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Abstract. In this paper we derive a formula for the number M ( n ,  d )  of complex 
nonlinear normal modes in the (n + 1) degrees of freedom system with Hamiltonian 
H2 + H, where H2 describes a system of (n + 1) uncoupled oscillators with the same 
frequency (the so-called (1 : 1 : 1 : . . . : 1) resonance) and H is a generic homogeneous 
perturbation of degree 2d which Poisson commutes with H2. The formula is: 

M ( n ,  d ) T “  = ( 1  - T ) - y l  - (2d - 1)2T]-112. 
“SO 

AMs classification scheme numbers: 34C25,58F05,57D20 

1. Introduction 

Consider a mechanical system consisting of n uncoupled harmonic oscillators with 
angular frequencies wl ,  w2,  . . . ) 0,. It can be described by the Hamiltonian 

n 

H2: R2n+ R ( p )  q )  I+ w,(p:  + 4?)/2. 
i = l  

When these frequencies w i  are rationally independent then there are precisely n 
periodic orbits on an energy level set. They lie in the (pi, qi) planes and have 
periods 2n/wi .  All the other orbits densely fill out tori of dimension 2 2 .  In the 
other extreme, we say that the system described by the Hamiltonian (1) is fully 
resonant when all the wi are integral multiples of some fundamental frequency wo. 
In such a system all orbits will be periodic and the period of the general orbit will be 
T0:=2n/w0.  

In the neighbourhood of an equilibrium point 0 of a general Hamiltonian system, 
one can expand the Hamiltonian function H in a power series: 

H=H,+H,+H,+.  . . . 
= H 2 + H  

where Hk is homogeneous of degree k in ( p ,  4). 
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So near 0 one can consider H as a 'small' perturbation of H2. Now, we have seen 
that when H2 is fully resonant, then all orbits are periodic with period To. However, 
for a 'generic' perturbation H one expects to find on an energy level set H = E only 
a finite number of periodic solutions with period near the unperturbed period T,, 
forming 'families' when one varies E in a neighbourhood of 0. In the following we 
shall refer to such (families of) periodic orbits as non-linear normal modes. 

The following problem naturally arises. How many non-linear normal modes are 
there in the neighbourhood of an equilibrium point and what is their structure? 

Our course, the answer might, and does, depend on the precise nature of the 
perturbation H .  

In the last few decades a number of important results of a general nature have 
been obtained. In the first place there is a theorem due to Weinstein [15], stating 
that if H2 is definite, then there are at least n non-linear normal modes. This lower 
bound is obtained by topological considerations. It turns out, however, that in many 
cases with H2 resonant the actual number is much bigger. Secondly, there is the 
realisation by Moser [14] and others that the problem of finding the normal modes 
can be reduced to a finite-dimensional problem. We now briefly sketch one such set 
up, where one reduces it to the problem of finding critical points of a function on 
R2". (For more details and proofs see [3, 8, 13, 141.) For simplicity we take H to be 
of the form (2) with H2 fully resonant. 

Let 2:=C1(S', R") be the space of C'-loops in R2". (S'=R/2nZ). On 2 
consider the function 

2n 

ST:2 - -+R y - ' I y * a -  T(l i2n) l  H o y d 6  
0 

where a:= C:,,pi dq,. There is an obvious S' action on the space 2 induced by 
rotation, and the function ST is invariant under this action. 

Then one can verify the following facts about S p  
(i) y e 2  is a critical point of ST iff y ( S ' ) 3  R2" is a periodic orbit for H with 

(ii) dS,(O) = 0 for all T. The second derivative of S at 0 is the quadratic mapping 
period T. 

d2ST(0) : 2- iw given by 

d2ST(0)(u) = I u*a - T(1/2n) H20u do. r 
(iii) So, by (i) and (ii), if T is not in Z&, then d2ST(0) is non-degenerate and if 

T = To, then the null space V c 2 of d2ST(0) can be identified with the solutions of 
the H2 system, which is isomorphic to R2". 

(iv) One can invoke here the splitting lemma with parameters (see [6]), which 
states that ST in a neighbourhood of 0 X To is right equivalent to GT(u) + Q ( z ) ,  
where U E V and z EZ,  a complement to V in 2 and Q is a non-degenerate 
quadratic form. The function GT : V + 53 is invariant under the natural S' action on 
V = RZn, and has the property that d2GT(0) = 0 (see also [13]). 

