Direct Mass Measurements of Short-Lived Neutron-Rich Fission Fragments at the FSR-ESR Facility at GSI

M. Matos¹, Yu. N. Novikov², K. Beckert¹, P. Beller¹, F. Bosch¹, D. Boutin¹, T. Faestermann³, B. Franczyk¹, B. Franzke¹, H. Geissel^{1,4}, M. Hausmann⁵, E. Kaza¹, O. Klepper¹, H.-J. Kluge¹, C. Kozhuharov¹, K.-L. Kratz⁶, Yu. A. Litvinov¹, L. Maier², G. Münzenberg¹, F. Nolden¹, T. Ohtsubo⁷, A.N. Ostrowski⁶, Z. Patyk⁸, B. Pfeiffer⁶, M. Portillo¹, C. Scheidenberger¹, J. Stadlmann¹, M. Steck², D. Vieira⁴, H. Weick¹, M. Winkler^{1,4}, H. Wollnik⁴ and T. Yamaguchi¹

¹GSI, Darmstadt, Germany;
²St. Petersburg Nuclear Physics Institute, Gatchina, Russia;
³TU München, Garching, Germany;
⁴Justus-Liebig-Universität, Gießen, Germany;
⁵LANL, Los Alamos, USA;
⁶Institut für Kernchemie, Universität Mainz, Germany and VISTARS - HGF Virtual Institute for Nuclear Structure and Nuclear Astrophysics, Mainz;
⁷Riken, Saitama, Japan;
⁸Institute for Nuclear Studies, Warsaw, Poland

Masses of more than 280 neutron-rich isotopes have been measured in the Isochronous Mass Spectrometry (IMS) and 41 experimental mass values were determined for the first time. Fission of relativistic uranium projectiles in a beryllium target was used as a source for neutron-rich nuclei. They were separated in-flight with the fragment separator FRS, and injected into the storage ring ESR, that was operated in the isochronous mode as a high-resolution time-of-flight mass spectrometer. Highly-charged ions have been measured simultaneously as a mixture of nuclides with well-known masses and masses to be determined.

In this first production run a mass resolving power of 2.5×10^5 was achieved for ions with the best isochronicity. The uncertainties in mass determination reached a level between 140 and 400 keV. Although 93 Br with $T_{1/2}=102$ ms was the nuclide with the shortest known half-life, that we have observed, the method provides possibility to measure masses with half-lives as short as $100~\mu s$.

The region of the new masses is near the r-process path and our values are useful for predictions of the correct mass values for nuclides which form the r-process. Comparisons with various mass predictions show discrepancies growing towards the more exotic neutron-rich regions (see, e.g. Fig. 1). Masses of ¹⁰⁹Nb and ¹¹⁴Tc show deviation of 1.5 MeV from the extrapolations [1].

The measurement of fission products covered a large area of nuclides and showed the potential of the IMS technique. This pioneering experiment in the area of neutron-rich nuclides showed, that this region is not well described by present theories (see also B. Pfeiffer and K.-L. Kratz [5]). Therefore mass measurements of neutron-rich nuclides are an important task for nuclear structure physics and astrophysics.

References

- G. Audi, A.H. Wapstra, and C. Thibault, Nucl. Phys. A729, 337 (2003).
- [2] S. Goriely, J.M. Pearson, and F. Tondeur, At. data and Nucl. Data Tables 77, 311 (2003).

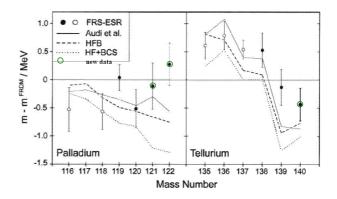


Figure 1: Comparison of measured masses of neutron-rich Palladium and Tellurium isotopes with the new mass evaluation of Audi et al. [1] and two recent mass models, HF+BCS [2] and HFB [3], respectively. Differences to the FRDM masses from Ref. [4] are displayed.

- [3] S. Goriely, M. Samyn, P.H. Heenen, J.M. Pearson, and F. Tondeur, Phys. Rev. 66, 024326 (2002).
- [4] P. Möller, J.R. Nix, W.D. Myers, and W.J. Swiatecki, At. Data and Nucl. Data Tables 59, 185 (1995).
- [5] B. Pfeiffer and K.-L. Kratz, this annual report