A new TASCA focal plane detector and data acquisition system

Alexander Yakushev (TU Munich) for TASCA Focal Plane Detector Working group

Monte-Carlo simulations

 $^{48}Ca + ^{238}U \rightarrow ^{283}112$ $\underline{DQ_hQ_v}$

Detector/RTC window size: $14 * 4 = 56 \text{ cm}^2$

Angular Acceptances: Horizontal Vertical Solid angle Transmission Horiz. image size Vert. image size Image area

± 80 mrad
± 46 mrad
≈ 12 msr
≈ 59 %
≈ 16 cm
≈ 3 cm
≈ 48 cm²

EVR distribution and detector size

A. Yakushev

TASCA detector group meeting

19.03.2007

A principal design of a new TASCA FPD

Stop detector:2 x DSSSD 72 x 48 mm² (1 mm pitch)Box:8 x SSSD72 x 48 mm² (8 strips)Veto:2 x SSSD72 x 48 mm² (8 strips)Efficiency of single alpha particle detecton72%

DSSSD and SSSD structures

DSSSD structure (p⁺ - v - n⁺)

Structure size "mechanical" Structure size "electronic" Active area Number of "X" strips Number of "Y" strips "X" Strip (p⁺ - anode) pitch "Y" Strip (n⁺ - cathode) pitch Total thickness of the structure Thickness of the v active layer

SSSD structure ($p^+ - v - n^+$)

Structure size Active area Number of strip Pitch Total thickness of the structure Thickness of the v active layer 77 x 56 mm 74 x 50 mm 72 x 48 mm 72 (front) 48 (back) 1 mm 1 mm 310 \pm 10 μ m 305 \pm 10 μ m

74 x 48 mm 72 x 46 mm 8 5,75 mm 500 \pm 20 μ m 495 \pm 20 μ m

Box – backward array detector

8 SSSD structures on Al₂O₃ ceramic Si 500 μm; 8 x 8 strips Beta resolution 8 kev (322 keV)

Cooled Cu frame

Al box

Veto (punch-through) detector

2 SSSD structures on AI_2O_3 ceramic Si 500 μ m; 2 x 8 strips

Final mounting and cabling

TASCA focal plane detector setup

In total:320 strips; stop detector: 6912 pixels 1 x 1 mm²

TASCA detector chamber & Ge cluster detector

A new data acquisition system

Hardware-preamplifiers

Signals from 320 detectors were amplified in 10 32-channel charge sensitive preamplifiers

Hardware – digital electronics

RIO4 – LinuxOS VULOM **TRIVA5** 3x 32-channel ADCs (CAEN) 4x 32-bit input registers (SIS) 8-channel flash ADC (SIS)

Complete system – final adjustment

Data acquisition software – MBS

MBS - a triggering system:

- Every input signal from the focal plane detector into an amplifier above low level discriminator generates a trigger signal
- All trigger signal are collected by "OR" → common trigger
- The trigger is accepted if the system is not "BUSY"
- The accepted trigger signal is a "LATCH" signal for all ADCs and registers and starts reading through the VME bus
 If the analog input signals into the ADCs are above a threshold they are digitized and read out
- The status of the registers and time from 1 MHz clock are read out
- The amplitudes from 8-channel flash ADC are read out

Analysis software – GO4

Online analysis and search for events

- Raw spectra from all ADC channels
- Decode ADC channel number and amplitude
- 640 unpacked single spectra
- 640 calibrated single spectra
- Sum spectra
- Spectra with conditions
- 2-dimensional spectra
- Checking and storing selected events
- Analysis and search for correlated events

Conclusions

The new focal plane detector for TASCA in HTM

- and the new data acquisition electronics are build and used in the experiment on the synthesis of element 114
- Use of the DSSSD detectors ensured the search for correlated events
- Reliable operation of detectors and electronics during a long beam time
- \circledast Combination with Ge detectors allowed search for $\alpha\text{-}\gamma$ correlations
- # Further developments of the MWPC detector are necessary