C. Birkenhake,¹ H. Lange,¹ D. van Straten²

¹ Mathematisches Institut, Bismarckstrasse 1¹/₂, D-8520 Erlangen, Federal Republic of Germany

² Universität Kaiserslautern, Fachbereich Mathematik, Erwin Schrödinger Straße,

D-6750 Kaiserslautern, Federal Republic of Germany

0. Introduction

Let A denote an abelian surface over the complex numbers and L an ample line bundle on A. Suppose $A = \mathbb{C}^2/\Lambda$ with a lattice Λ in \mathbb{C}^2 . The first chern class $c_1(L)$ may be considered as an integer valued alternating form E on Λ . According to a theorem of Kronecker there is a basis of Λ with respect to which E is given by the matrix $\begin{pmatrix} 0 & D \\ -D & 0 \end{pmatrix}$ with $D = \begin{pmatrix} d_1 & 0 \\ 0 & d_2 \end{pmatrix}$ and positive integers d_i with $d_1 | d_2$. The pair (d_1, d_2) is called the *type* of L. According to Riemann - Roch $h^0(L) = d_1 d_2$ and L induces a rational map $\varphi_L: A \to \mathbb{P}_{d_1d_2-1}$. We want to study this map in the special case $(d_1, d_2) = (1, 4)$. Let us first recollect what is known in the other cases:

For $d_1 \ge 3 \varphi_L$ is an embedding by a classical theorem of Lefschetz (see [M]).

For $d_1 = 2 \varphi_L$ is an embedding if and only if $d_2 > 2$ and (A, L) is not of the form $(E_1 \times E_2, p_1^*L_1 \otimes p_2^*L_2)$ with elliptic curves E_1 and E_2 and line bundles L_i on E_i . (see [L-N]).

Suppose now $d_1 = 1$. The complete linear system |L| has base components if and only if $(A, L) = (E_1 \times E_2, p_1^*L_1 \otimes p_2^*L_2)$ as above. We assume that (A, L) is not a product of elliptic curves, since it is easy to work out the map φ_L in the exceptional case.

For $d_2 = 2 |L|$ has exactly 4 base-points. Blowing up we get a morphism $\tilde{A} \to \mathbb{P}_1$ with general fibre a smooth curve of genus 3 (see [B]).

If $d_2 \ge 3$, |L| is base point free and we get a morphism $\varphi_L: A \to \mathbb{P}_{d_2-1}$. If $d_2 = 3$, $\varphi_L: A \to \mathbb{P}_2$ is a 6:1 covering ramified in a curve of degree 18. If $d_2 \ge 4$, there is a cyclic covering

 $\pi: A \to B$

of degree d_2 and a line bundle M on B such that $\pi^*M = L$. Let X denote the unique divisor in |M| and put $Y = \pi^{-1}(X)$ (see Sect. 1).

If $d_2 \ge 5$, φ_L is an embedding if and only if X and Y do not admit elliptic involutions, compatible with the action of the Galois group of π . In the exceptional case φ_L is a double covering of an elliptic scroll (see [R; H-L]).

In this paper we study the remaining case $d_2 = 4$, and it turns out that something very similar to the case $d_2 \ge 5$ happens. In fact, our main result is:

Theorem 1. (i) $\varphi_L: A \to \overline{A} \subseteq \mathbb{P}_3$ is birational onto a singular octic \overline{A} in \mathbb{P}_3 if and only if X and Y do not admit elliptic involutions compatible with the action of the Galois group of π .

(ii) In the exceptional case $\varphi_L: A \to \overline{A} \subseteq \mathbb{P}_3$ is a double covering of a singular quartic \overline{A} , which is birational to an elliptic scroll.

Apart from the $\mathbb{Z}/4\mathbb{Z}$ -covering

 $\pi: A \to B$

it turns out that a certain $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ -covering

 $p: A \to C$

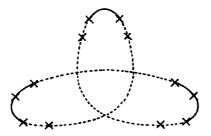
is of importance for the geometry of \overline{A} (see Sect. 1).

