A CONSTRUCTION OF *Q*-GORENSTEIN SMOOTHINGS OF INDEX TWO

THEO DE JONG and DUCO VAN STRATEN

Fachbereich Mathematik Universität Kaiserslautern Pf. 3049 D-6750 Kaiserslautern Germany

Received 6 August 1991 Revised 10 December 1991

Introduction

The notion of Q-Gorenstein smoothings has been introduced by Kollár, [5. 6.2.3]. This notion is essential for formulating Kollár's conjectures on smoothing components for rational surface singularities. He conjectures, loosely speaking, that every smoothing of a rational surface singularity can be obtained by blowing down a deformation of a partial resolution, this partial resolution having the property (among others) that the singularities occuring on it all have qG-smoothings. (For more details and precise statements see [5, ch. 6].) It is therefore of interest to construct singularities having qG-smoothings. Let us recall the definition:

Definition. [5] Let X be a reduced surface singularity with X-{x} Gorenstein. Let $X_T \to T$ be a one parameter smoothing. The smoothing is called Q-Gorenstein (qG for short) if some multiple of the canonical class of X_T is Cartier. X is called a qG-singularity if there exists a qG-smoothing of X.

The smallest natural number k such that k times the canonical class is Cartier is called the index. It is proved in [5, 6.2.4] that the index of X_T for a qG-smoothing of X is the same as the index of X. It should be remarked here that a qG-singularity can have more than one "essentially different" qG-smoothings. This will follow from our construction, but there is also an unpublished example of Wahl.

In this article we construct qG singularities of index 2.

The construction is motivated by a paper of Jan Stevens [7] in which he proves Kollár's conjectures for rational singularities of multiplicity four.

The paper is organized as follows. In Sec. 1 we show that the qG-condition on a smoothing is equivalent to the flatness of $\omega_X^{[1-r]}$ where r is the index of the singularity X. In Sec. 2 we consider the case r = 2. The flatness of $\omega^{[-1]} = \omega^*$ is equivalent to the flatness of $\int I/I^2$, by a result of [2]. Here I is the ideal of the reduced singular locus of a generic projection of X in \mathbb{C}^3 . In Sec. 3 this is used to formulate a result that relates qG-components of different singularities of index smaller or equal to two which have

341

International Journal of Mathematics Vol. 3, No. 3 (1992) 341–347 © World Scientific Publishing Company projections with the same singular locus Σ . Finally, in Sec. 4 we give some examples illustrating these results.

Acknowledgement

We thank J. Stevens and J. Kollár for suggestions, and T. Nüßler for making the pictures.

The first author is supported by a Stipendium of the E. C. (SCIENCE project). Part of the work was done during a visit of the first author to the University of Utah.

1. Q-Gorenstein smoothings

Definition 1.1. A one parameter deformation $X_T \to T$ of a (germ of a) Cohen-Macaulay space X is called $\omega^{[k]}$ -constant if the natural restriction map

$$\omega_{X_T}^{[k]} \otimes \mathcal{O}_X \to \omega_X^{[k]}$$

is surjective (and hence an isomorphism). (Here $\omega_X^{[k]} = (\omega_X^{\otimes k})^{**}$ if k is positive and $\omega_X^{[k]} = \operatorname{Hom}_X(\omega_X^{[-k]}, \mathcal{O}_X)$ if k is negative; note that one has $(\omega_X^{[n]} \otimes \omega_X^{[m]})^{**} = \omega_X^{[n+m]}$ for all n and m.) So for k = -1 this is the same as ω^* -constancy, as defined by Wahl [8].

Lemma 1.2. Let X be a normal surface singularity of index r. Then a one parameter smoothing $X_T \to T$ of X is qG if and only if it is $\omega^{[1-r]}$ constant.