(v) Hence the critical points of GT are in one-to-one correspondence with the 
periodic orbits of H with period T. We call the set of equations dGT(x) = 0 the 
periodicity equations. The geometrically distinct periodic orbits are in one-to-one 
correspondence with the S' orbits of solutions of the periodicity equation. 
Alternatively, one can consider GT as a function on the orbit space R2"/S' and the 
periodic orbits as critical points of this function on orbit space. 

The problem now is: how does one determine this function GT? Recall that by a 
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The problem now is: how does one determine this function GT? Recall that by a 
sequence of symplectic coordinate transformations we can bring H into Birkhoff 
normal form to order k (see [8]) (we say ' H  is BNF(k)'), meaning that H =  
H2 + H3 + . . . + Hk + R with { H z ,  Hi} = 0,  i = 2 , 3 ,  . . . , k .  When {H2,  A} = 0 we 
simply say that H is in Birkhoff normal form ( 'H is BNF'). Then one has the 
following: 

(vi) 
H is BNF(k) + GT = ToHz - TH + O(k + 1) 
H is BNF+ GT = G H 2  - TH = T(AH2 - K) 

where A. = T,/T - 1. In this last case the periodicity equations are A. dH2(x) = dfi(x). 
Hence, by considering A. as a Lagrange multiplier we see the following. 

(vii) For a system in Birkhoff normal form, the nonlinear normal modes on a 
given 'energy level set' H2 = E correspond exactly to the critical points of the 
perturbation I? on this energy level set. 

In the case that GT is finitely determined in the class of S'-invariant functions 
(and in the case that {H2,  a} = 0, l? polynomial), the periodicity equations dGT = 0 
are equivalent to a set of polynomial equations. Therefore, in these cases it makes 
sense to look for complex solutions of the periodicity equations. (Alternatively, one 
could redo the above analysis replacing S1 by @ - {0}, R2" by @*", etc.) The obvious 
advantage of looking for these 'complex nonlinear normal modes' is that their 
number will be less dependent on the detailed coefficients entering in the 
perturbation A. Furthermore, this number of complex nonlinear normal modes is 
clearly an upper bound for the number of real ones. 

The rest of this paper is devoted to the computation of this number for the 
(1 : 1 : 1 : . . . : 1) resonance. To be more precise, we assume the following. 

(I) H2 is of the form (1) with all w, equal to some wo. 
(11) The system is in Birkhoff normal form, i.e. {Hz ,  a} = 0. 
(111) fi is homogeneous of degree k and generic in some appropriate sense. (It 

follows from (I) and (11) that k = 2d for some integer d; cf lemma 2.1.) 
To satisfy the curiosity of the reader we list, in table 1, this number of complex 

normal modes for a small number of degrees of freedom n and order of perturbation 
d .  (For general formulae see 06.) 

The organisation of the paper is as follows. In 02 we reformulate the problem of 
counting the nonlinear normal modes on a given energy level set via the orbit space 
as counting critical points of a map n: U-, @. To see that n is a C"-fibre bundle 
outside a finite set of critical values we need some control of n at infinity. We do this 
by describing a compactification of n to a map ll : X+ P1 in 83. In 04 we then ,use 
the complex version of Morse theory, called Lefschetz theory, to relate the critical 
points of n to Euler characteristics of some explicit projective varieties. In 05 we 
compute these Euler characteristics by computing the Chern classes of their tangent 
bundles. This then leads to explicit formulae which are given in 06, where we also 
discuss applications and possible generalisations. 

Table 1. The number of normal modes for n 
degrees of freedom at dth order of perturbation. 

2d n = l  n = 2  n = 3  n = 4  n = 5  

2 1  2 3 4 5 
4 1  6 39 284 2205 
6 1  14 255 5260 114605 



448 D van Straten 

2. The orbit space for the (1 : 1 : . . . : 1) resonance 

Consider the Hamiltonian system of (n + 1)  uncoupled harmonic oscillators with the 
same frequency. After a (complex) symplectic coordinate change and time rescaling 
this system is described by the Hamiltonian 

Hz:C2("+l)_,C 
n 

( ~ 0 ,  . . . > xn, YO, * * * > ~ n )  ++ E x,Y~* 
r = O  

This Hamiltonian generates a C* action which is given by 

(A, b l ,  Y,)) - (Ax,, A-ly,). @* x @2(n+1)+ @2(n+') 

The orbit space Y is the space whose points correspond to the closed orbits of the 
above C* action. It has a natural structure of an analytic space. 

