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The notion of a free divisor was introduced by K. Saito, who also proved 
that the discriminant in the semi-universal deformation of an isolated com- 
plete intersection is such a free divisor. In this note we show that the dis- 
criminant of the semi-universal deformation of a reduced space curve also 
has this property. 
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I n t r o d u c t i o n  

Let f : (C "+k, 0) --+ (C k, 0) define an isolated complete intersection singularity, 
and let F : (C "+k+~, 0) -+ (C k+~, 0) be its semi-universal deformation. The set 
of points p 6 C k+~ for which the fibre F- l (p )  has a singular point is a divisor A, 
the discriminant.  This set has a lot of remarkable properties, see [L], [Tel], and 
in this article we shall focus on one of these, to know its f r eeness .  The notion 
of a free divisor was introduced by K. Saito [Sa], who also proved that  the above 
discriminant is such a free divisor. Let us recall the definition: 

D e f i n i t i o n :  A hypersurface germ D C (C '~, 0) is called a f ree  d i v i s o r  if and 
only if the module of logarithmic vector fields 

O(log D) : {~ 60(c~ ,0 )  I zg(QD) c (QD)} 

is a free (9(c,~,o)-module. Here D is locally defined by QD = 0 and O(cm,0) is the 
module of germs of all vector fields on (C '~, 0). 

Free divisors arise in many geometrical situations. For example, the arrangement 
of reflection hyperplanes of a Coxeter group gives rise to a free divisor (see [Ter]). 
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Although free divisors in general are very singular, the fact that  we have a good 
control over their  vector fields means that  in many respects they behave as if they 
were smooth. In part icular,  one can effectively study functions on such divisors. 

Now consider an isolated singularity X,  which is not a complete intersection. One 
has still a semi-universal  deformation 

X ~ X 

4 
{o) ~ B 

over some space B (see [Gr]), but  in general certain pathologies may arise (see 
[J-Sl]): 

�9 B can have more than one component; 

�9 components of/~ are not necessarily smooth; 

�9 the discriminant A need not be of codimension one. 

There are, however, some cases in which the family X --+ B is still "nice". For 
example,  if X is a Cohen-Macaulay germ of codimension two, then B is smooth. 
If, in addition, X is a curve, then A is still a hypersurface. In this note we shall 
show that  again it is a free divisor in/3.  The same is true for Gorenstein curves 
in C 4. P re t ty  as this result is, it  seemed to have escaped at tention.  

The structure of the article is as follows. In w we review some basic deformation 
theory to link up the freeness of A via liftable vector fields to a Cohen-Macaulay 
proper ty  of the relative T 1. This is completely analogous to the t rea tment  in [L], 
but  put  in a more general context. 

In w we apply this to space curves. Using some algebraic facts that  hold for 
any Cohen-Macaulay codimension two germ, and using the class map that  re- 
lates KKhler to dualizing differentials on a curve, the result follows. Everything 
is straightforward and no new ideas are involved. 
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Conventions 
We shall work in the analytic category. We shall be sloppy and not distinguish 
between a space and a germ unless confusion is possible. Everything is local, and 
all sequences are exact,  unless s ta ted  otherwise. 
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1 L o g a r i t h m i c  an d  l i k a b l e  vec tor  f ields 

Consider a map (of germs of analytic spaces) 

x 4 s  

which we shall assume to be flat. We denote the c r i t i c a l  s p a c e  by E = Ex/s C X 
and the d i s c r i m i n a n t  by A = Ax/s  C S. Using Fi t t ing ideals of the module 
~lx/s one can define a natural  analytic structure on these sets, see [Tel]. However, 
for our purposes it will be convenient to provide these sets with its r e d u c e d  
analytic structure. 

We shall always assume that  O~ is Os-fini te ,  as is implied if all the fibres X,  = 
f-1(s) have isolated singularities. 

Associated to such a map between spaces, there are s ix  d e f o r m a t i o n  p r o b l e m s  
o r  f u n c t o r s .  These are described in detail  in Buchweitz Thesis [Buch]. Without  
going into any detail ,  these are: 

�9 Def(X): deformations of X. 

�9 Def(S): deformations of S. 

�9 Def(f):  deformations of f ,  with X and S fixed. 

�9 De f (X  I_~ S): deformations of X, S and f simultaneously. 

�9 Oef(X/S): deformations of X over S, i.e. keeping S fixed. 

