high isotopic purity and carrier free amounts
- "+" variety of isotopes (combination target/beam)
- "-" not available by request (scheduled beam-times)
- 3) Commercially available generator systems
- "+" easy to work with
- "-" price and shipment time
- "-" available only for limited isotopes (radiopharmacy application)



#### <sup>113m</sup>In production and purification

- 1) <sup>nat</sup>Sn metal irradiation (0.5 g sample, 2 hrs)
- 2) Sample dissolution in HCl<sub>(conc)</sub>
- 3) Deposition on anion-exchange column Dowex® 1X8
- 4) Elution with 1M HCl

 $^{113}\text{Sn} \rightarrow ^{113\text{m}}\text{In}, \text{ } \text{T}_{1/2} = 115.1 \text{ d} \rightarrow 99.5 \text{min}, \text{ IT } 392 \text{ keV}$ 





<sup>113m</sup>In and <sup>200-202</sup>Tl production by neutron irradiation

In-113m and Tl-200-202





#### **Pneumatic system for remote irradiation of samples by mediate neutron flux**





#### <sup>113m</sup>In purification results



## **Gamma spectrum for irradiated** <sup>nat</sup>**Sn (before purification)**



In-113m and TI-200-202



## Model experiments with <sup>113m</sup>In and <sup>200-202</sup>Tl

#### <sup>113m</sup>In purification results



A. Serov Laboratory for Radiochemistry and Environmental Chemistry PSI





<sup>200-202</sup>Tl production

- 1) <sup>nat</sup>PbO<sub>2</sub> irradiation (0.5g sample, 2hrs)
- 2) Solid PbO<sub>2(irradiated)</sub> can be used as the source of <sup>200-202</sup>Tl
- 3)  ${}^{200}$ Tl ( $t_{1/2}$ =26.1 h),  ${}^{201}$ Tl ( $t_{1/2}$ =73.1 h) and  ${}^{202}$ Tl ( $t_{1/2}$ =12.23 d),
- 4) Carrier-free Tl can be investigated





#### <sup>113m</sup>In and <sup>200-202</sup>Tl thermochromatography experiment on quartz



Gradient: 1000/1300 – 30/-140 °C Column material: quartz Column length: 110 cm Carrier gas: Different

#### Thermochromatography oven set-up





## **Details of experiments**

| Starting material                                                  | Carrying<br>gas/mixture                      | Expected species                                                  |
|--------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------|
| In-eluated/Ta                                                      | Ar 50ml/min                                  | In-metal                                                          |
| Sn-irr./Al <sub>2</sub> O <sub>3</sub> , PbO <sub>2</sub> -irr./Ta | H <sub>2</sub> 25ml/min                      | In and Tl metals                                                  |
| Sn-irr./Al <sub>2</sub> O <sub>3</sub> , PbO <sub>2</sub> -irr./Ta | <b>O</b> <sub>2</sub> 25ml/min               | In <sub>2</sub> O <sub>3</sub> and Tl <sub>2</sub> O <sub>3</sub> |
| Sn-irr./Al <sub>2</sub> O <sub>3</sub>                             | O <sub>2</sub> /H <sub>2</sub> O<br>25ml/min | In(OH) <sub>3</sub> and TlOH                                      |
| Sn-irr./Al <sub>2</sub> O <sub>3</sub>                             | H <sub>2</sub> /H <sub>2</sub> O<br>25ml/min | InOH, In <sub>2</sub> O, Tl <sub>2</sub> O<br>TIOH                |
| Sn-irr./Al <sub>2</sub> O <sub>3</sub>                             | He/H <sub>2</sub> O<br>25ml/min              | InO, InOH, TIOH,<br>Tl <sub>2</sub> O                             |



