NOVEL SYNTHESIS OF [18 F]FE1-MDL 100907, A POTENTIAL 5-HT_{2A} ANTAGONIST

M Herth, M Piel, P Riß, F Rösch Institute of Nuclear Chemistry, Johannes Gutenberg-University Mainz, D-55128 Mainz, Germany

Introduction: Serotonergic 5-HT_{2A} receptors are of central interest in the pathophysiology of schizophrenia and other diseases¹. The serotonergic receptor antagonist [¹¹C]MDL 100907 shows high affinity and selectivity for 5-HT_{2A} receptors *in vitro* and *in vivo*². The K_i values are more than 100 fold higher for other receptors such as 5-HT_{2C}, α₁, D₁, D₂. It has also been proposed that the selectivity of [¹¹C]MDL 100907 is better than the selectivity of [¹⁸F]altanserin³. Nevertheless, up to now any ¹⁸F-derivatives of MDL 100907 exist. The aim of this study was to develop ¹⁸F-analogs of MDL 100907.

Experimental: The synthetic route for the ¹⁸F-labelling precursor MDL 105725 (**1**) via a key transformation of an ester to a keton via a Weinrebamide intermediate (**2**) was carried out as published by Huang et al. (1999)² with some modifications. The fluoroalkylation of the precursor was conducted in dry DMF by addition of sodium hydride and 1-bromo-2-fluoroethane (Fig. 1). The [¹⁸F]fluoroalkylation of MDL 105725 was carried out with [¹⁸F]FETos, produced in a selfmade module, in try DMF at 100°C and in less than

Figure 1: Syntheses of FE1-MDL 100907 and MDL 105725

15 minutes (Fig. 2). The final compound 4

[18F]FE1-MDL 100907 ([3-(2-[18F]fluoro-ethoxy)-

A) PBr3, Toluene B) K_2CO_3 , DMF C) Me(MeO)NH HCl, EtMgBr, THF D) n-BuLi, THF, TBDPS-guajacol E) NaBH4, MeOH F) K_2CO_3 , MeOH, H_2O G) [18 F]FETos, DMF, 100° C

2-methoxy-phenyl]- $\{1-[2-(4-fluoro-phenyl)-ethyl]$ -piperidin-4-yl $\}$ -methanol) was purified by HPLC (ET 250/8/4 Nucleosil ® 5 C_{18} ; MeCN / H_2O 40:60, R_f = 8.68 min).

Results and Discussion: Synthesis of the precursor MDL 105725 was carried out in yields of > 15%, whereas the final product FE1-MDL 100907 (3) was obtained in 40% yield. The labelled compound [18 F]FE1-MDL 100907 (4) could be obtained in > 80% yield. Separation of the compounds, i.e. MDL 105725 (R_f = 4.6 min), [18 F]FETos (R_f = 19.2 min) and [18 F]FE1-MDL100907 (R_f = 8.7 min) via HPLC was very efficient.

Conclusion: The new labelled compound [18 F]FE1-MDL 100907 was synthesized in high radiochemical yields of about 80% and high purity. In addition, an enantioselective synthesis is underway as in the case of MDL 100907 the Renantiomer shows a 100-fold higher affinity to the 5-HT_{2A} receptor subtype⁴.

Autoradiographic experiments and evaluation of FE1-MDL 100907 and [¹⁸F]FE1-MDL 100907 are planed.

Figure 2: Radiosynthesis of [18F]FE1-MDL 100907

Kristiansen et al. (2005), Binding Characteristics of the 5-HT_{2A} Receptor Antagonists Altanserin and MDL 100907, Synapse 58: 249 - 257

Huang et al. (1999), An Efficient Synthesis of the Precursors of [11C]MDL 100907 Labeled in Two Specific Positions, J. Labelled Cpd. 42: 949 - 957

Meltzer et al. (1998), Serotonin in Aging, Late-Life Depression, and Alzheimer's Disease, Neuro-psychopharmacology 18: 407 - 430

Heinrich et al. (2006), 1-(1-Phenethylpiperidin-4-yl)-1phenylethanols as Potent and Highly Selective 5HT_{2A} Antagonists, Chem. Med. Chem. 1: 245-255