Target Development for TASCA

K. Eberhardt¹, J. V. Kratz¹, D. Liebe¹, P. Thörle¹, W. Brüchle², Ch. E. Düllmann², W. Hartmann², A. Hübner², E. Jäger², B. Kindler², B. Lommel², M. Schädel², B. Schausten², E. Schimpf², A. Semchenkov^{2,6}, J. Steiner², K. E. Gregorich³, H.-J. Maier⁴, J. Szerypo⁴, R. Sudowe⁵, A. Türler⁶, A. Yakushev⁶

¹Johannes Gutenberg-Universität Mainz, Germany (UMZ); ²GSI, Darmstadt, Germany; ³Lawrence Berkeley National Laboratory, Berkeley, USA (LBNL); ⁴Ludwigs-Maximilians-Universität München, Germany (LMU); ⁵University of Nevada, Las Vegas, USA (UNLV); ⁶Technische Universität München, Germany (TUM)

The main components of the TransActinide Separator and Chemistry Apparatus TASCA are already installed and the separator is now in the commissioning phase. A first beam time took place in April 2006 and further commissioning experiments were performed in May and November 2006. An overview of the current status is given in separate contributions [1-3].

In previous target tests, thin C- and Ti-foils proved to be more stable when irradiated with intense ¹²C- and ²⁶Mgbeams compared to Al as a backing material. For the beam time in May a number of different targets materials have been applied, among them a set of ^{nat}Gd-targets produced by Molecular Plating at UMZ on a 5 µm Tibacking foil. These targets have been irradiated with a 1.43 μ A_{part} Cr^{/+}-beam. The targets withstood the irradiation without damage although the use of a relatively thick Ti-backing resulted in an increased background signal in the focal plane detectors. One main goal of the experiment in November was the test of different ²³⁸U-targets with an intense ⁴⁰Ar-beam. Two target wheels have been irradiated - TN4 and TN8 - both consisting of three different kinds of targets. Table 1 comprises the target specifications. The number on the left indicate a particular segment.

Target wheel TN4							
No.	Backing	Target	Cover				
1	C, 40 μ g/cm ²	539 μ g/cm ²	C, 10 μ g/cm ²				
2	Ti, 1.9 μm	$521 \mu\text{g/cm}^2$	C, 10 μ g/cm ²				
3	Ti, 1.9 μm	$532 \mu g/cm^2$	not covered				

	Table	1: ²³⁸ U	test-targets	for	TASCA
--	-------	---------------------	--------------	-----	-------

Target wheel TN8							
No.	Backing	Target	Cover				
1	C, 37 μ g/cm ²	539 μ g/cm ²	C, 10 μ g/cm ²				
2	Ti, 2.2 μm	$511 \mu\text{g/cm}^2$	C, 10 μ g/cm ²				
3	Ti, 2.2 μm	491 μ g/cm ²	not covered				

All targets have been delivered by the GSI target laboratory. Here, the U-layer has been produced by sputtering of depleted uranium in its metallic form with a ²³⁵U content less than 0.2%. In some cases the target material has been covered with a thin C layer in order to prevent losses of the target material during irradiation with the ⁴⁰Ar⁷⁺-beam of successively increasing intensity. After a certain beam integral was applied, the targets have been inspected to check for damage. Target wheel TN4 has first been irradiated for a total of 52'29" with increasing beam intensity up to 2 μ A_{part}. The target segments showed severe damage with holes and cracks. TN4 was then replaced by TN8 which was irradiated for 1h27'38" with increasing beam intensities up to 1 μ A_{part}. Figures 1 shows TN8 before and after irradiation, respectively. After irradiation segment 1 (C-backing) showed a visible whole, whereas segments 2 and 3 (Ti-backing) remained mechanically stable but show intense colour changes in the central part (see fig.1).

Figure 1: Target TN8 before (left) and after irradiation (right) with a 40 Ar-beam of 1 μ A_{part} maximum intensity.

Currently, the targets are further inspected by α -particle counting of the U-layer in order to check for material losses. Furthermore, the targets will be inspected by electron beam diagnostics and – if the activation products have decayed – by autoradiographic imaging [4] to check for losses and target homogeneity.

At UMZ work is currently under way to find optimum conditions for the deposition of 244 Pu (up to 500 µg/cm²) on 2 µm thin Ti backing foils by Molecular Plating from isobutanolic solution. 244 Pu is of special interest as a target material for chemical investigations of the heaviest elements, since relatively long lived isotopes of Rf to Hs - with half-lives in the order of a few seconds - can be produced in the bombardment of a 244 Pu target with beams ranging from 22 Ne up to 30 Si. 244 Pu is also the optimum target for production of Z=114 with a 48 Ca beam.

References

- [1] M. Schädel et al., contributions to this report
- [2] Ch. E. Düllmann et al., contributions to this report
- [3] A. Yakushev et al., contribution to this report
- [4] D. Liebe et al., contribution to this report

See also http://www.gsi.de/TASCA