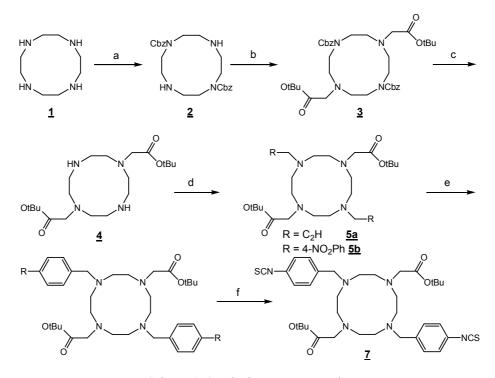
SYNTHESIS OF OF TWO CYCLEN BASED BIFUNCTIONAL ⁶⁸Ga CHELATORS WITH ORTHOGONAL CONJUGATION REACTIVITY

P J Riß¹, C Kroll¹, O Koehler¹, S Anderhub¹, J Peters² and F Roesch¹

¹Institute of Nuclear Chemistry, Mainz University, Fritz Strassmann-Weg 2, 55128 Mainz, Germany; ²Institute of Organic Chemistry und Catalysis, TU Delft, Julianalaan 136, 2628 BL Delft, The Netherlands

Introduction and aim: Easily available generator derived ⁶⁸Ga offers a remarkable potential for clinical applications of PET. To reinforce the flow of novel tracer candidates to biological evaluation, a convenient, time efficient route to chelator conjugated potential targeting vectors would be desirable. The macrocyclic chelators NOTA and DOTA have emerged as frequently considered alternatives for the introduction of a ⁶⁸Ga-tag. Although both have been conjugated to a variety of targeting vectors (TV), eight-coordinate DOTA remains the most frequently used. Making use of two redundant pendant arms in six coordinate Ga(III)-DOTA complexes, we developed an approach towards dimeric conjugates, assembled from two targeting vectors and one Chelator unit.

Experimental: 1,7-tBu-DO2A $\underline{4}$ was synthesised in 86% yield via the route of Kovacs et al.[1]. $\underline{4}$ was reacted subsequently with either 4-nitrobenzyl bromide or propargyl chloride to obtain <u>5a-b</u>. Reduction of <u>5b</u> following Zinin's procedure or employing Pd/C under alkaline conditions furnished <u>6b</u>. <u>6b</u> was reacted subsequently with 2 eq. of thiophosgen to obtain acceptor conjugated chelator <u>7</u> in a yield of 47 % over 6 steps. ⁶⁸Ga labelling of both chelators was performed after deprotection in TFA and purification via ion exchange chromatography. Stability of both chelators


was determined in a DTPA challenge experiment at 40° C.

Results and **Discussion:** With 1,7-bis-tertbutoxycarbonylmethyl-4,10-bis-(propargylyl)-1,4,7,10tetraaza-cvclododecane 1,7-bis-tert-6a and butoxycarbonylmethyl-4,10-bis-(4-isothiocyanatobenzyl)-1,4,7,10-tetraaza-cyclododecane 7 two novel bifunctional chelators have been synthesised in acceptable yield. Both chelators contain functional groups for orthogonal conjugation of TVs under mild and efficient conditions. ⁶⁸Ga was incorporated in a yield of 65 ±7 % at 90 °C in water. Both chelates remained stable for 2 h in a DTPA challenge experiment.

Conclusion: Both novel compounds <u>5a</u> and <u>7</u> can be employed as building blocks in a convergent approach to large tables of chelator-[spacer]-TV conjugates. 68 Ga-labelled chelators were obtained in good yield under standard conditions, indicating adequacy as radiolabel.

References:

[1] Kovacs, Zoltan; Sherry, A. Dean; J. Chem. Soc. Chem. Comm. (1995), (2), 185 f.

Scheme 1: Synthetic route to <u>5a</u> and <u>7</u>