In case (i) of the theorem, C is a Jacobian, and in case (ii), C is the product of two elliptic curves. In both cases one can find an equation $Q(y_0, y_1, y_2, y_3) = 0$ for $\overline{A} \subset \mathbb{P}_3$ from the equation $\widetilde{Q}(z_0, z_1, z_2, z_3) = 0$ for the image of the Kummer mapping $C \to \mathbb{P}_3$ just by setting $z_i = y_i^2$.

In case (i) we find

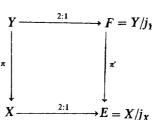
$$\begin{aligned} Q(y_0, y_1, y_2, y_3) &\coloneqq \lambda_1^2 (y_0^4 y_1^4 + y_2^4 y_3^4) + \lambda_2^2 (y_1^4 y_3^4 + y_0^4 y_2^4) + \lambda_3^2 (y_0^4 y_3^4 + y_1^4 y_2^4) \\ &\quad + 2\lambda_1 \lambda_2 (y_0^2 y_1^2 + y_2^2 y_3^2) (y_1^2 y_3^2 - y_0^2 y_2^2) \\ &\quad + 2\lambda_1 \lambda_3 (y_0^2 y_3^2 - y_1^2 y_2^2) (y_0^2 y_1^2 - y_2^2 y_3^2) \\ &\quad + 2\lambda_2 \lambda_3 (y_1^2 y_2^2 + y_0^2 y_3^2) (y_1^2 y_3^2 + y_0^2 y_2^2) \\ &\quad + \lambda_0^2 y_0^2 y_1^2 y_2^2 y_3^2 \end{aligned}$$
(*)

where $(\lambda_0:\lambda_1:\lambda_2:\lambda_3) \in \mathbb{P}_3 - S$ with $S = \{\lambda_1\lambda_2\lambda_3 = 0\}$. \overline{A} is smooth outside the 4 coordinate planes $H_i = \{y_i = 0\}$. At the coordinate vertices \overline{A} has 4-fold points (tangent cone $\simeq 4$ planes), and in the coordinate planes \overline{A} has a double curve with ordinary double points at the coordinate vertices.

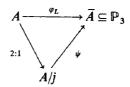


On each of the four double curves of \overline{A} there are 12 pinch points, indicated by a cross. (Their position can be computed explicitly in terms of the λ_i , see Sect. 2.) We remark, that our quartic equation $\overline{Q}(z_0, z_1, z_2, z_3) = 0$ is essentially the same as the one in [H, p. 198].

Suppose now that we are in case (ii) of the theorem, that is there is a cartesian diagram



with elliptic curves E and F. The involution j_Y extends to an involution $j:A \to A$ and φ_L factorizes as follows



Moreover, A/j is a \mathbb{P}_1 -bundle over the elliptic curve F and ψ is birational. The coordinates y_0, \ldots, y_3 of \mathbb{P}_3 can be chosen in such a way, that \overline{A} is given by the equation

$$\lambda_1(y_0^2 y_1^2 + y_2^2 y_3^2) + \lambda_2(y_1^2 y_3^2 - y_0^2 y_2^2) = 0 \tag{**}$$

for some $(\lambda_1:\lambda_2) \in \mathbb{P}_1 - \{(1:0), (0:1), (1:i), (1:-i)\}$. \overline{A} is singular exactly along the 2 coordinate lines $y_0 = y_3 = 0$ and $y_1 = y_2 = 0$. On each of these lines \overline{A} has four pinch points, which determine the elliptic curve E.

Note, that the family of abelian surfaces of type (ii) is 2-dimensional, whereas the family of a quartics \overline{A} is only one-dimensional. This means that over a fixed general quartic \overline{A} there is a one-dimensional family of abelian surfaces, that is the ramification divisor of the map φ_L varies.

In the proof of Theorem 1 we use some properties of the action of the extended Heisenberg group $H_e(L)$ on the map $\varphi_L: A \to \mathbb{P}_3$.

