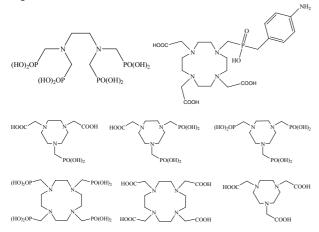
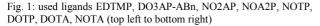
Phosphonate complexes of Gallium-68 for bone tumor imaging

M. Fellner¹, P. Riß¹, N. Loktionova¹, K. Zhernosekov¹, I. Lukeš², C. F. Geraldes³, F. Rösch¹


Nuclear Institute, Johannes Gutenberg University of Mainz, Fritz Strassmann Weg 2, 55128 Mainz, Germany
² Department of Inorganic Chemistry, Charles University, Hlavova 2030, 12840 Prague, Czech Republic
³ Department of Biochemistry, FCT, University of Coimbra, 3049 Coimbra, Portugal


Introduction: As ^{99m}Tc-phosphonates are well established tracers for the diagnoses of bone metastases using SPECT, analogue attempts for PET using the Germanium-68/Gallium-68 generator based ⁶⁸Ga tracers would be potentially useful. Therefore molecules / ligands containing phosphonate structures with binding affinities to hydroxyapatite and being adequate complexing agents for trivalent Gallium could be considered as interesting targeting vectors for the synthesis of generator-based PET-tracers for skeletal imaging. The aim of the study was to synthesize complexes with different types of phosphonate ligands in order to understand the rational of ⁶⁸Ga-phosphonates related to apatite binding.

Experimental: Germanium-68 ($T\frac{1}{2} = 270.95$ d) provides the positron emitter Gallium-68 ($T\frac{1}{2} = 67.7$ min) as an easily available and relatively inexpensive source of a PET nuclide for labeling interesting targeting vectors. Germanium-68 is fixed on a solid phase of titanium dioxide. Through HCl Gallium-68 is eluted from the generator and immobilized on an acidic cation exchanger. Impurities such as zinc, iron and titanium as well as ⁶⁸Ge generator breakthrough are removed by a special mixture of acetone and hydrochloric acid (N1). Subsequently, ⁶⁸Ga is eluted in 400 µL of a second mixture of acetone and HCl (N2) from the cation exchanger.¹

As proof-of-concept, the phosphonate ligands EDTMP (Ethylenediaminetetra(methylene phosphonic acid)), DOTP (1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetra(methylene phosphonic acid)), and DO3AP-ABn (1,4,7,10-Tetraazacyclododecane-4,7,10-triacetic-1-{methyl[(4-

aminophenyl)methyl)]phosphinic acid}), have been selected. Beside these the following ligands NOTA, NO2AP, NOA2P, NOTP and DOTA were also tested. Compounds NOTA, NO2AP, NOA2P, NOTP and DOTP have been obtained from C. F. Geraldes, DO3AP-ABn from I. Lukeš and EDTMP from Sigma-Aldrich.

 68 Ga labeling is performed in 400 µL 0.12 M Na-HEPES buffer by adding the 68 Ga fraction of N2. Through variation of reaction time, temperature, pH and different amounts of the ligands, optimum reaction parameters for complex formation were tested. Analyses of radiochemical yield are carried out by TLC on cellulose using two liquids (A: water:ethanol:pyridine 4:2:1; B: isotonic saline). Binding studies on synthetic hydroxyl apatite Hap were carried out to simulate the binding of the different complexes ⁶⁸Ga-phosphonates to bone structures.

Results and Discussion: The elution of ⁶⁸Ga from the generator and the on line-processing of the eluate are performed within five minutes only. Labeling proceeds at temperatures between 25-60°C within 2-10 min in a total volume of 800 μ L. Ligands are used in nanomole amounts only and the radiochemical yields are 50 to 95%. The most promising complex concerning synthesis is ⁶⁸Ga-EDTMP with a radiochemical yield of 95% in 5 min. More precise results were presented in literature.²

Hydroxyapatite binding assays show strong and fast binding of 68 Ga-EDTMP and 68 Ga-DOTP (> 90% within 10 min), while 68 Ga-DO3AP-ABn is not binding. As proof of concept, nonephosphonate ligands were tested too and showed the expected results of no binding. The triazacyclononane phosphonate derivatives show an ascending binding to HAp with increasing number of phosphonate groups (8%, 12% and 55% for NO2AP, NOA2P and NOTP) but still much lower than 68 Ga-EDTMP or DOTP.

⁶⁸Ga-EDTMP and ⁶⁸Ga-DOTP were tested in vivo with good results for ⁶⁸Ga-EDTMP. Due to low radiochemical yield, the ⁶⁸Ga-DOTP PET image obtained showed uptake on bone but with worth statistics.

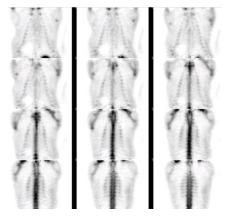


Fig. 2: Bone uptake ⁶⁸Ga-EDTMP, 1.7 mg ligand, 73 MBq injected into the tail veine of a wistar rat, 0.7 mL injected volume, coronal slices for 30-60 min p.i,

Conclusion: Syntheses of 68 Ga complexes are performed within 20 minutes after elution of the generator. First evaluations on synthetic apatite show high binding in a short time for both 68 Ga-EDTMP and the macrocyclic 68 Ga-DOTP. μ -PET imaging on wistar-rats demonstrated bone uptake *in vivo* for 68 Ga-EDTMP and 68 Ga-EDTMP.

Interestingly, phosphonate functionalities at chelate ligands are not a guarantee for fast and high binding to HAp. Probably at least one free phosphonate group is required.

References

- K.P. Zhernosekov, D.V. Filosofov, R.P. Baum, P. Aschoff, H. Bihl, A.A. Razbash, M. Jahn, M. Jennewein, F. Rösch., Processing of generator-produced ⁶⁸Ga for medical application. J Nucl Med. 48 (2007) 1741-1748
- [2] M. Fellner, P. Riß, N. Loktionova, K. Zhernosekov, F. Rösch, ex vivo-Untersuchung phosphonathaltiger ⁶⁸Ga-Komplexe an Apatit, Jahresberichte 2006 – Institut für Kernchemie