Proof. Let us assume that the deformation is $\omega^{[1-r]}$ constant. In order to show that the smoothing is qG we have to extend an isomorphism:

$$\mathcal{O}_X \to \omega_X^{[r]}$$

to the relative situation. Tensoring this with $\omega_X^{[1-r]}$ and taking reflexive hulls this can be translated to lifting an isomorphism

$$\varphi: \omega_X^{[1-r]} \to \omega_X$$

to an isomorphism over T. The $\omega^{[1-r]}$ -constancy gives us an exact sequence

$$0 \to \omega_{X_r}^{[1-r]} \xrightarrow{i} \omega_{X_r}^{[1-r]} \to \omega_{X_r}^{[1-r]} \to 0.$$

Because the depth of $\omega_X^{[1-r]}$ is two, it follows that the depth of $\omega_{X_T}^{[1-r]}$ is three, and so $\operatorname{Ext}^1(\omega_{X_T}^{[1-r]}, \omega_{X_T}) = 0.$

From this fact we deduce the exact sequence

$$0 \rightarrow \operatorname{Hom}(\omega_{\chi_{\tau}}^{[1-r]}, \omega_{\chi_{\tau}}) \rightarrow \operatorname{Hom}(\omega_{\chi_{\tau}}^{[1-r]}, \omega_{\chi_{\tau}}) \rightarrow \operatorname{Hom}(\omega_{\chi}^{[1-r]}, \omega_{\chi}) \rightarrow 0.$$

Hence we can lift φ to a map $\varphi_T : \omega_{X_T}^{[1-r]} \to \omega_{X_T}$. Let K (resp. C) be the kernel (resp. the

cokernel) of φ_T . Because φ is an isomorphism one deduces from the snake lemma that $K \xrightarrow{t} K$ and $C \xrightarrow{t} C$ are both isomorphisms. So by Nakayama K and C are zero, and therefore φ_T is an isomorphism.

The proof of the converse is similar and will be omitted.

2. Triple Points of Projections

In the case that the index of X is two, we have $\omega^{[1-r]} = \omega^*$. In [2] the ω^* -constancy of a deformation is related to the triple points of a generic projection to \mathbb{C}^3 . In order to formulate this result we consider the following situation:

X: a (multi-) germ of a Cohen Macaulay surface singularity.

Y: the image of X under a generically 1-1 map to \mathbb{C}^3 .

 $I_{Y} = \operatorname{Hom}(\mathcal{O}_{X}, \mathcal{O}_{Y}) \subset \mathcal{O}_{Y} \subset \mathcal{O}_{X}$, the conductor.

 Σ : the subvariety of Y defined by I_{Y} . We assume Σ to be *reduced*.

 Δ : the subvariety of X defined by I_{y} .

It is proved in [2] that under these circumstances one has $\mathcal{O}_X = \operatorname{Hom}_Y(I_Y, I_Y)$, so $X \to Y$ is determined by the pair $\Sigma \subset Y$. Introduced in [1] is the functor of admissible deformations $\operatorname{Def}(\Sigma, Y)$ and in [2] it is proved that there is a natural equivalence between $\operatorname{Def}(\Sigma, Y)$ and $\operatorname{Def}(X \to Y)$. In particular any deformation of $X \to Y$ induces a deformation of Σ .

Proposition 2.1. [2, (2.1)] Let $X_T \to Y_T$ be a one parameter deformation of $X \to Y$ over T, and $\Sigma_T \to T$ the induced one parameter deformation of Σ . Then:

$$\dim(\operatorname{Cok}(\omega_{X_T}^* \otimes \mathcal{O}_X \to \omega_X^*)) = \dim\left(\operatorname{Cok}\left(\int I_T/I_T^2 \otimes \mathcal{O}_\Sigma \to \int I/I^2\right)\right).$$

Here $\int I = \{f \in I : J(f) \subset I\}$ and similar for $\int I_T$.

In particular, a deformation of X is ω^* -constant if the induced deformation of the curve is " $\int I/I^2$ -constant". We remark that if X is Gorenstein and we have a so-called disentanglement of Y, (see [3]), then dim($\int I/I^2$) equals the number of triple points ([6], [2, 2.2]).

Corollary 2.2. A rational surface singularity of multiplicity four and index two is a qG-singularity.

Proof. By Lemma 1.1 it is enough to show that every rational quadruple point has an ω^* -constant smoothing. This is stated as Corollary (2.5) of [2], but no proof was given.

