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Introduction

The notion of Q-Gorenstein smoothings has been introduced by Kollar, [5. 6.2.3].
This notion is essential for formulating Kollar’s conjectures on smoothing components
for rational surface singularities. He conjectures, loosely speaking, that every smoothing
of a rational surface singularity can be obtained by blowing down a deformation of a
partial resolution, this partial resolution having the property (among others) that the
singularities occuring on it all have gG-smoothings. (For more details and precise
statements see [5, ch. 6].) It is therefore of interest to construct singularities having
qG-smoothings. Let us recall the definition:

Definition. [5] Let X be a reduced surface singularity with X-{x} Gorenstein. Let
X4 — T be a one parameter smoothing. The smoothing is called Q-Gorenstein (gG for
short) if some multiple of the canonical class of X; is Cartier. X is called a ¢G-
singularity if there exists a gG-smoothing of X.

The smallest natural number k such that k times the canonical class is Cartier is
called the index. It is proved in [5, 6.2.4] that the index of X ; for a ¢gG-smoothing of
X is the same as the index of X. It should be remarked here that a ¢G-singularity can
have more than one “essentially different” gG-smoothings. This will follow from our
construction, but there is also an unpublished example of Wahl.

In this article we construct gG singularities of index 2.

The construction is motivated by a paper of Jan Stevens [7] in which he proves
Kollar’s conjectures for rational singularities of multiplicity four.

The paper is organized as follows. In Sec. 1 we show that the gG-condition on a
smoothing is equivalent to the flatness of w!' " where r is the index of the singularity
X. In Sec. 2 we consider the case r = 2. The flatness of @' ™! = w* is equivalent to the
flatness of | I/I%, by a result of [2]. Here I is the ideal of the reduced singular locus of
a generic projection of X in C3. In Sec. 3 this is used to formulate a result that relates
gG-components of different singularities of index smaller or equal to two which have
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projections with the same singular locus Z. Finally, in Sec. 4 we give some examples
illustrating these results.

Acknowledgement

We thank J. Stevens and J. Kollar for suggestions, and T. NiiBler for making the
pictures.

The first author is supported by a Stipendium of the E. C. (SCIENCE project).
Part of the work was done during a visit of the first author to the University of
Utah.

1. Q-Gorenstein smoothings

Definition 1.1. A one paramater deformation X;—> T of a (germ of a)
Cohen-Macaulay space X is called w™-constant if the natural restriction map

k
ol ® Oy = of

is surjective (and hence an isomorphism). (Here w,* = (w$*)** if k is positive
and 0¥ = Hom,(w§ ™, O) if k is negative; note that one has (4™ ® wy™)** =
wx" ™ for all n and m.) So for k = —1 this is the same as w*-constancy, as defined by
Wahl [8].

Lemma 1.2. Let X be a normal surface singularity of index r. Then a one parameter
smoothing X; — T of X is qG if and only if it is w!* ™" constant.

Proof. Let us assume that the deformation is !~ constant. In order to show that
the smoothing is gG we have to extend an isomorphism:

Oy - o

to the relative situation. Tensoring this with w{! ™™ and taking reflexive hulls this can
be translated to lifting an isomorphism

010l o
to an isomorphism over T. The w!' "-constancy gives us an exact sequence
0- ol 15 ol - ol 0.
Because the depth of wl ™ is two, it follows that the depth of w§ ™ is three, and so

Ext!(w¥ ", wy,) = 0.
From this fact we deduce the exact sequence

0 - Hom(w¥ ™, wy,) » Hom(wk ™, wy ) » Hom(wk ™, wy) = 0.

Hence we can lift ¢ to amap ¢ : a)B}T_’] — wy,. Let K (resp. C) be the kernel (resp. the




A CONSTRUCTION OF Q-GORENSTEIN SMOOTHINGS OF INDEX TWO 343

cokernel) of ¢ ;. Because ¢ is an isomorphism one deduces from the snake lemma that
K5 K and C5 C are both isomorphisms. So by Nakayama K and C are zero, and
therefore ¢ is an isomorphism.

The proof of the converse is similar and will be omitted. O

2. Triple Points of Projections

In the case that the index of X is two, we have w!! ™! = w*. In [2] the w*-constancy
of a deformation is related to the triple points of a generic projection to C3. In order
to formulate this result we consider the following situation:

X: a (multi-) germ of a Cohen Macaulay surface singularity.

Y: the image of X under a generically 1-1 map to C3.

I, = Hom(®, Oy) = O, = O, the conductor.

2: the subvariety of Y defined by I,. We assume X to be reduced.
I the ideal in (s of X. -

A: the subvariety of X defined by 1.

Itis proved in [ 2] that under these circumstances one has ¢’y = Homy(Iy,Iy),s0 X - Y
is determined by the pair X <, Y. Introduced in [1] is the functor of admissible
deformations Def(Z, Y) and in [2] it is proved that there is a natural equivalence
between Def(Z, Y) and Def(X — Y). In particular any deformation of X — Y induces
a deformation of X.

Proposition 2.1. [2, (2.1}] Let X — Y, be a one parameter deformation of X - Y
over T, and X — T the induced one parameter deformation of X. Then:

dim(Cok(w¥, ® O - w})) = dim (Cok (jIT/I% ® U - Jz/ﬂ)) :

Here {1 = {fel:J(f) < I} and similar for {I,.

In particular, a deformation of X is w*-constant if the induced deformation of the
curve is “f I/I*-constant”. We remark that if X is Gorenstein and we have a so-called
disentanglement of Y, (see [3]), then dim({I/I*) equals the number of triple points
(61, [2,2.2]).