Lemma 2.1. The orbit space Y is isomorphic to the affine cone c C", m = ( n  + l)', 
over the Segre embedding (cf examples 2.10 and 2.14 on p 13 of [4]):  

0: P" x P" + pm-' 
(xo:x1:.. . :xn;y0:y1:. * .  :yn)-(xOyo:X1yo:. . . :x,y,:. . . :x,y,). 

In particular, Y has a unique singular point at the origin. 

Proof, This is immediate, because the ring of polynomial functions which are 
invariant under the C* action is generated by the II, :=xry,. These functions define 
a mapping from C'("+') to C" which is constant on the orbits of the C* action and 
separates the closed ones. Hence the image in C" can be identified with the orbit 
space Y. 0 

Note that the dimension of Y is 2n + 1, but in @" it is defined by the vanishing of 
the (" ')2 2 X 2 minors of the matrix IT = (IT,). Hence, for n 3 2, this number is 
much bigger than the codimension of Y in C", i.e. Y is not a complete intersection. 

Next we study the energy levels E, defined by H2 = E inside Y. Note that the 
function H2= C:=OITrr is linear on the ambient space C" of Y.  Let p :  Y - (0)- 
P" x P" be the radial projection map. 

Lemma 2.2. 

P" x P". 
(i) The space R := (2 E P" X P" I Hz(z)  = 0} is a smooth hyperplane section of 

(ii) For each E # 0 the radial projection map p gives an isomorphism 

p :  E, c Y+ U:=P"  X P" - R. 

Proof. Statement (i) follows from the fact that {H2 = 0} is transverse to P" x P", 
as can be checked by a direct computation which we omit. For statement (ii) see 
also figure 1: the energy level set E,  is the intersection in C" of Y and the 
hyperplane H2 = E. For E # 0 this hyperplane does not pass through 0, the singular 
point of Y,  so there is a unique line between a point of E,, E # 0, and 0. This sets up 
an injective map from E, to P" X P" which clearly has as image the set U. 0 

Figure 1 is a schematic representation of the state of affairs in lemma 2.1 and 
lemma 2.2. Note the two rulings of P" X P". 
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Figure 1. The orbit space Y and its associated structure. 

Let v d  be the vector space of homogeneous polynomials of degree d in the 
invariants II, and let fi E vd. We consider the perturbed Hamiltonian system with 
Hamiltonian H = H2 + fi. We are interested in the complex nonlinear normal modes 
of this system, which lie on a given energy level set E,, E # 0. By the result quoted 
in the introduction, these periodic orbits correspond to the critical points of the 
perturbation fi on the level sets of H2. We translate this into the following lemma. 

Lemma 2.3. Let n: U+C be given by z ~ f i ( y ) l ( H ~ ( y ) ~ )  where y E p-'(z). Then 
the following are equivalent: 

(i) y E Y - ( 0 )  is a complex nonlinear normal mode for the system with 
Hamiltonian H = H2 + fi 

(ii) the point z = p ( y )  is a critical point for the map n. 

Proof. Note first that the map n is indeed well defined because fi and are 
homogeneous of degree d. By property (vii) of 31 y is such a periodic orbit if and 
only if the function H has a critical point on the energy level set E,, i.e. if the 
differentials of the functions H2 and H are linearly dependent on y .  By 
differentiation of the map n this is seen to be equivalent to p ( y )  = z being a critical 
point for n (as one could expect from lemma 2.2). 0 

The usual way to study critical points of a real function on a smooth manifold is to 
use Morse theory (see [9]). Here we will use the complex analogue of Morse theory, 
called Lefschetz theory, to count the number of critical points of the map n : U+ @. 
As the space U is not compact, we need some control over the behaviour of n 'at 
infinity' to conclude that n is a smooth fibration over the complement of a finite bad 
set c C. This can be done in a nice way by compactifying the map n. 

3. Compactification of the map rc 

As a first step we can extend the map n to a map 

JG,:P" x P" - D-P' 
z+ (fi(z) : H,(z)d) 

where D := { z  E P" x P" I fi(z) = H,(z) = 0} is the intersection of the hyperplane 
section R with the hypersurface fi = 0 of degree d. 
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Lemma 3.1. The set WO defined by 

WO:= { A  E V, 1 the hypersurface H = 0 in Pm-* intersects R transversely) 

is Zariski open dense in V,. 

