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A note on the discriminant
of a space curve

D. van Straten

Abstract

The notion of a free divisor was introduced by K. Saito, who also proved
that the discriminant in the semi-universal deformation of an isolated com-
plete intersection is such a free divisor. In this note we show that the dis-
criminant of the semi-universal deformation of a reduced space curve also
has this property.
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Introduction

Let f: (C™**,0) — (CF,0) define an isolated complete intersection singularity,
and let F : (C™*+7 0) — (C**7,0) be its semi-universal deformation. The set
of points p € C**™ for which the fibre F~!(p) has a singular point is a divisor A,
the discriminant. This set has a lot of remarkable properties, see [L], [Tei], and
in this article we shall focus on one of these, to know its freeness. The notion
of a free divisor was introduced by K. Saito [Sa], who also proved that the above
discriminant is such a free divisor. Let us recall the definition:

Definition: A hypersurface germ D C (C™,0) is called a free divisor if and
only if the module of logarithmic vector fields

O(log D) = {J € O(cmo) | ¥(@p) C (@p)}
is a free O(gm gy~module. Here D is locally defined by @p = 0 and ©(cm ) 1s the
module of germs of all vector fields on (C™,0).

Free divisors arise in many geometrical situations. For example, the arrangement
of reflection hyperplanes of a Coxeter group gives rise to a free divisor (see [Ter]).
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Although free divisors in general are very singular, the fact that we have a good
control over their vector fields means that in many respects they behave as if they
were smooth. In particular, one can effectively study functions on such divisors.

Now consider an isolated singularity X, which is not a complete intersection. One
has still a semi-universal deformation

X = X
4 1
{0} - B

over some space B (see [Gr]), but in general certain pathologies may arise (see

[3-S1)):

¢ B can have more than one component;
e components of B are not necessarily smooth;

e the discriminant A need not be of codimension one.

There are, however, some cases in which the family X — B is still “nice”. For
example, if X is a Cohen-Macaulay germ of codimension two, then B is smooth.
If, in addition, X is a curve, then A is still a hypersurface. In this note we shall
show that again it is a free divisor in B. The same is true for Gorenstein curves
in C*. Pretty as this result is, it seemed to have escaped attention.

The structure of the article is as follows. In §1 we review some basic deformation
theory to link up the freeness of A via liftable vector fields to a Cohen—-Macaulay
property of the relative T. This is completely analogous to the treatment in [L],
but put in a more general context.

In §2 we apply this to space curves. Using some algebraic facts that hold for
any Cohen-Macaulay codimension two germ, and using the class map that re-
lates Kahler to dualizing differentials on a curve, the result follows. Everything
is straightforward and no new ideas are involved.
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Conventions

We shall work in the analytic category. We shall be sloppy and not distingunish
between a space and a germ unless confusion is possible. Everything is local, and
all sequences are exact, unless stated otherwise.



VAN STRATEN 169

1 Logarithmic and liftable vector fields
Consider a map (of germs of analytic spaces)

x4s

which we shall assume to be flat. We denote the critical space by ¥ = Zy/s C X
and the discriminant by A = Ay;g C §. Using Fitting ideals of the module
Qy /s one can define a natural analytic structure on these sets, see [Tei]. However,
for our purposes it will be convenient to provide these sets with its reduced
analytic structure.

We shall always assume that Og is Og-finite, as is implied if all the fibres X, =
f1(s) have isolated singularities.

Associated to such a map between spaces, there are six deformation problems
or functors. These are described in detail in Buchweitz Thesis [Buch]. Without
going into any detail, these are:

o Def(X): deformations of X.

Def(S): deformations of S.

Def(f): deformations of f, with X and S fixed.

Def(X AR ): deformations of X, S and f simultaneously.

Def(X/S): deformations of X over 3, i.e. keeping S fixed.
e Def(X\S): deformations of X under S, i.e. keeping X fixed.

To each of these deformation problems there is associated a complex L, e
(in the derived category of sheaves on an appropriate topos), the cotangent
complex of the problem. One writes TF™ ™ = Hi(Lpoptem) 30d Tppoptem =
H.‘(L;,rouzm) for the homology and cohomology of the cotangent complex. So
Ty = T'(L'X/S), etc. A basic property of the whole theory is that one has:

* T em = infinitesimal automorphisms
* T;,oum = infinitesimal deformations of the type envisioned
* T:,,oblm = obstruction space.

These six functors, or their associated groups T; and T sit in various interlinked
exact sequences that are best understood by putting the problems on the vertices
of an octahedron! (See [Buch].)
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Important for us will be one of these sequences, relating Def(S), Def(X/S) and
Def(X 4, S). It is the so—called Kodaira—Spencer sequence of the family
xhs (See also [P]):

(1.1) 0 Ts = Thos > T8 D Ths = Tk s > Th— ..