Furthermore, in the proof we have to distinguish between two cases for the map $\pi: A \to B$

I. B = Jac(X) the Jacobian of a smooth curve X of genus 2.

II. $B = E_1 \times E_2$ a product of elliptic curves.

In Sect. 6 we will see that in the octic case the point $(\lambda_0:\dots:\lambda_3) \in \mathbb{P}_3$ determines the abelian surface via equation (*). To be more precise:

Theorem 2. $\mathbb{P}_3 - S/\{\lambda_0 \to \pm \lambda_0\}$ is the moduli space of abelian surfaces with (i) polarization of type (1, 4) inducing a birational map $A \to \overline{A}$ and (ii) a decomposition of K into a direct sum of cyclic subgroups.

Here K denotes the kernel of the isogeny of A onto the dual abelian surface \hat{A} associated to the polarization. For the precise definition see Sect. 1. Note that this moduli space is a 24:1 covering of the usual moduli space of polarized abelian surfaces of type (1:4).

Finally, in Sect. 7 we compute the subspace of this moduli space corresponding to abelian surfaces of type II above. We will show that these abelian varieties are represented by the points $(\lambda_0:\dots:\lambda_3)\in\mathbb{P}_3$, satisfying the cubic equation

$$(4\lambda_2\lambda_3+\lambda_0^2+2(\lambda_2+\lambda_3)^2)(\lambda_2+\lambda_3)-2\lambda_1^2(\lambda_2-\lambda_3)=0.$$

We would like to thank W. Barth and D. Eisenbud for some valuable conversations as well as W. Ruppert for the computation in Remark 2.3.

1. Preliminaries

Let L denote an ample line bundle of type (1, 4) on an abelian surface $A = \mathbb{C}^2/A$ over the field of complex numbers. We want to study the map $\varphi_L: A \to \mathbb{P}_3$ given by the complete linear system |L|. Since φ does not depend on the group law of A, we may choose the origin of A in such a way that L is symmetric, that is $(-1)_A^*L \simeq L$. In other words, without loss of generality we may assume that L is symmetric and will do this without further noticing.

Lemma 1.1. |L| has a fixed component if and only if there are elliptic curves E_1 and E_2 on A, such that $(A, L) \cong (E_1 \times E_2, p_1^*L_1 \otimes p_2^*L_2)$ with line bundles L_1 of degree 4 on E_1 and L_2 of degree 1 on E_2 .

Proof. Suppose |L| has a fixed component F, that is $L \simeq N \otimes \mathcal{O}_A(F)$, where N is a line bundle on A with $h^0(L) = h^0(N)$. Let $K_0(N)$ (resp $K_0(F)$) denote the connected component containing 0 of the subgroup $\{x \in A \mid T_x^*N \simeq N\}$ (resp $\{x \in A \mid T_x^*F \sim F\}$). An easy consequence of Riemann-Roch is, that $E_1 := A/K_0(N)$ and $E_2 := A/K_0(F)$ are elliptic curves. Moreover, there are line bundles L_1 of degree 4 on E_1 and L_2 of degree 1 on E_2 , such that $N = p_1^*L_1$ and $\mathcal{O}_A(F) = p_2^*L_2$, where $p_i: A \to E_i$ denotes the natural projection. From [L-N, Corollary 2.3] we get that

$$(p_1, p_2): A \rightarrow E_1 \times E_2$$

is an isomorphism of abelian surfaces. This completes the proof of the lemma, the converse implication being obvious. \Box

For the rest of the paper we assume that (A, L) is not isomorphic to a product of elliptic curves as polarized abelian varieties. By Lemma 1.1 this means that |L| has no base component.

Let $\hat{A} = \operatorname{Pic}^{0}(A)$ denote the dual abelian variety and $\phi_{L}: A \to \hat{A}, a \mapsto T_{a}L \otimes L^{-1}$ the canonical homomorphism associated to L. The kernel K(L) of ϕ_{L} is isomorphic to $\mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$.

Lemma 1.2. (a) The linear system |L| is base point free. (b) Every curve $C \in |L|$ is of arithmetical genus 5. (c) A general member C of |L| is smooth and irreducible.

