K.-L. Kratz¹, B. Pfeiffer¹, J.J. Cowan², and C. Sneden³

¹ Institut für Kernchemie, Mainz, Germany;

² Department of Physics and Astronomy, University of Oklahoma, USA

³ Department of Astronomy and McDonald Observatory, University of Texas, USA

We have examined in great detail problems and constraints associated with the Th/"third peak" and Th/U cosmochronometric pairs, such as uncertainties in the underlying atomic and nuclear physics (for references see, e.g. [2]). In part I of this report, we have examined the reproduction of the observed Pb and Bi r-abundances as a consistency check for our calculations of the "initial" isotopic or elemental abundances of the actinide chronometers Th and U [3].

Table 1 summarizes our recent results of Th/X ratios from r-abundance calculations assuming two different seed compositions, a) the classical Fe-seed and b) a Zr-seed [3]. Combined with recent Th/REE and Th/U observations in several ultra-metal-poor Halo stars, chronometric ages of about (14 ± 3) Gyr have been determined, which are in good agreement with other,

independent age determinations of the Universe.

Further progress in r-chronometric age determinations are expected from a combination of improved astrophysical calculations [4] and high-resolution optical spectroscopy of **isotopic** abundance ratios [5,6]. Such data would also allow to determine r/s-mixtures and with this the onset of s-process nucleosynthesis in the early galaxis.

References:

J.J. Cowan et al., ApJ 521 (1999) 194
K.-L. Kratz et al., New Astronomy Reviews 48 (2004) 105
K.-L. Kratz et al., this Annual Report
K. Farouqi et al., this Annual Report
K.-L. Kratz and B. Pfeiffer, *Nuclear Structure and Dynamics*, Hirschegg (2003) 276
B. Pfeiffer et al., Verhandl.DPG(VI)39, HK28.3 (2004)

Table 1: Abundance ratios of r-chronometer pairs using different fit criteria and seed compositions.

R-chronom. pair	Fe-seed				Zr-seed
_	Old fit [1]	New fit A	New fit B	${\rm Th}({\rm B})/{\rm X}_{\odot}$	New fit
Th/U-238	1.805(3)	1.557(11)	1.568(11)		1.475(1)
U-235/U-238	1.602(6)	1.464(14)	1.464(14)		1.758(2)
Th/Os	0.0990(24)	0.0980(11)	0.0927(14)	0.0750	0.0735(16)
Th/Ir	0.0923(19)	0.0948(30)	0.0890(31)	0.0703	0.0676(11)
Th/Pt	0.0239(6)	0.0255(11)	0.0235(11)	0.0360	0.0316(5)
$Th/3^{rd}$ peak	0.0159(4)	0.0167(6)	0.0155(6)	0.0181	0.0166(3)
Th/Eu	0.481(23)	0.530(23)	0.453(17)	0.422	0.479(18)

New fit A, B are least-square fits for $N_{r,\odot}$ in the mass ranges A=83-209 and A=125-209, respectively.