A generic projection Y of X has as reduced singular locus a curve Σ of multiplicity three and type two. $\int I/I^2$ is a cyclic module generated by the class of a certain $\Phi \in \int I$.

I: the ideal in $\mathcal{O}_{\mathbb{C}^3}$ of Σ .

Let f = 0 be a defining equation for Y, and let $f_t = f + t\Phi(t \text{ small})$. Then $Y_t := (f_t = 0)$ has smooth normalization. For all these facts we refer to [4, Sec. 1].

As the singular locus of Y_t is Σ for all t, $\Sigma \subset Y_t$ can be seen as an admissible deformation of $\Sigma \subset Y$. Because Σ is not deformed at all, this is $\int I/I^2$ -constant. So the induced deformation of X is a smoothing and is ω^* -constant by (2.1).

This corollary was proved by J. Stevens [7], who used a different method.

3. The Construction

In this paragraph we compare surfaces which have projections as in Sec. 2 with the same Σ . We fix the notation in the following

Diagram 3.1

 $\begin{array}{cccc} X_1 \supset \Delta_1 & \Delta_2 \subset X_2 \\ \downarrow & \downarrow & \downarrow & \downarrow \\ \{f_1 = 0\} = & Y_1 \supset \Sigma = = = & \Sigma \subset & Y_2 = \{f_2 = 0\} \end{array}$

Furthermore, let I_k be the ideal of Σ in \mathcal{O}_{Y_k} , k = 1, 2.

Proposition 3.2. Suppose $\int I/I^2$ is a cyclic \mathcal{O}_{Σ} -module. Then there is a 1-1 correspondence between ω^* -constant smoothing components of X_1 and X_2 . Moreover, corresponding components are isomorphic up to a smooth factor.

Proof. Let $f \in \int I$ project onto a generator of $\int I/I^2$, and let $X_{1,t}$ be an ω^* -constant smoothing of X_1 . By projection we get an admissible deformation $\Sigma_t \subset Y_{1,t}$. We can assume that $Y_{1,t} = \{f_{1,t} = 0\}, t \neq 0$, has only pinch points and triple points, and so the deformed curve $\Sigma_t, t \neq 0$ only has triple points. By assumption, we can write $f_k = q_k \cdot f + r_k, k = 1, 2,$ and $r_k \in I^2$. As the deformation of X_1 is ω^* -constant, the deformation of Σ is $\int I/I^2$ -constant by 2.1, so we can lift f to an $f_t \in \int I_t$. Now define $f_{2,t} = q_{2,t} \cdot f_t + r_{2,t}$, where $q_{2,t}$ is a generic perturbation of $q_2, r_{2,t} \in I_t^2$ is a general perturbation of r_2 and put $Y_{2,t} = \{f_{2,t} = 0\}$. Now the singular locus of $Y_{2,t}$ is Σ_t and by openness of versality we may assume that the normalization $X_{2,t}$ of $Y_{2,t}$ is smooth. By Proposition 2.1 $X_{2,t}$ is an ω^* -constant smoothing of X_2 . The fact that these components are isomorphic up to a smooth factor follows from the principle of I^2 -equivalence [1, 1.16].

Proposition 3.3. Suppose the ideal (f_1, f_2) defines a multiplicity four structure on Σ . Then X_1 and X_2 have index ≤ 2 .

Proof. Because Y_1 and Y_2 are both singular along Σ , it follows from the assumption that the pullback of f_m on X_k vanishes with multiplicity exactly two along Δ_k ($m \neq k$) and nowhere else. Hence we get an isomorphism $\mathcal{O}_{X_k} \to I_k^{[2]}$, and as I_k is a canonical ideal we are done.

Theorem 3.4. Suppose that (f_1, f_2) defines a multiplicity four structure on Σ and that $\int I/I^2$ is a cyclic \mathcal{O}_{Σ} -module. Suppose that X_1 and X_2 are normal. Then there is a 1-1 correspondence between qG-components of X_1 and X_2 . Moreover, corresponding components are isomorphic up to smooth factors.