Proof. (a) K(L) acts on the base locus of |L|. Hence, if it would be nonempty, it would consist of at least 16 = #K(L) points. On the other hand, for the

self-intersection number of L we have $(L^2) = 8$ implying that there are at most 8 base points, a contradiction. (b) and (c) follow from the adjunction formula and Bertini's theorem.

Let $e^L: K(L) \times K(L) \to \mathbb{C}_1^*$ denote the alternating form associated to L, that is $e^L(x, y) = \exp(-2\pi i E(\tilde{x}, \tilde{y}))$, where $E = c_1(L)$ and $\tilde{x}, \tilde{y} \in \mathbb{C}^2$ are elements projecting to x, y. Choose a decomposition $K(L) = K_1 \oplus K_2$ with maximal isotropic subgroups K_1 and K_2 with respect to the form e^L . K_1 and K_2 are cyclic groups of order 4 and e^L induces a duality $K_2 \simeq \operatorname{Hom}(K_1, \mathbb{C}^*)$ (see [M1]). Let

$$\pi: A \to B := A/K_2$$

denote the natural projection. π is a cyclic étale covering of degree 4. There is a line bundle M on B such that $L = \pi^*M$, since K_2 is isotropic with respect to e^L (see [M, p. 231]). L is symmetric, so we can choose M also to be symmetric. By Riemann-Roch $h^0(M) = 1$, and M defines a principal polarization on B. Let X be the unique divisor of |M|. X is either smooth of genus 2 and B is the Jacobian of X or X consists of 2 elliptic curves E_1 and E_2 intersecting in 1 point and $B = E_1 \times E_2$. For Y defined by the cartesian diagram

$$Y \subseteq A$$

$$\pi \downarrow \qquad \downarrow \pi$$

$$X \subseteq B$$

we have

Lemma 1.3. (a) If X is smooth, Y is a smooth curve of genus 5, double-elliptic in at least 3 ways. In particular, Y is neither hyperelliptic nor trigonal. (b) If $X = E_1 + E_2$, then $Y = F_1 + F_2$ is a union of 2 elliptic curves intersecting exactly in a cyclic subgroup of order 4 of A.

Proof. (a) Let $p:X \to \mathbb{P}_1$ be the hyperelliptic double covering. The composition $p \circ \pi: Y \to \mathbb{P}_1$ is a galois covering with the dihedral group D_8 as galois group. D_8 contains exactly 5 involutions and one can apply the formula of Chevalley-Weil (see [C-W]) to compute their genus. It turns out that 3 of them are elliptic involutions, one of genus 2 and one of genus 3. By a theorem of Castelnuovo (see [C]) such a curve cannot be hyperelliptic or trigonal. The smoothness of Y and assertion (b) follows from the fact that π is étale.

The translation T_a of A given by a point of A is induced by an automorphism of $\mathbb{P}_3 = \mathbb{P}_3(H^0(L))$ if and only if $a \in K(L)$. This yields a projective representation $\tilde{\varrho}: K(L) \to PGL_3(\mathbb{C})$. Defining the group H(L) to be the fibre product of $\tilde{\varrho}$ and the canonical map $GL_4(\mathbb{C}) \to \mathbb{P}GL_3(\mathbb{C})$ we get a commutative diagram with exact rows

H(L) is the Heisenberg group of L and ϱ its Schrödinger representation (see [M1]). Since L is symmetric, $(-1)_A$ also induces an automorphism, say ι of \mathbb{P}_3 . Defining $K_e(L) \cong K(L) \rtimes \mathbb{Z}/2\mathbb{Z}$, the group generated by the translations T_a , $a \in K(L)$ and the automorphism ι , we get similarly as above the extended Heisenberg group $H_e(L)$ over $K_e(L)$ and a representation $H_e(L) \to GL_4(\mathbb{C})$.