Corollary 2.2. A rational surface singularity of multiplicity four and index two is a
qG-singularity.

Proof. By Lemma 1.1 it is enough to show that every rational quadruple point has
an w*-constant smoothing. This is stated as Corollary (2.5) of [2], but no proof was
given.

A generic projection Y of X has as reduced singular locus a curve X of multiplicity
three and type two. { I/I? is a cyclic module generated by the class of a certain @ € { I.
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Let f = 0 be a defining equation for Y, and let f, = f + t® (¢ small). Then Y, := (f, = 0)
has smooth normalization. For all these facts we refer to [4, Sec. 1].

As the singular locus of Y, is £ for all ¢, £ < ¥, can be seen as an admissible
deformation of £ < Y. Because X is not deformed at all, this is | I/I*-constant. So the
induced deformation of X is a smoothing and is w*-constant by (2.1). O

This corollary was proved by J. Stevens [ 7], who used a different method.

3. The Construction

In this paragraph we compare surfaces which have projections as in Sec. 2 with the
same Z. We fix the notation in the following

Diagram 3.1
X2 A A, c X,
I oo
{fi=0}=Y,oE2===Zc¥Y,={f,=0}

Furthermore, let I, be the ideal of T in Oy, k=1,2.

Proposition 3.2. Suppose jl /12 is a cyclic Os-module. Then there is a 1-1 corre-
spondence between w*-constant smoothing components of X, and X ,. Moreover, corre-
sponding components are isomorphic up to a smooth factor.

Proof. Let f € { I project onto a generator of [ I/I%, and let X, , be an w*-constant
smoothing of X,. By projection we get an admissible deformation Z, =, Y, ,. We can
assume that Y, , = {f, , = 0}, t # 0, has only pinch points and triple points, and so
the deformed curve X, t # 0 only has triple points. By assumption, we can write
fi=aq. f+r, k=12, and r, € I*. As the deformation of X, is w*-constant, the
deformation of £ is | I/I*-constant by 2.1, so we can lift f to an f, € {I,. Now define
fa.i =42, f; + 12, Where g, , is a generic perturbation of q,, r, , € I? is a general
perturbation of r, and put Y, , = { f,,, = 0}. Now the singular locus of Y, , is Z, and
by openness of versality we may assume that the normalization X, , of Y, , is smooth.
By Proposition 2.1 X, , is an w*-constant smoothing of X,. The fact that these
components are isomorphic up to a smooth factor follows from the principle of
I?-equivalence [1, 1.16]. O

Proposition 3.3. Suppose the ideal (f,, f,) defines a multiplicity four structure on X.
Then X, and X, have index < 2.

Proof. Because Y, and Y, are both singular along X, it follows from the assumption
that the pullback of f,, on X, vanishes with multiplicity exactly two along A, (m # k)
and nowhere else. Hence we get an isomorphism Oy,_— I}*, and as I, is a canonical
ideal we are done. O
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Theorem 3.4. Suppose that (f,, f,) defines a multiplicity four structure on X and that
{I/I* is a cyclic Og-module. Suppose that X | and X , are normal. Then there is a 1-1
correspondence between qG-components of X, and X ,. Moreover, corresponding com-
ponents are isomorphic up to smooth factors.

Proof. Combine 3.2, 3.3, and 1.1. |

Remark 3.5. In case that X, is Gorenstein, we already mentioned that {I/I% is a
cyclic module generated by the class of f;. Moreover, the O ideal I, is principal. Any
g € I whose class in I, is a generator we call an adjoint, and the surface {g = 0} an
adjoint surface of Y;. Now f, = q- f; + u- g%, q € 0> and u a unit satisfies the condition
of 3.3. So in this situation one can apply Theorem 3.4. Remark that the gG-components
of X, are simply smoothing components and also the condition of normality of X,
can be dropped.

4. Examples

Example4.1. Let f; = xyz, Y, = {f;, =0} and let X, = CZ[J C* [ C? be the
normalization of Y,. Then I = (xy,yzzx). X, is obviously Gorenstein and g =
xy + yz + zx can be taken as an adjoint of Y,. We see that f, := (xy)* + (y2)*> +
(zx)® = g? mod (f,), so we can apply Theorem 3.4 to conclude that the normalization
X, of Y, = {f, = 0} is a ¢G-singularity. Of course, this is well-known, as X, is just the
cone over the rational normal curve of degree 4.

On the other hand, we can take f, := (xy + yz + yx)* + xyz- (x> + y* + z}) =
g?>mod(f,) and apply 3.4 to conclude that X ,, which has

e = —2curve
o = —3curve

as dual resolution graph, is a ¢G-singularity.

Example 4.2. Let f, = L,L,... L, where L;is a linear form in x, y and z representing
different planes in C*. Let Y; = {f; = 0} and X, = [ J*-, C? be the normalization of
Y,. We consider equations of the form f, = L- f; + r, where r is a general element of
I?, the corresponding Y, = { f, = 0} and their normalizations X ,. As X, is Gorenstein
these X, are all gG-singularities by 3.4 and 3.5. The case k = 3 was discussed in 4.1.
For all cases that can occur for k = 4 we give pictures of L- f; = 0 in the projective
plane (the dashed line is L = 0, the solid ones f; = 0), and the corresponding dual
resolution graphs. Furthermore we give the dual graph of the resolution for arbitrary
k and L general.
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=y

:

A

e = —2curve o = —4 curve
o= —3curve m = —5curve

LY X

o —o— —@ o—0— e ——— @
k-3 —(k+1) k-3

The number of chains of (—2) curves is equal to k.
The number of (—2) curves in each chain is equal to k — 3.
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