Proof. Combine 3.2, 3.3, and 1.1.

Remark 3.5. In case that X_1 is Gorenstein, we already mentioned that $\int I/I^2$ is a cyclic module generated by the class of f_1 . Moreover, the \mathcal{O}_{X_1} ideal I_1 is principal. Any $g \in I$ whose class in I_1 is a generator we call an adjoint, and the surface $\{g = 0\}$ an adjoint surface of Y_1 . Now $f_2 = q \cdot f_1 + u \cdot g^2, q \in \mathcal{O}_{\mathbb{C}^3}$ and u a unit satisfies the condition of 3.3. So in this situation one can apply Theorem 3.4. Remark that the qG-components of X_1 are simply smoothing components and also the condition of normality of X_1 can be dropped.

4. Examples

Example 4.1. Let $f_1 = xyz$, $Y_1 = \{f_1 = 0\}$ and let $X_1 = \mathbb{C}^2 \coprod \mathbb{C}^2 \coprod \mathbb{C}^2$ be the normalization of Y_1 . Then I = (xy, yz, zx). X_1 is obviously Gorenstein and g = xy + yz + zx can be taken as an adjoint of Y_1 . We see that $f_2 := (xy)^2 + (yz)^2 + (zx)^2 \equiv g^2 \mod(f_1)$, so we can apply Theorem 3.4 to conclude that the normalization X_2 of $Y_2 = \{f_2 = 0\}$ is a *qG*-singularity. Of course, this is well-known, as X_2 is just the cone over the rational normal curve of degree 4.

On the other hand, we can take $f_2 := (xy + yz + yx)^2 + xyz \cdot (x^2 + y^2 + z^2) \equiv g^2 \mod(f_1)$ and apply 3.4 to conclude that X_2 , which has

as dual resolution graph, is a qG-singularity.

Example 4.2. Let $f_1 = L_1L_2...L_k$ where L_i is a linear form in x, y and z representing different planes in \mathbb{C}^3 . Let $Y_1 = \{f_1 = 0\}$ and $X_1 = \coprod_{i=1}^k \mathbb{C}^2$ be the normalization of Y_1 . We consider equations of the form $f_2 = L \cdot f_1 + r$, where r is a general element of I^2 , the corresponding $Y_2 = \{f_2 = 0\}$ and their normalizations X_2 . As X_1 is Gorenstein these X_2 are all qG-singularities by 3.4 and 3.5. The case k = 3 was discussed in 4.1. For all cases that can occur for k = 4 we give pictures of $L \cdot f_1 = 0$ in the projective plane (the dashed line is L = 0, the solid ones $f_1 = 0$), and the corresponding dual resolution graphs. Furthermore we give the dual graph of the resolution for arbitrary k and L general.

References

- 1. T. de Jong and D. van Straten, A deformation theory for nonisolated singularities, Abh. Math. Sem. Hamburg 60 (1990), 177-208.
- 2. T. de Jong and D. van Straten, Deformations of the normalization of hypersurfaces, Math. Ann. 288 (1990), 527-547.
- 3. T. de Jong and D. van Straten, *Disentanglements*, Singularity Theory and its Applications, Warwick 1989, Vol. 1, ed. D. Mond and J. Montaldi, Lecture Notes in Mathematics 1462, pp. 199-211.
- 4. T. de Jong and D. van Straten, On the base space of a semi-universal deformation of rational quadruple points, Ann. of Math. 134 (1991), 653-678.
- 5. J. Kollár, Flips, flops, minimal models etc., Surv. in Diff. Geom. 1 (1991), 113-199.
- 6. D. Mond and R. Pellikaan, *Fitting ideals and multiple points of analytic mappings*, Algebraic Geometry and Complex Analysis, Proceedings 1987, ed. Ramires de Arelleno, Lecture Notes in Mathematics **1414**, Springer, 1990.
- 7. J. Stevens, Partial resolutions of rational quadruple points, Internat. J. Math. 2(1991), 205–221.
- 8. J. Wahl, Elliptic deformations of minimally elliptic singularities, Math. Ann. 253 (1980), 241-262.