Let σ and τ be elements of $H_e(L)$ such that $p(\sigma)$ and $p(\tau)$ (which by abuse of notation we also denote by σ and τ) are generators of K(L). The coordinates x_0, \ldots, x_3 of \mathbb{P}_3 can be chosen in such a way that

$$\sigma: x_j \mapsto x_{j-1}, \quad \tau: x_j \mapsto i^{-j} x_j, \quad \iota: x_j \mapsto x_{-j}$$

where the indices of the coordinates are considered to be elements of $\mathbb{Z}/4\mathbb{Z}$ (see [M1]). It turns out to be convenient to change the coordinates. Define new coordinates by

$$y_0 = x_0 + x_2$$
 $y_2 = x_3 + x_1$
 $y_1 = x_0 - x_2$ $y_3 = x_3 - x_1$

On these coordinates σ , τ and ι act as

$$\sigma:\begin{cases} y_{0} \mapsto y_{2} \\ y_{1} \mapsto y_{3} \\ y_{2} \mapsto y_{0} \\ y_{3} \mapsto -y_{1} \end{cases} \begin{pmatrix} y_{0} \mapsto y_{1} \\ y_{1} \mapsto y_{0} \\ y_{2} \mapsto iy_{3} \\ y_{3} \mapsto iy_{2} \end{cases} \iota:\begin{cases} y_{0} \mapsto y_{0} \\ y_{1} \mapsto y_{1} \\ y_{2} \mapsto y_{2} \\ y_{3} \mapsto -y_{3} \end{cases}$$

We consider \mathbb{P}_3 as the space of hyperplanes in $H^0(L)$. Then the global sections of L can be considered in a natural way as points of P_3 . In particular, the coordinates y_0, \ldots, y_3 correspond to the points $P_0 = (1:0:0:0), \ldots, P_3 = (0:0:0:1)$. For $i = 0, \ldots, 3$ let H_i denote the coordinate plane $\{y_i = 0\}$.

Lemma 1.4. Let \overline{A} denote the image of the map $\varphi_L: A \to \mathbb{P}_3$.

(a) \overline{A} is a surface of degree 8, 4 or 2 in \mathbb{P}_3 .

(b) The coordinate points P_0, \ldots, P_3 are of multiplicity 4 (resp. 2, resp. 1) in \overline{A} if deg A = 8 (resp. 4, resp. 2).

Proof. (a) follows from the fact that $(L^2) = 8$. As for (b), the point P_3 (resp. the plane H_3) is the (-1)-eigenspace (resp. (+1)-eigenspace) of ι acting on $H^0(L)$. On the other hand, the set A_2^- (resp. A_2^+) of 2-division points x of A, where ι acts on the fibre L_x as multiplication by -1 (resp. +1), is of order 4 (resp. 12) (see [M1, p. 315]), and φ_L is $H_e(L)$ -equivariant. This implies that φ_L maps the 4 points in A_2^- to P_3 . But $\sigma(P_3) = P_1$, $\tau(P_3) = P_2$, and $\sigma\tau(P_3) = P_0$ and thus the preimage of any P_i consists of at least 4 points of A. Now the assertion follows from (a) noting that any coordinate line contains exactly 2 of the points P_i .

We can use the action of $H_e(L)$ to determine an equation for \overline{A} in \mathbb{P}_3 . Let $Q \in \mathbb{C}[y_0, \ldots, y_3]$ denote a homogeneous polynomial with zero set \overline{A} . It is easy to see that the action of $H_e(L)$ induces a character χ of degree 1 of $K_e(L)$ such that for all $\alpha \in K_e(L)$

 $K_e(L)$ contains the 4 reflections

$$\begin{aligned} & t\sigma^2\tau : y_0 \mapsto -y_0 \quad t\tau^2 : y_2 \mapsto -y_2 \\ & t\sigma^2 : y_1 \mapsto -y_1 \quad t : y_3 \mapsto -y_3 \end{aligned}$$

The factor commutator group of $K_e(L)$ is $(\mathbb{Z}/2\mathbb{Z})^3$ such that the characters of degree 1 of $K_e(L)$ take only values in $\{\pm 1\}$. Hence $\chi(\tau\sigma^2\tau) = \chi(\sigma^2) = \chi(\tau^2) = 1$, and for all 4 reflections the character χ takes the same value, namely $\chi(t)$.