In-113m and TI-200-202



## Model experiments with <sup>113m</sup>In and <sup>200-202</sup>Tl

<sup>113m</sup>In thermochromatography experiment on quartz





In-113m and TI-200-202



## Model experiments with <sup>113m</sup>In and <sup>200-202</sup>Tl

#### <sup>113m</sup>In thermosublimation experiment on quartz







#### <sup>113m</sup>In thermosublimation experiment on quartz





In-113m and TI-200-202



## Model experiments with <sup>113m</sup>In and <sup>200-202</sup>Tl

#### <sup>113m</sup>In thermosublimation experiment on quartz







#### <sup>113m</sup>In thermochromatography on quartz



A. Serov Laboratory for Radiochemistry and Environmental Chemistry PSI



<sup>113m</sup>In thermosublimation experiment on quartz

Exp. 7 Dry Sn-irradiated +O<sub>2</sub>

Exp. 8 Dry Sn-irradiated +O<sub>2</sub>/H<sub>2</sub>O

No volatile In species – because of low volatility

of oxides and hydroxides in high oxidation states for In



In-113m and TI-200-202

## Model experiments with <sup>113m</sup>In and <sup>200-202</sup>Tl

#### <sup>200-202</sup>Tl thermosublimation experiment on quartz \*





#### **Summary of deposition temperatures on quartz**

| Isotope            | Gas/Mixture                      | T <sub>dep</sub> (exp),<br><sup>0</sup> C | T <sub>dep.</sub> (Lit.)*,<br><sup>0</sup> C | Possible species                    |
|--------------------|----------------------------------|-------------------------------------------|----------------------------------------------|-------------------------------------|
| <sup>113m</sup> In | H <sub>2</sub>                   | 320, 356<br>250,300,280<br>710(2)         | 330±20                                       | InOH (?)<br>In                      |
| <sup>113m</sup> In | H <sub>2</sub> /H <sub>2</sub> O | 221<br>13                                 | -                                            | InOH (?)<br>In(OH) <sub>3</sub> (?) |
| <sup>113m</sup> In | He/H <sub>2</sub> O              | 552                                       | -                                            | InO (?)                             |
| 200-202 <b>T</b> ] | H <sub>2</sub>                   | 202                                       |                                              | ТЮН                                 |
| 200-202 <b>T</b> ] | 02                               | 220                                       | -                                            | ТЮН                                 |

 $u^{\scriptscriptstyle \flat}$ 

6 UNIVERSITÄT BERN



#### <sup>113m</sup>In thermochromatography and Monte-Carlo simulation



In-113m and TI-200-202





<sup>113m</sup>In adsorption on quartz





#### <sup>200-202</sup>TIOH thermochromatography and Monte-Carlo simulation \*





TI-200-202

In-113m and

## Model experiments with <sup>113m</sup>In and <sup>200-202</sup>Tl

#### <sup>113m</sup>InOH thermochromatography and Monte-Carlo simulation





In-113m and TI-200-202

## Model experiments with <sup>113m</sup>In and <sup>200-202</sup>Tl

<sup>200-202</sup>TlOH and <sup>113m</sup>InOH enthalpy of adsorption on quartz





#### **Problem of pure metals**

Even 99,9998 Sn – contains In and Sb admixtures

#### **Possible solutions of the problem**

- 1) Ion-exchange chromatography
- Works well for In, hard to achieve high activity for Sb
- 2) Gas phase purification
- Perfect for In, very poor for Sb
- **3) Tin-organic compounds with Sn-C bonds (tetra-phenyl Tin)**
- Experiments on the way





- 1) Prepared generator system for continuous obtaining <sup>113m</sup>In
- 2) Chemical interaction of <sup>113m</sup>In and <sup>200-202</sup>Tl with quartz surface was investigated
- 3) First time adsorption temperature for In-metal was detected

#### To do

- 1) Investigation of In and Tl elemental state, oxides, and hydroxides interaction with Au, Pt
- 2) Other SHE analogues (Sb, Te etc)
- 3) Experiments with In, Tl and Pb species in vacuum

 $u^{\scriptscriptstyle b}$ 

UNIVERSITÄT



## Acknowledgements: To all members of our lab!

SNF for \$\$\$

A. Serov Laboratory for Radiochemistry and Environmental Chemistry PSI



## Thank you for your attention!





## **Kinetic model of linear**



**Condition :** 

\* Simple reversible single step adsorption process i.e. No change of the chemical state during the process and no irreversible reaction with the surface or diffusion into the surface \* zero surface coverage / carrier free amounts = single atoms

**Frenkel-type adsorption kinetics:** gas transport through tubes:  $\tau_a = \tau_o^* \exp(-\Delta H_{ads}/RT)$ laminar flow phonon frequency of the surface material :  $\tau_{a}$  $\Delta H_{ads}$ -> sticking probability if needed for short-lived isotopes radioactive decay:  $t_{1/2}$ diffusion in the carrier gas else: t<sub>exp</sub> Gilliland's eqn.

Monte Carlo Simulation A. Serov Laboratory for Radiochemistry and Environmental Chemistry PSI

Zvara, I., Radiochim. Acta 38, 95 (1985).

 $u^{\scriptscriptstyle b}$ 

UNIVERSITÄT



## Model experiments with <sup>113m</sup>In, <sup>125</sup>Sb and <sup>125m</sup>Te

## <sup>113</sup>Sn/<sup>113</sup>mIn generator

**Q:** What is the radionuclide generator?

A: A radionuclide generator is a system which permits separation of a daughter radionuclide from its parent. Parent has a relatively long half-life compared with the daughter.



#### The Original <sup>99m</sup>Tc/<sup>99</sup>Mo Generator Without Shielding

- Parent: <sup>99</sup>Mo as molybdate (<sup>99</sup>MO<sub>4</sub><sup>-2</sup>)
- Daughter: <sup>99m</sup>Tc as pertechnetate(<sup>99m</sup>TcO<sub>4</sub>-)
- Adsorbent Material: Alumina (aluminum oxide,  $Al_2O_3$ )
- Eluent: saline (0.9% NaCl)
- Eluate: <sup>99m</sup>TcO<sub>4</sub>-

(c) Reproduced from http://www.nucmedicine.com