�9 De f (X \S) :  deformations of X under S, i.e. keeping X fixed. 

To each of these deformation problems there is associated a complex L ~ l , , ,  , 
(in the derived category of sheaves on an appropriate topos), the c o t a n g e n t  
c o m p l e x  of the problem. One writes T ~  ~ "  = H i ( L ~ l ~ , , )  and T~o~, ~ = 
H!(L~o~r, , )  for the homology and cohomology of the cotangent complex. So 
T)x/s = T ' ( L x / s )  , etc. A basic property of the whole theory is tha t  one has: 

�9 TOme,, = infinJtesimalantomorphisms 

�9 T ~ , , ~  = infinitesimal deformations of the type envisioned 

�9 T~,~, , ,  = obstruction space. 

These six functors, or their  associated groups Ti and T i sit in various interlinked 
exact sequences tha t  are best  understood by put t ing the problems on the vertices 
of an octahedron! (See [Buch].) 
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Important  for us will be one of these sequences, relating Def(S) ,  D e f ( X / S )  and 

D e f ( X  ~ S). It is the so-called K o d a i r a - S p e n c e r  s e q u e n c e  of the family 

X ~ S. (See also [P]): 

(1.1) 0 "+ T~ -+ T~  -+ T ~ ~ T~/s -+ T)c_~s -+ T~ - + . . .  

The groups T~IS, T~_~s and T~ all carry natural C0s-module structures and the 
maps in (1.1) are Cos-linear. The maps T~/s --4 T ~  s and T~_~s -+ Tb are 
induced by the natural maps of deformation problems. The connecting homo- 

morphism T~ f+ T)c/s is called the Kodaira-Spencer map of the family X ~ S. 
If ~ C | = T~ is a vector field on S, then p(O) is pointwise the infinitesimal 
deformation of the fibre in the direction of ~. 

The space T~ can be described as the space of "lifted vector fields", i.e. pairs 
(~x,~s)  E Ox x OS such that Of(~x) = Os where Of : Ox --+ f*@s is the 
differential of f .  The exactness of (1.1) expresses the fact that p(zgs) is trivial if 
and only ifv~ s can be lifted to a (~x,@s) C T~ �9 

We now put s  = Im(T~ -+ T~) and call it the module of l i f table v e c t o r  
fields. 

The Kodaira-Spencer criterion for "completeness" of the family X ~ / S  fits nicely 
in this picture: 

p surjective 
(1) 

where (1): If T~ = 0, for example if S is smooth. 

And: T)c_~s = 0 r there are no infinitesimal deformations of the diagram 

r X ~ S is "stable". 

So, for such a stable map we have from (1.1): 

0 ~ T~ ~ T~ -~ s --+ 0 
(1.2) / 0 ~ s  ~ T ~ ~ T~:/s ~ O. 

From this one sees immediately: 

P r inc ip l e  (1.3): Let X I_+ S be a stable map with S smooth of dimension d. 
Then: 

{ T~/s is a Cohen-Macaulay Os-Module with 
f~x/s is Os-free of rank d ~ dim(Supp(T~/s) ) = d - 1 
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The next thing is to relate the liftable vector fields to those tangent to the dis- 
criminant. 

P r o p o s i t i o n  (1.4): Consider a family X ~ S. Assume that: 

1) S is smooth. 

2) For a generic point s G S, the fibre X ,  = f - l ( s )  is smooth. 

3) For all generic points s E A ,  the fibre Xs = f - l ( s )  has only an ordinary 
double point. 

4) s  is a free Os-module of rank = dim S. 

Then one has •x/s = Os(log A), so that then in particular, the discriminant 
A = A x / s  is a free divisor. 

Proof :  Notice that we have an inclusion s  C Os(log A), as clearly a neces- 
sary condition on a vector field to lift, is that it is tangent to A. 

Let us consider the cokernel: C = | A ) / s  

It follows from a simple local calculation, that for an ordinary double point C = 0, 
so one has codim(Supp(C)) > 2. But Os(log A) = g o m s ( ~ ( l o g  A), Os), where 
Ft,(log A) is the module of logarithmic one-forms, so | A)is reflexive. As 
f~x/s is free, it follows by dualizing twice the obvious exact sequence that C = 0, 
i.e. [ x / s  = Os(log A). [] 

C o r o l l a r y  (1.5): Consider a family X • S. Assume that 1) and 2) of (1.4) 
hold. Assume in addition that 

3') T~/s is Cohen-Macaulay Os-module, dim Supp(T~/s) = d - 1 
4) Tk_+s = O. 

Then A is a free divisor. 

Proof :  Combine (1.3) and (1.4). 

2 F a m i l i e s  o f  s p a c e  c u r v e s  

In order to study the Cohen-Macaulay property of T~/s for a family X f-~ S the 
following "hyperplane section sequence" is useful: 

(2.1) 0 ~ T~  ~ T~  -~ T~ ~ T~/s :~ T~/s  ~ Tr ~ . . .  
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Here the family Y --+ T is obtained by pul l -back via T ~ S from X -+/ S. The 
subspace T ~ S is defined by {t = 0}, where t E Os is a non-zero divisor. The 
maps Tjc/s -+ Tjc/s are induced by "multiplication by t". The sequence follows 
easily from general properties of the cotangent complex (see e.g. [B-C]); there is 
a similar sequence for the T x/s.  

So we see: 

t E Os is T~ls-regular ~ 0 --+ T~ -+ T~ -+ T~ --+ 0 exact, 

i.e. all vector fields on Y over T lift to vector fields on X over S. 

For c u r v e s  one can use the so-called c lass  m a p  to get some handle on the vector 
fields. Recall that  the class map of a curve C is the  natural  map 

ct C : ~ ---+ w C 

(see e.g. [B-G]). 

Here fl~ is the module of Ks differentials, (=  T0C), wc is the dualizing mod- 
ule and the map "interprets" a dualizing differential as a meromorphic Ks 
differential. Similarly, for a family of curves, there is a relative class map 

(2.2) d x / s  : fllx/s --~ wx/s. 

Let ICx/s = Ker(dx /s )  and Cx/s = Coker(dx/s).  

As for a smooth curve d c  is an isomorphism, one has that  

Supp(lCx/s) C P'x/s and Supp(Cx/s) C ~x/s. 

If the general fibre X,  of the family X ~/ S is smooth, then codim(~,x/s) >_ 2. 
Hence, taking duals of the obvious exact sequences derived from (2.2) one gets: 

C o r o l l a r y  (2.3):  For a family of curves with smooth general fibre one has 

w *Xl s := Homx(wxls,  Ox ) -~ Horax(fllx/s, Ox ) =: Ox/s = T~ �9 

Analogous to (2.1) there is a sequence 

(2.4) 0 --r nom(wx/s,  Ox) -~ Hom(wx/s, Ox) -~ nom(~./w, Or) 
E~tl(~x/s,Ox) s E~t~(~x/s, Ox) -~ Ez~l(wv/r, Oy) -~. 
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So, in case codim(Ey/r)  > 2 one has that  the regularity of t 6 0 s  on T~I s is 
equivalent to the "w*-constancy" of the family, as introduced in [Wahl. (See 
[J-S2] for a geometric interpretat ion of this condition in the case of surfaces.) 

In part icular,  this is automat ic  if the curves are Gorenstein, i.e. wx/s  "~ Ox .  

R e m a r k  (2.5):  If S is smooth, then wx/s  ,~ wx,  so the sequence (2.4) really 
depends only on the total  spaces X, Y of the deformation and not on their fibering 
into curves. 

The next thing to notice is that  any family of Cohen-Macaulay germs of codi- 
mension two, is "w*-constant". This comes about in the following way: 

P r o p o s i t i o n  (2.6):  Let X be a reduced Cohen-Macaulay germ of codimension 
two C C N. Then one has: 

T x = I(2)/I 2 ~- Ext lx(wx,  Ox) .  

P r o o f :  As X is CM at codimension two, its structure sheaf O x  has a projective 
resolution of the following form: 

0 -+ 0 "  ~ 0 "+ ~ -% 0 -+ O x ~ 0. 

Here M is a n x (n + 1) matr ix  with entries in O = O c  N, and the generators of 
the ideal I of X can be taken as the n x n-minors  A~ of M. (See [Bur], [Sch].) 
Hence one has 

and, taking duals 

O ~  ---)" O ]  +1 ~ 1/12 -+ 0 

Mt~ 
O~ +1 -+ O~ -+ wx -+ 0. 

This means that  wx is the Auslander dual of 1/12. This implies that  

K e r ( I / r  ~ -~ (UIh)  "') = E z t l ( w x ,  Ox) .  

(This can also be seen by straightforward diagram chase.) 

But, if I is a radical ideal, then 

K e r ( I / I  2 ~ ( I / I2)  " )  = n e r ( I / I  2 ~ n~c, 0 0 x )  =: T~  
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which is also clearly equal to I(2)/I 2, where I (2) is the second symbolic power. [] 

Now, having identified Exta(wx, Oz )  with a T1, it is natural  to look at the long 
exact sequence in the T~'s, analogous to (2.1). It runs as follows: 

(2.7)  . . .  --+ T x l s  A T x l s  --+ T YIT --+ T x / s  A~ TXl s __+ TYI T _+. . .  

We use the following important  facts. 

F a c t s  (2.8):  For a reduced space X,  Cohen-Macaulay of codimension two, one 
has: 

�9 T / = 0  �9 T ~ = 0 .  

The first vanishing is implied by the fact that  X is s y z y g e t i c  in the sense of 
[S-V]. Huneke has given a proof in [Hu]. The second vanishing is due to Herzog 
[He]. 

Of course, the same statements  hold for the relative groups T~/s and T x /s ,  and 
so we obtain: 

C o r o l l a r y  (2 .9) :  For a family of Cohen-Macaulay germs of codimension two 
one has exact sequences: 

A o -+ T(/s  :~ T~/S -+ T~/T -+ ~ [ "  :~ T[/~ -+ ~:/~ -+ 0 

t3 0 -+ T~ "~ T~ -+ T~ --+ T~/s :~ T~/s --+ T~/T --+ 0 

C___ 0 ~ w'XlS -+ w~lS --+ W~lr -+ 0 

(A_fro,~ (~.7), B_from (2.1), C_from (2.4) a,~d (2.6)3 

C o r o l l a r y  (2 .10) :  Let X 1~ S be a family of space curves with 

a) S smooth; 

b) the general fibre Xs is smooth. 

Then T~/s is a Cohen-Macaulay Os-module with dim(supp(T~/s) ) = dim S - 1. 

In particular, A x / s  is a divisor. 
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P r o  of: 
(2.9) B. 
get: 

Let t C O s  be a non-zero element, and consider the associated sequence 
If codim(Er/T) > 2, then we have w~./T = T~ . Hence, by (2.9) C we 

0 Tbs 4. T.,S/s -> ---> 0, 

meaning that  t is T1/s-regular. Now we can i terate the argument: take a pul l -  
back of Y --~ T over T1 ~-~ T to get a family Y1 --+ T1, etc. Hence we find a 
regular sequence t, tl ,  t 2 . . .  in T1/s of length = dim S - 1. Hence, depth  (Tx~/s) > 

dim S - 1. But as Supp(T~/s) = A C S and the general fibre is smooth, A # S, 
so we must have 

depth(T1/s)  = dim(SuppT~/s)  = dim A = dim S - 1. 

Hence, the s tatement  follows. [] 

C o r o l l a r y  (2.11):  Let X f-~ S be the semi-universal deformation of a space 
curve and let A = A x / s  be its discriminant. 

Then A is a free divisor. 

P r o o f i  By a result of Schaps, [Sch], the general fibre of X -+ S is smooth, and 
S is smooth (follows also from T 2 = 0). Furthermore,  the set of points of S 
where X,  is n o t  locally a complete intersection is of codimension > 3. Hence, 
the general point s of A corresponds to local complete intersection singularities, 
and hence by openness of versality to an ordinary double point. Now apply (1.5) 
and (2.9). [] 

R e m a r k  (2.12):  The same statement  holds for the semi-universal  deformation 
of a Gorenstein curve in C 4. Here one uses a result of Waldi, [Wall, stating that  
T 2 = 0 and that  the general fibre is smooth. 

So far I have been unable to prove anything in cases where T 2 # 0, although 
I have the feeling that  on w*-constant components the discriminant still might 
have nice properties. It is also conceivable that  there are cases where @s(log A) 
is free module without it being equal to gx / s .  

There are many interesting problems about the discriminants of space curves that  
apparent ly have not been studied, like the number if irreducible components,  the 
topology of the complement,  the monodromy representation, the Gau~Manin-  
system, etc. Also, in the light of the results of [J-S2], the stratification of the 
discriminant is of importance for the study of smoothing components of singu- 
larities, having the given space curve as singular locus of a project ion to C a. We 
hope to come back to these questions on an other occasion. 
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