Proof. We can use the d-tuple embedding ud : Pm-'-t  PN, N = (" -: +,) - 1, whose 
components are the monomials of degree d in m variables (see example 2.12 on p 13 
of [4]). The linear hyperplanes in PN correspond to the degree-d hypersurfaces in 
P"-'. Then Bertini's theorem (the forerunner of Sard's theorem, see theorem 8.18 
on p 179 of [4]) states that a general hyperplane intersects U , ( & )  transversely, i.e. R 
and A = 0 intersect transversely. U 

From now on we assume that I? E WO. So in that case the space D is smooth and 
around a point p E D we can find local coordinates u l ,  u2, . . . , v2n on Pn x P" such 
that one has 

H2 = u1 

When we restrict the map ne to the (punctured) (u l ,  u2) plane it is given in these 
coordinates by (ul,  u 2 ) - ( u 2 : u f )  E P1. Hence the fibre of this map over the point 
( A : p )  is a curve in the ( u l ,  u2) plane with equation Auf - pu2 = 0. When we vary the 
point (A : p )  E P1 we cover the whole plane. 

D = { u l  = u2 = 0) A = u2. 

Fibres of ne for two different values of d are shown in figure 2. 
We see that the problem of extending n, to a map from the whole of P" x P" to 

P1 is that the closures of these curves all contain the origin, so that point 'does not 
know where to go'. One can overcome this difficulty by blowing up. The blowing up 
of a space X along a subspace Y results in a space Z which is the same as X ,  except 
that Y is replaced by the projectified normal bundle $(IVY) of Y in X (see pp 28-30 
and 163-171 of [4]). There is a map b l :Z -+X,  the blowing down map, which 
contracts P(NY) to Y. The strict transform of a subvariety W C X  is defined to be 
the closure of bl-'(W\Y) in 2. For example, blowing up the (ul ,  u2) plane at the 
origin has the effect of replacing this point by the projective line of directions 
through the origin. The blow-up space Z in this case is a manifold that can be 
covered by two copies of C2. In coordinates for these charts the blow-down map is 
the following: 

COPY 1 bl:C2-+C2; (wl, w2)-(w 
copy I1 (U11 U21 - ( U 1 , U I U Z )  

Figure 2. Fibres of n, around a point of D for d = 1 (left) and d = 2 (right). 



Periodic orbits near a resonant equilibrium point 45 1 

Figure 3. Blowing up C2 in a point. 

(In fact, the blow-up space 2 is obtained by gluing these two copies of C2 via these 
maps, and turns out to be isomorphic to the cotangent bundle of P'.) The P' that is 
blown down is given on the left of figure 3 by w1 = 0, and on the right by u1 = 0. 

One can pull back the family of curves A U $  - puZ = 0 to the space obtained by 
blowing up the origin. The resulting curves in figure 4 are given by the following 
equations: 

for d = 1 
for d = 2 

Awf-'w$ - p = 0; 
Auf-1 - pu2 = 0. 

We see that after one blow up we get for d = 2 the same picture as before the 
blow up, but with d replaced by d - 1. If we blow up the family of curves with d = 1, 
they become separated on the blow up. The nice thing about blowing up is that one 
can repeat the process. As soon as the curves become separated, one can extend the 
map. So after blowing up d times at a point, the map 

can be extended to a map PI. 

Figure 4. Blowing up the fibres of figure 2. 
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n 

V 

X 

LP' 

Figure 5. Fibres of the map n. 

Remember that the above map was a representation of what happened with the 
map ne : P" x P" - D + P1 in a two-dimensional slice transverse to a point of D. The 
above arguments then provide the following proposition. 

Proposition 3.2. Let E WO. The map ne : P" X P" - D -j P1 can be extended to a 
map n : X +  PI. The space X is obtained from P" x P" by blowing up d times along 
a space that is isomorphic to D. The fibre F, : = Il- l(m),  = (1 : 0), consists of (the 
strict transform of) the hyperplane R ,  together with a chain of (d  - 1) P1 bundles 
over (spaces isomorphic to) D, which intersect each other in copies of D. The P1 
bundle over D introduced in the last blow up intersects all fibres transversely. 0 

The schematic picture in figure 5 may clarify the situation. 