If $\chi(l) = -1$, Q is a sum of monomials of the form $ay_0^j y_1^k y_2^l y_3^m$ with $a \in \mathbb{C}$ and odd numbers j, k, l and m such that $j + k + l + m = \deg \overline{A}$. But this contradicts Lemma 1.4(b).

Hence $\chi(t) = +1$ and Q is actually a polynomial in the squares y_0^2, \ldots, y_3^2 , that is there is a polynomial \tilde{Q} over \mathbb{C} such that

$$Q(y_0, \dots, y_3) = \tilde{Q}(y_0^2, \dots, y_3^2).$$
 (2)

Denoting by \overline{C} the surface in $\mathbb{P}_3 = \mathbb{P}_3(z_0, \dots, z_3)$ defined by $\widetilde{Q}(z_0, \dots, z_3) = 0$, equation (2) means geometrically:

Lemma 1.5. The map $\mathbb{P}_3(y_0, \ldots, y_3) \to \mathbb{P}_3(z_0, \ldots, z_3)$, $z_i = y_i^2$ induces a covering $\bar{p}: \bar{A} \to \bar{C}$, 8:1 outside the coordinate planes.

Corollary 1.6. \overline{A} is of degree 8 or 4 and \overline{C} of degree 4 or 2 in \mathbb{P}_3 .

Proof. Suppose \overline{A} is of degree 2 in \mathbb{P}_3 . Then \overline{C} is a plane in \mathbb{P}_3 , which according to Lemma 1.4(b) contains all coordinate vertices P_i , a contradiction. (In order to keep notation as simple as possible, we do not distinguish between the coordinate vertices in $\mathbb{P}_3(y_0, \ldots, y_3)$ and $\mathbb{P}_3(z_0, \ldots, z_3)$.)

Our next aim is to show that $\overline{p}:\overline{A}\to\overline{C}$ is induced by an isogeny $p:A\to C$ of abelian surfaces.

Let $K(L)_2 = \langle 2\sigma, 2\tau \rangle$, the subgroup of 2-torsion points of K(L), and consider the isogeny $p:A \to C = A/K(L)_2$. Since $K(L)_2$ is isotropic with respect to e^L , there is a line bundle N on C with $L = p^*N$.

Proposition 1.7. The following diagram commutes

N defines a principal polarization on C and thus φ_{N^2} is a Kummer-mapping.

Proof. The map $\varphi_{N^2} \circ p: A \to \mathbb{P}_3$ is given by the linear system of $\operatorname{Im}(p^*: H^0(N^2) \to H^0(L^2))$ which is the subspace $H^0(L^2)^{K(L)_2}$ of sections invariant under the action of $K(L)_2$. On the other hand, y_0^2, \ldots, y_3^2 can be considered as elements of $H^0(L^2)$ and the map $\bar{p} \circ \varphi_L$ is defined by these sections. It suffices to show that y_0^2, \ldots, y_3^2 are

invariant under the action of $K(L)_2$, since $H^0(L^2)^{K(L)_2}$ is of dimension 4. But this is clear from the action of σ and τ .

Corollary 1.8. \overline{A} is smooth outside the coordinate planes.

For the proof note that \overline{C} (as a Kummer surface resp. a smooth quadric in \mathbb{P}_3) is smooth outside the coordinate planes and the map \overline{p} is étale here.

2. The octic

It follows from Proposition 1.7 that φ_L is birational if and only if the Kummer map φ_{N^2} is 2:1, that is if and only if C is not a product of elliptic curves. We conclude that for a general abelian surface A of type (1, 4) the map φ_L is birational and \overline{A} is an octic, since the space of étale 4-fold coverings of products of 2 elliptic curves is two-dimensional. In Sect. 4 we will give another criterion for this (see Theorem 4.1). Here we assume that φ_L is birational and derive an equation for the octic \overline{A} in \mathbb{P}_3 .

Let the notations be as in Sect. 1. Since *i* acts as identity on the curve $\overline{A} \cap H_3$, the map $\varphi_L | \varphi_L^{-1}(\overline{A} \cap H_3)$ goes *n*:1 onto its image $\overline{A} \cap H_3$ for some $n \ge 2$. But *n* has to be 2, since $\varphi_{N^2} | \varphi_{N^2}^{-1}(\overline{C} \cap H_3)$ is of degree 2. Applying the automorphisms σ , τ and $\sigma\tau$ we have proven

Proposition 2.1. The octic \overline{A} has a double curve along the coordinate planes H_i for i = 0, ..., 3.