The groups T /8 Ty g and T} all carry natural Og-module structures and the
maps in (1.1) are Og-linear. The maps Tx/s — Tx_s and Tx_ 5 — T§ are
induced by the natural maps of deformation problems. The connecting homo-
morphism T§ 5 T} /s is called the Kodaira-Spencer map of the family X 4.
If 9 € ©g = TJ is a vector field on S, then p(¥) is pointwise the infinitesimal
deformation of the fibre in the direction of ¥.

The space T% ¢ can be described as the space of “lifted vector fields”, i.e. pairs
(¥x,9s) € Ox x Og such that 3f(dx) = s where df : Ox — f*Og is the
differential of f. The exactness of (1.1) expresses the fact that p(9s) is trivial if
and only if 95 can be lifted to a (9x,9s) € TS 5.

We now put Lx/s = Im(T%_g — T9) and call it the module of liftable vector
fields.

The Kodaira-Spencer criterion for “completeness” of the family X 4, $ fits nicely
in this picture:

<
p surjective => Ty _ o =0

(1)

where (1): If T} = 0, for example if S is smooth.
And: T .o =0 <= there are no infinitesimal deformations of the diagram
= X 4 5is “stable”.

So, for such a stable map we have from (1.1):

(1.2) 0—>T§/5—>T,‘}_,S—>£X/s—+0
’ 0— Lxss = T§ = Txs — 0.

From this one sees immediately:

Principle {1.3): Let X 1, S be a stable map with S smooth of dimension d.
Then:

T)I(/s is @ Cohen—Macaulay Ogs~Module with

Lx/s is Og—free of rankd < { dim(Supp(T}(/s)) —d_1
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The next thing is to relate the liftable vector fields to those tangent to the dis-
criminant.

Proposition (1.4): Consider a family X 4SS, Assume that:

1) S is smooth.
2) For a generic point s € S, the fibre X, = f~(s) is smooth.

8) For all generic points s € A, the fibre X, = f~(s) has only an ordinary
double point.

4) Lxss is a free Og—~module of rank = dim §.

Then one has Lx;s = Og(log A), so that then in particular, the discriminant
A = Axs is a free divisor.

Proof: Notice that we have an inclusion Lx;5 C ©g(log A), as clearly a neces-
sary condition on a vector field to lift, is that it is tangent to A.

Let us consider the cokernel: C = Og(log A)/Lx/s.

It follows from a simple local calculation, that for an ordinary double point € = 0,
so one has codim(Supp(C)) > 2. But Og(log A) = Homg(Qk(log A), Os), where
Q%(log A) is the module of logarithmic one-forms, so ©g(log A)is reflexive. As

Lx/s is free, it follows by dualizing twice the obvious exact sequence that C = 0,
ie. [:x/s = @g(log A) Kl

Corollary (1.5): Consider a family X 4, S, Assume that 1) and 2) of (1.4)
hold. Assume in addition that

3') Tyx/s is Cohen-Macaulay Og-module, dim Supp(Ty;s) =d —1
4) T)I(AS =0.

Then A is a free divisor.

Proof: Combine (1.3) and (1.4). &

2 Families of space curves

In order to study the Cohen-Macaulay property of T /s for a family X 4, S the
following “hyperplane section sequence” is useful:

. Ky
(2.1) 0 TYs 4 TRss = Tor = Tys = Tays = Tor = -
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Here the family Y — T is obtained by pull-back via T' < S from X 4 S, The
subspace T < § is defined by {¢ = 0}, where t € Qs is a non-zero divisor. The
maps Ty /s = T;(/S are induced by “multiplication by ¢”. The sequence follows
easily from general properties of the cotangent complex (see e.g. [B-C}); there is
a similar sequence for the TX/S

So we see:
te Ogis T}(/S—regula.r =0 T§/5 — TJO{/S — T{}/T — 0 exact,
i.e. all vector fields on Y over T lift to vector fields on X over S.

For curves one can use the so—called class map to get some handle on the vector
fields. Recall that the class map of a curve C is the natural map

dc : Qb — We
(see e.g. [B-G}).
Here QO is the module of Kahler differentials, (= T¥), wc is the dualizing mod-

ule and the map “interprets” a dualizing differential as a meromorphic Kahler
differential. Similarly, for a family of curves, there is a relative class map

(2.2) cex/s :Qk/s — Wx/s.

Let Kx/s = Ke‘l‘(clx/s) and Cx/s = C’oker(dx/s).

As for a smooth curve cf¢ is an isomorphism, one has that
Supp(Kx/s) C Lx/s and Supp(Cx;s) C Txys-

If the general fibre X, of the family X 455 smooth, then codim(Zx,s) > 2.
Hence, taking duals of the obvious exact sequences derived from (2.2) one gets:

Corollary (2.3): For a family of curves with smooth general fibre one has

w}/s = me(wx/s,O)() :) Ho’mlx(Qk/S,O)() =: ex/s = T,%/S'

Analogous to (2.1) there is a sequence

(2.4) 0 —» Hom{wx/s,Ox)
Emtl(wx/s,O)()

Hom.(wx/s,ox) — Hom(wy/T,(’)y) —

t
_)
4 Botwy/s,0x) — Ezt'(wyr,0y) —.
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So, in case codim(Zy;r) > 2 one has that the regularity of t € Og on T)l(/s is
equivalent to the “w*-constancy” of the family, as introduced in [Wah]. (See
[J-S2] for a geometric interpretation of this condition in the case of surfaces.)

In particular, this is automatic if the curves are Gorenstein, i.e. wx;s =~ Ox.

Remark (2.5): If § is smooth, then wx;s =~ wx, so the sequence (2.4) really
depends only on the total spaces X, Y of the deformation and not on their fibering
into curves.

The next thing to notice is that any family of Cohen—-Macaulay germs of codi-
mension two, is “w*—constant”. This comes about in the following way:

Proposition (2.6): Let X be a reduced Cohen—-Macaulay germ of codimension
two C CN. Then one has:

T¥ = I/ ~ Exth (wx, Ox).

Proof: As X is CM at codimension two, its structure sheaf Ox has a projective
resolution of the following form:

00" Mo A0 505 0.

Here M is a n x (n + 1) matrix with entries in O = Ogn, and the generators of
the ideal I of X can be taken as the n x n-minors A; of M. (See [Bur], [Sch].)
Hence one has

X O = I/IP =0
and, taking duals
O M 0% — wx 0.
This means that wy is the Auslander dual of I/I%. This implies that
Ker(I/1* - (I/1*)*) = Ezt'(wx, Ox).

(This can also be seen by straightforward diagram chase.)

But, if I is a radical ideal, then

Ker(I/I* = (I/I*)**) = Ker(I/1* % Qbn @ Ox) = T



174 VAN STRATEN

which is also clearly equal to I(2)/I2, where I(?) is the second symbolic power. &

Now, having identified Ezt!(wy,Ox) with a Ty, it is natural to look at the long
exact sequence in the T}’s, analogous to (2.1). It runs as follows:

(2.7) o TS B S YT XS A XIS T

We use the following important facts.

Facts (2.8): For a reduced space X, Cohen-Macaulay of codimension two, one
has:

0T2X=0 .T)%:O.

The first vanishing is implied by the fact that X is syzygetic in the sense of

[S-V]. Huneke has given a proof in [Hu]. The second vanishing is due to Herzog
[He].

Of course, the same statements hold for the relative groups T)Qr/s and sz/s, and
g0 we obtain:

Corollary (2.9): For a family of Cohen—-Macaulay germs of codimension two
one has exact sequences:

A 0 THS A TXS /T L 75 3 7X5 L, 7¥IT L9

B 0 TY55 TS s— Tor = Ths = Thyg = Toyr — 0

C 0= wyg > wyys = wyyp =0

(A from (2.7), B from (2.1), C from (2.4) and (2.6).)
Corollary (2.10): Let X 5 S be a famaly of space curves with

a) S smooth;

b) the general fibre X, is smooth.

Then Ty s is a Cohen-Macaulay Os-module with dim(supp(Ty,s)) = dim §—1.

In particular, Axs is a divisor.
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Proof: Lett € Og be a non—zero element, and consider the associated sequence
(2.9) B. If codim(Zy;r) > 2, then we have wyp = T}Q/T. Hence, by (2.9) C we
get:

0 — Txss = Txjs = Tor = 0,

meaning that ¢ is T% /s-tegular. Now we can iterate the argument: take a pull-
back of Y — T over T} «» T to get a family Y; — T3, etc. Hence we find a
regular sequence t,#;,23...in T}(/S of length = dim S —1. Hence, depth (T)l(/s) >
dim S —1. But as Supp(T}(/S) = A C S and the general fibre is smooth, A # §,
so we must have

depth(T}(/s) = dim(Supp T}l(/s) =dim A =dim § — 1.

Hence, the statement follows. ®

Corollary (2.11): Let X 8 be the semi-universal deformation of a space
curve and let A = Ax/g be its discriminant.

Then A is a free divisor.

Proof: By a result of Schaps, [Sch], the general fibre of X — S is smooth, and
S is smooth (follows also from T? = 0). Furthermore, the set of points of §
where X, is not locally a complete intersection is of codimension > 3. Hence,
the general point s of A corresponds to local complete intersection singularities,
and hence by openness of versality to an ordinary double point. Now apply (1.5)
and (2.9). B

Remark (2.12): The same statement holds for the semi—universal deformation
of a Gorenstein curve in C*. Here one uses a result of Waldi, [Wal], stating that
T? = 0 and that the general fibre is smooth.

So far I have been unable to prove anything in cases where T2 # 0, although
I have the feeling that on w*-constant components the discriminant still might
have nice properties. It is also conceivable that there are cases where Og(log A)
is free module without it being equal to Lx/s.

There are many interesting problems about the discriminants of space curves that
apparently have not been studied, like the number if irreducible components, the
topology of the complement, the monodromy representation, the Gaufi-Manin-
system, etc. Also, in the light of the results of [J-52], the stratification of the
discriminant is of importance for the study of smoothing components of singu-
larities, having the given space curve as singular locus of a projection to C3. We
hope to come back to these questions on an other occasion.
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