4. Topology of the map 

In 43 we compactified the map n: U +  C to some map I l : X - ,  P'. As in ordinary 
Morse theory, there is a relation between the topology of X and the critical points of 
the map Il. By (1.4), these critical points correspond to the complex non-linear 
normal modes we want to count. 

Lemma 4.1. Let 

smooth intersection of P" x P" and a degree d hypersurface in P'"-l 

F - D, where F is as above. 

E WO. Then there is a finite set S = S' U {w} c P* such that: 
(i) Il : X  - lT1(S)-+ P' - S is a C" fibre bundle with fibre F diffeomorphic to a 

(ii) n: U - n- ' (S ' )+ C - S' is a C" fibre bundle with fibre diffeomorphic to 

Proof. The set S of non-regular values of Il is finite, by Bertini-Sard. Because X is 
compact, it follows from the Ehresmann fibration theorem that I3 is a C" fibre 
bundle away from S. The fibre over the point r is equal to (the strict transform of) 
the intersection of 5'" X P" with the degree d hypersurface H - rHi = 0. This proves 
(i), and (ii) follows immediately from (i). 0 

By the fibration property (if f : X +  Y is a fibre bundle with fibre F, then 
x ( X )  = x(Y)x(F);  see for example, p 182 of [ 2 ] )  we find 

~ ( x  - n-l(s)) = X ( F ) X ( P  - s). (4.1) 
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Next we look at the special fibres F,,  s E S .  These fibres will be singular in 
general. If the critical points on F, are all isolated, then it is not so difficult to relate 
the topology of F, to F. In fact one has in general 

x(F,) = X(F)  + (-l)dimqLs (4.2) 
where ps : = Exec px  and ,tix is the so-called Milnor number of the germ of the map II 
around x E X. 

Intermezzo 4.2. The Milnor number p is a number that is attached to a germ 
f : (U?, 0)- (C, 0) with an isolated critical point. It is the most important invariant 
off and can be defined as follows: 

p : = dimc( O/J(f)) 
where 0:= C { x l ,  x,,  . . . , x,} is the ring of convergent power series near the origin 
in C p  and J(f) := (aflax,, af lax,, . . . , a f / a x , )  is the Jacobian ideal in 6, 
generated by the partial derivatives o f f .  This number p determines the relation 
between the topology of f = 0 and f = t, t # 0. To be precise, one can find a 
representative of f on a space of the form B(E, q) := { x  E Cp I JIxII s E ,  If(x)l G q }  
such that: 

(i) the fibres F,:=f- ' ( t )  are transverse to { x  E CP I llxll = E } ;  

(ii) the fibre Fo is contractible. 
Then one has the following fundamental result of Milnor (see [lo]). 
(i) f : B ( E ,  q) - &,* {t E C 1 It1 6 q, 1 # 0} is a C" locally trivial fibre bundle with 

(ii) The restriction f : { x  E Cp 1 llxll = E, If(x)l q}+ { t  E C I It1 s q} is a trivial 

(iii) The fibre F has the homotopy type of a bouquet of p spheres of dimension 

fibre F. 

fibre bundle with fibre dF. 

(P - 1). 

For more details we refer to the standard works on this subject, like [ l ,  101. An 
immediate consequence of the above local structure is (4.2) mentioned above. We 
say that f has a non-degenerate critical point if its Milnor number p is equal to 1. 
This is the same as saying that f has a Morse point at 0, i.e. after a coordinate 
change one has f = x: + x i  + . . . +x; .  

Lemma 4.3. There is a Zariski open dense subset W, c WO c V, such that for H E W, 
the map : X - II-'(w)- P' - { w }  has only non-degenerate critical points (with 
distinct II values). 

Proof. Let Z c PN be the image of the d-tuple embedding of P" x P" c P"-* (cf 
lemma 3.1). The hypersurfaces H i  = 0 and = 0 can be considered as linear 
hyperplanes in PN, hence as elements of the dual space (PN)*. So the family of 
hypersurfaces SI? - t H i  = 0 for (s : t )  E P' corresponds to a line L in this (P")*. We 
let P be the projective space of all lines L through the point a := [Hf = 01 E (PN)* 
and let p : ( P N ) *  - { a } - P  be the radial projection map. Consider the set 
I?:= { ( x ,  H )  E 2 x (PN)* 1 H (7 Z is singular at the point x } .  It is easy to see that dim 
r = N - 1. (cf pp 179-80 of [4]). By a local calculation one can show that the set A ,  
the projection of r in (PN)* ,  also has dimension N - 1 and that a smooth point of A 
exactly corresponds to H (7 Z having precisely one ordinary double point. The radial 
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projection map induces a map p : A  - {a }+  P between spaces of the same 
dimension N - 1. The complement of the ramification locus of this map now is a 
Zariski open dense set. Points of this set correspond to lines L c (PN)* of the form 
SI? - tH f  = 0 which intersect A transversely (away from a) ,  i.e. to choices of H E WO 
such that the corresponding map II : X  - II-'(w)-+ Pi - {E} has only non- 
degenerate critical points (with distinct values). (We omit some further details, 
which are standard anyway.) U 

Let W, c WO be the set of E WO such that the associated map I I : X  - II-l(w)-+ 
P' - { w }  has only isolated critical points. Because W, contains W,, it is also (Zariski) 
dense in V,. 

Definition 4.4. For a H E W, we define a number M by 

M : =  c ps. 
seS' 

So M is the number of critical points of the map n : U-. C, counted with multiplicity 
equal to the Milnor number. Note that for H E W2 all multiplicities are equal to 1. 

Theorem 4.5. Let H E W,. Then one has 

M = x(Pn X Pn)  - x ( R )  - x ( F )  + x(D). 

Proof. Choose small discs B(s )  c Pi around the points s E S and let B := Uses B(s) .  
Now we have by Mayer-Vietoris the following formula: 

~ ( x )  = x(x - n-'(s)) + ~ ( I I - ' ( B ) )  - ~ ( ( x  - n-'(s)) n I I - ' (B ) ) ,  

But ( X  - I T 1  (S)) n I7-l (B) = IT' (B - S). As II is a fibration over the union of 
the punctured discs B - S, and the Euler characteristic of the circle is zero, we see 
that the last term of the above formula is actually zero. Furthermore, the set B 
contracts to S, so II-'(B) contracts to USESF,. By proposition 3.2 we can compute 
the Euler characteristic of X :  each time D is replaced by its projectivised normal 
bundle, the Euler characteristic increases by x(bundle)-x(D); the bundle is a P1 
bundle over D, so by the fibration property the first term is 2x(D). Thus 

x ( X )  = x(P" x P") + dx(D) X(Q = x(4) + (d  - 1)X(D)  
where the second result is obtained by a similar argument. 

Using this in combination with (4.1) and (4.2) then gives, after some rearrange- 
ments, the formula of the theorem. (Alternatively, one can use part (ii) of Lemma 
4.1 and do the above calculation immediately for the original map n: U+ C.) U 

The result in theorem 4.5 relates M ,  which, by lemma 2.3 and definition 4.4, is 
equal to the number of complex nonlinear normal modes of the Hamiltonian system 
H2+ for E W2, to Euler characteristics of some explicit spaces. In 95 we 
compute these numbers using Chern classes. 

5. Euler characteristics 

Every topological space X has cohomology groups H k ( X )  : = H k ( X ,  Z), which should 
be thought of as the group of codimension k cycles. The intersection product 
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H ~ ( x )  8 H"(x)-,H~+"(x) makes H * ( X ) : =  $k>OHk(X) into a ring. When xis a 
smooth compact connected manifold of dimension n, then there is a natural 
isomorphism deg : H"(X)-,  Z. A map f : X - ,  Y between smooth compact manifolds 
of dimension n or respectively m induces two maps: 

(I) f * : H k (  Y )  -, Hk(X)  
(11) f *  :Hk(X)-H"-"+k(Y) Gysin map 

pull back of cycles 

which are related to each other by the projection formula: 

f * ( f * x y )  = x f * Y ,  
If f i s  an inclusion map, then [XI : = f * ( l x )  E H"-"(Y) is called the cohomology class 
of X in Y .  For all these facts we refer to any standard text book on algebraic 
topology like [ 2 , 7 ] .  