Recall that σ and τ act on the coordinates $z_i = y_i^2$ as

$$\sigma: \begin{cases} z_0 \mapsto z_2 \\ z_1 \mapsto z_3 \\ z_2 \mapsto z_0 \\ z_3 \mapsto z_1 \end{cases} \tau: \begin{cases} z_0 \mapsto z_1 \\ z_1 \mapsto z_0 \\ z_2 \mapsto -z_3 \\ z_3 \mapsto -z_2 \end{cases}$$

and according to Lemma 1.4(b), Lemma 1.5 and Proposition 2.1 $\tilde{Q} \in \mathbb{C}[z_0, \dots, z_3]$ is a quartic with the properties

(a) For i = 0, ..., 3 there is a quadric F_i in 3 variables such that

$$\widetilde{Q}(z_0,\ldots,z_{i-1},0,z_{i+1},\ldots,z_3)=F_i^2(z_0,\ldots,z_{i-1},z_{i+1},\ldots,z_3).$$

(b) $\overline{C} = (\widetilde{Q} = 0)$ is singular in the coordinate points P_0, \dots, P_3 . Applying (1) of Sect. 1 we get

$$F_1^2(z_0, z_2, z_3) = \chi(\tau)F_0^2(z_0, -z_3, -z_2)$$

$$F_2^2(z_0, z_1, z_3) = \chi(\sigma)F_0^2(z_3, z_0, z_1)$$

$$F_3^2(z_0, z_1, z_2) = \chi(\tau\sigma)F_0^2(z_2, -z_1, -z_0)$$

Now write \tilde{Q} in the following form:

$$\begin{aligned} \widetilde{\mathcal{Q}}(z_0,\ldots,z_3) &= F_0^2(z_1,z_2,z_3) + \chi(\tau)F_0^2(z_0,-z_3,-z_2) + \chi(\sigma)F_0^2(z_3,z_0,z_1) \\ &+ \chi(\tau\sigma)F_0^2(z_2,-z_1,-z_0) + p(z_0,\ldots,z_3) \end{aligned}$$

with some $p \in \mathbb{C}[z_0, \ldots, z_3]$.

According to (b) there are constants λ_1 , λ_2 , $\lambda_3 \in \mathbb{C}$ such that

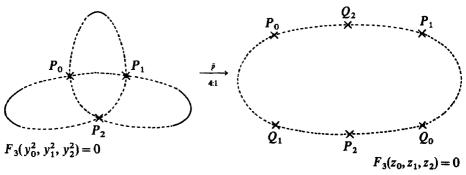
$$F_0(z_1, z_2, z_3) = \lambda_1 z_2 z_3 + \lambda_2 z_1 z_3 + \lambda_3 z_1 z_2.$$

Now a small computation shows that $\chi \equiv 1$ and

$$\tilde{Q}(z_0, \dots, z_3) = \lambda_1^2 (z_0^2 z_1^2 + z_2^2 z_3^2) + \lambda_2^2 (z_1^2 z_3^2 + z_0^2 z_2^2) + \lambda_3^2 (z_0^2 z_3^2 + z_1^2 z_2^2) + 2\lambda_1 \lambda_2 (z_0 z_1 + z_2 z_3) (z_1 z_3 - z_0 z_2) + 2\lambda_1 \lambda_3 (z_0 z_3 - z_1 z_2) (z_0 z_1 - z_2 z_3) + 2\lambda_2 \lambda_3 (z_1 z_2 + z_0 z_3) (z_1 z_3 + z_0 z_2) + \mu_0 z_0 z_1 z_2 z_3$$
(3)

for some $\mu_0 \in \mathbb{C}$. Choosing λ_0 to be a square root of μ_0 and inserting $z_i = y_i^2$ we get equation (*) of the introduction. