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Introduction 

The notion of Q-Gorenstein smoothings has been introduced by Kollar, [5. 6.2.31. 
This notion is essential for formulating Kollar's conjectures on smoothing components 
for rational surface singularities. He conjectures, loosely speaking, that every smoothing 
of a rational surface singularity can be obtained by blowing down a deformation of a 
partial resolution, this partial resolution having the property (among others) that the 
singularities occuring on it all have qG-smoothings. (For more details and precise 
Statements see [5, ch. 61.) It is therefore of interest to construct singularities having 
qG-smoothings. Let us recall the definition: 

Definition. [5] Let X  be a reduced surface singularity with X - { X )  Gorenstein. Let 
X,.  + T be a one Parameter smoothing. The smoothing is called Q-Gorenstein (qG for 
short) if some multiple of the canonical class of X ,  is Cartier. X  is called a qG- 
singularity if there exists a qG-smoothing of X .  

The smallest natural number k such that k times the canonical class is Cartier is 
called the index. It is proved in [5,6.2.4] that the index of X ,  for a qG-smoothing of 
X  is the same as the index of X .  It should be remarked here that a qG-singularity can 
have more than one "essentially different" qG-smoothings. This will follow from our 
construction, but there is also an unpublished example of Wahl. 

In this article we construct qG singularities of index 2. 
The construction is motivated by a paper of Jan Stevens [7] in which he proves 

Kollar's conjectures for rational singularities of multiplicity four. 
The paper is organized as follows. In Sec. 1 we show that the qG-condition on a 

smoothing is equivalent to the flatness of W,['-'] where r is the index of the singularity 
X .  In Sec. 2 we consider the case r = 2. The flatness of w[-'I = w* is equivalent to the 
flatness of f Z/ZZ, by a result of [2]. Here Z is the ideal of the reduced singular locus of 
a generic projection of X  in C3. In Sec. 3 this is used to formulate a result that relates 
qG-components of different singularities of index smaller or equal to two which have 
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projections with the same singular locus E. Finally, in Sec. 4 we give some examples 
illustrating these results. 
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1. Q-Gorenstein smoothings 

Definition 1.1. A one paramater deformation X, - T of a (germ of a) 
Cohen-Macaulay space X  is called orkl-constant if the natural restriction map 

is surjective (and hence an isomorphism). (Here ox[kl = (oFk)** if k is positive 
and mfl = HomX(oSy-lr1, 0,) if k is negative; note that one has (o,["] @ o,["])** = 

ox["+"l for all n and m.) So for k = - 1 this is the same as o*-constancy, as defined by 
Wahl [8]. 

Lemma 1.2. Let X  be a normal surface singularity of index r. Then a one Parameter 
smoothing X ,  - T of X is qG if und only if it is o['-'] constant. 

Proof. Let us assume that the deformation is o['-'] constant. In order to show that 
the smoothing is qG we have to extend an isomorphism: 

to the relative situation. Tensoring this with oy-'] and taking reflexive hulls this can 
be translated to lifting an isomorphism 

to an isomorphism over T. The W['-'I-constancy gives us an exact sequence 

Because the depth of oy-'] is two, it follows that the depth of oy;'] is three, and so 
Extl (oYT-'], oXT)  = 0. 

From this fact we deduce the exact sequence 

Hence we can lift q to a map q ,  : oy;'] - mXT. Let K (resp. C) be the kerne1 (resp. the 
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cokernel) of cpT. Because cp is an isomorphism one deduces from the snake lemma that 
K 5 K and C C are both isomorphisms. So by Nakayama K and C are Zero, and 
therefore cp, is an isomorphism. 

The proof of the converse is similar and will be omitted. 

2. Triple Points of Projections 

In the case that the index of X is two, we have W['-'] = U*. In [2] the U*-constancy 
of a deformation is related to the triple points of a generic projection to C3. In order 
to formulate this result we consider the following situation: 

X: a (multi-) germ of a Cohen Macaulay surface singularity. 
Y: the image of X under a generically 1-1 map to C3. 
I, = Hom(O„O,) c 0, c Cox, the conductor. 
X: the subvariety of Y defined by I,. We assume C to be reduced. 
I :  the ideal in Coc3 of C. 
A: the subvariety of X defined by I,. 

It is proved in [2] that under these circumstances one has P, = Homy(Iy, I,), so X + Y 
is determined by the pair C c, Y. Introduced in [I] is the functor of admissible 
deformations Def(C, Y) and in [2] it is proved that there is a natural equivalence 
between Def(C, Y) and Def(X + Y). In particular any deformation of X + Y induces 
a deformation of C. 

Proposition 2.1. [2, (2.1)] Let X, + Y, be a one parameter deformation of X + Y 
over T ,  und C, -+ T the induced one parameter deformation of C. Then: 

dim(Cok(~:~ @ Cox + W% = dim (Cok (j IT/I: @ 4 + 1/19) . 

Here 1 I = ( f  E I : J( f )  c I )  und similar for 1 I,. 
In particular, a deformation of X is W*-constant if the induced deformation of the 

curve is "[ 111'-constant". We remark that if X is Gorenstein and we have a so-called 
disentanglement of Y, (See [3]), then dim([I/12) equals the number of triple points 

(C619 C27 2.21). 

Corollary 2.2. A rational surjace singularity of multiplicity four und index two is a 
qG-singularity. 

Proof. By Lemma 1.1 it is enough to show that every rational quadruple point has 
an W*-constant smoothing. This is stated as Corollary (2.5) of [2], but no proof was 
given. 

A generic projection Y of X has as reduced singular locus a curve C of multiplicity 
three and type two. 1 1/12 is a cyclic module generated by the class of a certain @ E [I.  
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Let f = 0 be a defining equation for Y, and let f; = f + t@ (t small). Then Y, := (f, = 0) 
has smooth normalization. For all these facts we refer to [4, Sec. 11. 

As the singular locus of Y, is C for all t, C c Y, can be seen as an admissible 
deformation of C c Y. Because C is not deformed at all, this is J 1/12-constant. So the 
induced deformation of X is a smoothing and is o*-constant by (2.1). 

This corollary was proved by J. Stevens [7], who used a different method. 

3. The Construction 

In this paragraph we compare surfaces which have projections as in Sec. 2 with the 
same C. We fix the notation in the following 

Diagram 3.1 
X I  A l  A2 X2 

1 1  1 1  
{ f , = O ) =  Y, 3 C ==-= X C Y 2 = { f 2 = 0 )  

Furthermore, let I, be the ideal of C in Lork, k = 1,2. 

Proposition 3.2. Suppose I/I' is a cyclic Lo,-module. Then there is a 1-1 corre- 
spondence between W*-constant smoothing components of X, und X,. Moreover, corre- 
sponding components are isomorphic up to a smooth factor. 

Proof. Let f E f I project onto a generator of J 1/12, and let X,,, be an W*-constant 
smoothing of X,. By projection we get an admissible deformation C, c, Y,,,. We can 
assume that Y,,, = { f,,, = 0), t # 0, has only pinch points and triple points, and so 
the deformed curve C,, t # 0 only has triple points. By assumption, we can write 
fk = q, .  f + r,, k = 1, 2, and r, E 1'. As the deformation of X, is W*-constant, the 
deformation of X is J 1/12-constant by 2.1, so we can lift f to an f, E I,. Now define 
f2,, = q2,,.f, + rz,„ where q,,, is a generic perturbation of q,, r,,, E I: is a general 
perturbation of r, and put Y,,, = { f,,, = 0). Now the singular locus of Y,,, is X, and 
by openness of versality we may assume that the normalization X,,, of Y,,, is smooth. 
By Proposition 2.1 X,,, is an W*-constant smoothing of X,. The fact that these 
components are isomorphic up to a smooth factor follows from the principle of 
1'-equivalence [I, 1.161. 

Proposition 3.3. Suppose the ideal ( f,, f,) defines a multiplicity four structure on X. 
Then X,  and X, haue index 1 2. 

Proof. Because Y, and Y, are both singular along C, it follows from the assumption 
that the pullback of f, on X, vanishes with multiplicity exactly two along A, (m # k) 
and nowhere else. Hence we get an isomorphism Gk -+ Ikz1, and as I, is a canonical 
ideal we are done. 
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Theorem 3.4. Suppose that ( f,, f,) defines a multiplicity four structure on C und that 
j1 / lZ  is a cyclic L!=-module. Suppose that X ,  und X ,  are normal. Then there is a 1-1 
correspondence between qG-components of X ,  und X,. Moreover, corresponding com- 
ponents are isomorphic up to smooth factors. 

Proof. Combine 3.2, 3.3, and 1.1. 

Remark 3.5. In case that X ,  is Gorenstein, we already mentioned that { 1 / l 2  is a 
cyclic module generated by the class of f,. Moreover, the Clx ,  ideal I, is principal. Any 
g E 1 whose class in 1 ,  is a generator we call an adjoint, and the surface { g  = 0 )  an 
adjoint surface of Y,. Now f2 = q . f ,  + U .  g2 ,  q E Clc3 and u a unit satisfies the condition 
of 3.3. So in this situation one can apply Theorem 3.4. Remark that the qG-components 
of X ,  are simply smoothing components and also the condition of normality of X ,  
can be dropped. 

4. Examples 

Example 4.1. Let f ,  = xyz, Y,  = { f l  = 0 )  and let X ,  = C 2  U C Z  U C 2  be the 
normalization of Y,. Then 1 = (xy ,  yz,zx). X ,  is obviously Gorenstein and g = 

xy  + yz + zx  can be taken as an adjoint of Y,. We see that f ,  := (xy)' + (yz)' + 
(zx)' g 2  mod ( f , ) ,  so we can apply Theorem 3.4 to conclude that the normalization 
X ,  of Y, = { f, = 0 )  is a qG-singularity. Of course, this is well-known, as X ,  is just the 
cone over the rational normal curve of degree 4. 

On the other hand, we can take f ,  := ( x y  + yz + yx)' + xyz . (x2  + y2 + z Z )  = 
g2 mod ( f ,  ) and apply 3.4 to conclude that X,, which has 

= -2curve 
o = -3 curve 

as dual resolution graph, is a qG-singularity. 

Example 4.2. Let f ,  = L ,  L,. . . L, where Li is a linear form in X ,  y and z representing 
different planes in C3. Let Y,  = { f ,  = 0 )  and X ,  = U:=, C 2  be the normalization of 
Y,. We consider equations of the form f ,  = L .  f ,  + r, where r is a general element of 
12, the corresponding Y, = { f ,  = 0 )  and their normalizations X,. As X ,  is Gorenstein 
these X ,  are all qG-singularities by 3.4 and 3.5. The case k = 3 was discussed in 4.1. 
For all cases that can occur for k = 4 we give pictures of L .  f ,  = 0 in the projective 
plane (the dashed line is L = 0, the solid ones f ,  = O), and the corresponding dual 
resolution graphs. Furthermore we give the dual graph of the resolution for arbitrary 
k and L general. 
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= -2curve 
o = - 3 curve 

= -4curve 
= - 5 curve 

The number of chains of (- 2) curves is equal to k. 
The number of (- 2) curves in each chain is equal to k - 3. 
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