Furthermore, every complex vector bundle E on X carries Chern classes 
ci(E)  E H2'(X) which measure the non-triviality of E. The total Chern class is 
defined as c ( E )  = C ci(E)  E H * ( X ) .  Two important properties of the Chern class 
are: 

(i) iff : X -  Y is a map and E a vector bundle on Y then c ( f * E )  = f * c ( E )  
(ii) if 0-E-,  F-G-0 is a short exact sequence of vector bundles, then 

c ( F )  = c(E)c(G).  
When X is a complex manifold, then its tangent bundle Tx has a complex 

structure and one puts c ( X )  : = c( Tx). The topological Euler characteristic x ( X )  is 
related to c ( X )  by x ( X )  = deg ( c n ( X ) ) ,  where n = dimcX. As an example, consider 
the space P". Then H*(P") = Z[x] / (x"") ,  where x E H2(Pn)  is the class of a linear 
hyperplane. The total Chern class of P" is given by c(Pn) = ( 1  + x)"+', and indeed 
n + 1 = x(P") = deg (c(P")). (For all these facts on Chern classes we refer to [ 5 , 1 1 ]  
or any other textbook on the subject.) 

Similarly, H*(P" X P") = Z [ x ,  y ] / ( x n + ' ,  y n + ' ) ,  as readily follows from the 
Kiinneth formula, and c(PH X P") = ( 1  +x)"+'  ( 1  + y)"+' .  

Consider now our Segre embedding of P" x P" in P", m = (n  + 1)2 - 1. Because 
each of the factors P" is embedded linearly, the cohomology class of the linear 
hyperplane section 4 is x + y .  Let Xd be the smooth intersection in P" of P" x Pn 
and a hypersurface of degree d and let i :Xd 4 P" X P" be the inclusion map. The 
tangent bundle of x d  sits in an exact sequence 

0- T x d + i * T p ~ x p . - t N - t O  

where N is the normal bundle of Xd in P" X P". 
Because x d  is a degree-d hyperplane section of P" X P" one has 

c ( N )  = i*(l + d ( x  + y ) ) .  Using the projection formula and the multiplicative 
property of Chern classes over short exact sequences we find 

i ,c(Xd) = [ d ( x  + y ) / ( l  + d ( x  + y ) ) ] ( l  + x)"+'( l  + E Z [ X ,  y ] / ( x " + ' ,  yn+') .  ( 5 . 1 )  

Similarly, if Xd,e is the smooth intersection of P" X P" and hypersurfaces of degree d 
and e in P" we get 

i*c(Xd,e) = [de(x + Y ) ~ / ( I  + d(x + y ) ) ( I  + e(x + y ) ) ] ( l +  x)"+'(I  + y)"+' .  ( 5 4  

Corollary 5.1. Let H E W,. Then one has 

M = coefficient of x"y" in [ ( I  + (x + y ) ) ( l  + d(x + y ) ) ] - ' ( l +  x ) n + ' ( l +  y)"+' .  

In particular, M depends only on II and d and we put M = M ( n ,  d). 



456 D van Straten 

Proof. The result in theorem 4.5 expresses M in Euler characteristics of the spaces 
P" X P", R, F and D. But R =X1, F = X d  and D = X l , d ,  so we can use (5.1) and 
(5.2) and take top Chern classes. After some rearrangements we then find the above 
formula. 0 

The fact that this final formula is simpler than the intermediate steps suggests 
that there might be a simpler argument for obtaining the result of corollary 5.1. 

6. Final results 

Corollary 5.1 gives a formula for the number M = M ( n ,  d )  of complex nonlinear 
normal modes in the (n  + 1) degrees of freedom system with Hamiltonian Hz + A, 
where Hz is the (1 : 1: 1 : . . . : 1) resonance and is a generic homogeneous 
perturbation of degree 2d which commutes with H2. We now will study these 
numbers M ( n ,  d )  a little closer. 

Theorem 6.1. The numbers M ( n ,  d )  have the following properties. 
(i) M ( n ,  d )  is a polynomial of degree 2n in d whose leading coefficient is (',")d2". 
(ii) The generating function F(  T )  : = CnaO M ( n ,  d)T" is given by 

F ( T )  = (1 - ~)-3/2[1- (2d - 1)21-1~ 

(iii) Define polynomials a, in d by a, : = M ( m  - 1, d) lm,  m a 1. Then the a, 
satisfy the following recursion relation: 

q = l  

aZk = 1 - 2r(alazk-l  + a2u2k-2 + . . . + akak) 

a2&+l= 1 - 2r(a1az& + UZU2&'+ . . . + U&Uk+l) 
where r : = d(1- d). 

Proof. Statement (i) is obtained immediately from corollary 5.1. For statement (ii) 
note that 

coefficient of x"y" in A(1+ x)"+'(l + y)"+' = ReqO)(A[(l + x-l)(l + y-')]"+'). 

(In our case A = [(1+ a)( l  + do)]-', (T = x + y.) 
So the generating function can be written as 

F ( T )  = M ( n ,  d)T" = T-lRes(oj(A [(l +x-')(l +y-')T]") 
n 30 m a 0  

= T-'(1/2ni)Z// {Axy[xy - (1 +x)( l  +y)T]}-l dw dy 

where the integration is over (something homologous to) a small torus 1x1 = E ,  

JyI = E. (I thank F Beukers for showing me this trick.) This double integral can be 
computed in two steps. First integrate out the x, using the residue theorem (around 
x = T(l +y)/[y( l -  T )  - TI). Then we are left with the y integral, which has as 
denominator a quadratic polynomial in y (with coefficients depending on 7'). Using 
the residue theorem again we find the above formula for F ( T ) .  
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Statement (iii) is obtained by observing that the function G(T) := (2r)-'[l+ 
4rT/(1- T)]-1'2 has as derivative the function F ( T ) ;  hence the coefficient of T" in 
G( T )  is precisely a,. The recursion formula then follows by comparing coefficients 
of 

2 

G ( T ) ' = ( Z  amTm) = ( 2 r ) - 2 + r - 1 ( T + T 2 + T 3 + .  . .). 0 
n 3 O  

Corollary 6.2. 
(i) 
(ii) the polynomials a, have integral coefficients and in fact M ( n ,  d )  is an odd 

( ~ ( n ,  d)/(2d - I ) ~ " )  = I ;  

multiple of (n  + 1). 

Proof. Statement (i) follows from part (ii) of theorem 6.1 by looking at the radius of 
convergence of the power series F ( T ) .  Statement (ii) follows from part (iii) of 
theorem 6.1 by induction. 0 

We now give a list of the first five ai polynomials, computed via the recursion 
formula in part (iii) of theorem 6.1: 

a , = 1  
(12 = 1 - d + d2 
a3 = 1 - 2d + 4d2 - 4d3 + 2d4 
a4 = 1 - 3d + 9d2 - 17d3 + 21d4 - 15d5 + 5d6 
c15 = 1 - 4d + 16d2 - 44d3 + 86d4 - 116d5 + 104d6 - 56d7 + 14d8. 

Remark 6.3. The number of complex nonlinear normal modes tends to be rather 
big, as the list in the introduction already indicates. It is important to find how many 
of these can be real, because those are the only ones which correspond to physically 
relevant periodic orbits. Unfortunately I do not have any results in this direction, 
but I believe that for an open set of coefficients for I? all M ( n ,  d )  complex orbits 
actually are real. For one and two degrees of freedom it is easily checked to be the 
case. A very interesting case is that of the ( 1 : l : l )  resonance with a quartic 
perturbation commuting with H2 (so n = 2,' d =2) .  Here we find 39 complex 
nonlinear normal modes. In [12,13] Montaldi et al study Hamiltonian systems with 
symmetry near an equilibrium point. Usually the group action will force all 
frequencies mi to be equal. Furthermore, from symmetry considerations alone one 
can deduce the existence of a number of nonlinear normal modes. Montaldi et a1 
discuss a model of the methane molecule, which has as an essential subsystem such 
a (1 : 1 : 1) resonance with a quartic perturbation (which has tetrahedral symmetry). 
From symmetry considerations it follows that there are always at least 27 nonlinear 
normal modes, but for special choices of the perturbation (an open set in coefficient 
space) there can be 12 more, so indeed 39 in total. This example actually was the 
initial motivation for this paper. 

Remark 6.4. One can imagine several generalisations of the above results. In the 
first place one can ask what happens for arbitrary perturbations A instead of 
homogeneous ones. One would expect that if the lowest-order term of I? is generic, 
then the number of complex nonlinear normal modes is not changed by the 
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higher-order terms. Secondly, one can ask what happens for the other resonances. 
Part of the constructions of this paper can be carried out in this more general 
context: the orbit space of a general resonance is isomorphic to a weighted 
homogeneous cone over a product of two weighted projective spaces. For a 
perturbation which is quasi-homogeneous in the appropriate sense one can imitate 
the construction of the map JJ : X - +  PI, but now X is no longer a smooth space, 
which complicates the Chern class computation. Hopefully these ideas will be 
substantiated in a future publication. 
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