Fragment tracking with Si microstrip detectors*

M. Stanoiu^{1,2,#}, O.A. Kiselev^{1,3}, E. Cortina Gil⁴, J. Hoffmann¹, N. Kurz¹, W. Ott¹, A. Chatillon¹, M.Heil¹, and K. Sümmerer¹ for the R3B Collaboration

¹GSI, Darmstadt, Germany; ²IFIN-HH, Bucharest, Romania; ³Inst. f. Kernchemie, Univ. Mainz;

⁴CIEMAT, Madrid, Spain

The performance of a new set-up of double-sided silicon micro-strip detectors (DSSD) developed for the R3B project [1] has been investigated in a production run aimed at measuring two-proton fragmentation of ²⁰Mg and ¹⁷Ne [2].

To record simultaneously protons and the residual nuclei in micro-strip detectors requires both low-noise and wide-range integrated-circuit amplifiers. The present front-end electronics [3] uses VA64 hdr9 chips from IDE AS, Norway. The serialized differential linear output signals are fed into newly developed NIM modules (SIDEREM [4]) that digitize the signals, perform pedestal and common-noise subtraction and send the data via the GSI serial data bus (GTB) to a universal VME interface (SAM5) for integration into the standard GSI dataacquisition system, MBS.

Our experimental results show that both protons and heavy ions can be identified with good signal-to-noise ratio and high resolution. In Fig. 1 we show the energydeposition spectra of ions ranging from protons to Mg corrected for variations in the gain of the individual channels and in the charge-collection efficiency dependent on the inter-strip hit position. The correction is different for the junction (S) side and the ohmic (K) side.

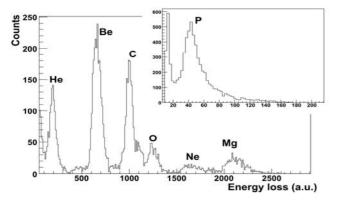


Figure 1: DSSD energy-loss spectrum, S-side. In the insert we show the proton spectrum detected in coincidence with ¹⁷Ne fragments obtained from ²⁰Mg break-up.

Due to capacitive coupling between neighbouring strips the width of a hit cluster (defined as the number of adjacent strips showing a charge collection above 2σ of the noise level) depends on the total energy deposited in a cluster, i.e., on the atomic number Z of the ion. In Fig. 2 we plot the observed cluster widths as a function of Z. It

m.stanoiu@gsi.de

is obvious that protons (which mostly fire a single strip) can be detected together with heavy ions only if they are well separated from the heavy-ion-peak centroid. The energy window for which the detectors show linear energy response is from minimum ionising particles up to 16 MeV for the K-side and 23 MeV for the S-side.

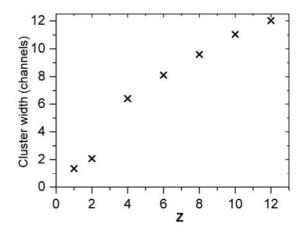


Figure 2: Cluster width as a function of Z.

The DSSD setup will be used in 2007 for astrophysical experiments (Coulomb breakup on Pb targets as timereversed p-capture) and for quasi-free-scattering experiments on CH₂ targets. In the latter case, four detectors form a box around the beam axis covering an angular range of 15 to 75 degrees to detect protons from both target and projectile in (p,2p) reactions. This detection system serves as a prototype for the R3B recoil detector, which will be composed of a two-layer Si-strip tracker enabling the use of extended, thick liquid-H targets for quasi-free-scattering experiments with low-intensity radioactive beams.

References

- [1] O.A. Kiselev et al., GSI Scientific Report 2005, FAIR-NUSTAR-R3B-01.
- [2] I. Mukha *et al.*, contribution to this report.
- [3] http://dpnc.unige.ch/ams/GSItracker/www.
- [4] J.Hoffmann et al., contribution to this report.

^{*} Work supported by EU, EURONS contract No. 506065.