140-Praseodym: A potential radionuclide for perfusion measurements ?

Buchholz H-G², Filosofov D³, Zhernosekov KP⁴, Hauser H⁶, Thews O⁵,

Schreckenberger M², Rösch F¹

¹Institute of Nuclear Chemistry, University of Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz; ²Clinic of Nuclear Medi-

cine, Langenbeckstr. 1, 55131 Mainz University, Mainz; ³Joint Institute of Nuclear Research, Laboratory of Nuclear

Problems, Dubna, Russian Federation, ⁴Institute of Radio Chemistry, LM University Munich, Munich; Germany,

⁵Institut für Physiologie und Pathophysiologie, Mainz,

⁶German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany

Objectives: In research application O-15 water has been used for many years to assess cerebral and myocardial perfusion with PET. Generally, radioisotopes with short half-lifes can be considered to be used as perfusion markers. However, due to the short half-life i.e. 2 min for O-15, this tracers can only be used in PET centers with onsite cyclotron. 140-Praseodym (¹⁴⁰Pr, halflife 3.39 min) as daughter radioisotope from 140-Neodym (¹⁴⁰Nd, half-life: 3.37 d) can be produced in a generator system and therefore used in PET lacking a nearby cyclotron. Aim of this study was to evaluate the feasibility of ¹⁴⁰Pr for perfusion studies in rats using small animal PET scanner.

Methods: ¹⁴⁰Pr was derived from a ¹⁴⁰Nd/¹⁴⁰Pr radionuclide generator as published [1]. ¹⁴⁰Nd was produced at the DKFZ Heidelberg cyclotron via ¹³⁹Pr(p,2n) reaction on Praseodym metal.

3 male SD rats were scanned with the microPET Focus 120 small animal PET scanner. ¹⁴⁰Pr was eluted with about 0.5 ml of 10⁻³ M DTPA from the ¹⁴⁰Nd/¹⁴⁰Pr generator and immediately injected into the jugular vein. Dynamics were started simultaneously with tracer injection of about 5-10 MBq ¹⁴⁰Pr-DTPA. 10-min scans were derived from brain and body areas. Additionally, tumor perfusion of one rat bearing DS sarcoma on both hind foot dorsum was imaged.

Results: Imaging of the abdominal area showed that ¹⁴⁰Pr-DTPA was rapidely washed out by the kidneys. Time-activity curves of brain and neck regions-ofinterests demonstrate that ¹⁴⁰Pr-DTPA did not enter the blood-brain barrier (BBB) (Fig. 1). Due to the limited activity the reconstructed images were noisy and perfusion could not properly quantified.

Fig. 1: Time-activity curves of the brain and of the neck and shoulder area (unspecific)

On the other hand, perfusion of the tumor was visible, cf. Fig. 2. TAC are illustrated in Fig. 3.

Fig. 2: Coronal (left) and transversal (right) μ -PET sum imaging of ¹⁴⁰Pr-DTPA accumulation in a DS-tumor bearing rat

Fig. 3: Time-activity curves for the two tumors and the tail region (unspecific)

Conclusions: ¹⁴⁰Pr-DTPA failed to measure brain perfusion as the complex is not passing the BBB. Brain tumor imaging may, however, be an option due to the damaged BBB of the tumors.

Remarkable tumor perfusion in DS sarcoma was detected, demonstrating that ¹⁴⁰Pr-DTPA eluted from the ¹⁴⁰Nd/¹⁴⁰Pr generator indicates regional tumor perfusion. Further perfusion studies with much more ¹⁴⁰Pr-DTPA activity resulting in better count statistics are needed to validate these findings.

References

[1] KP Zhernosekov, DV Filosofov, SM Qaim, F Rösch. A ¹⁴⁰Nd/¹⁴⁰Pr radionuclide generator based on physico-chemical transitions in ¹⁴⁰Pr complexes after electron capture decay of ¹⁴⁰Nd-DOTA. Radiochim Acta 95 (2007) 319-327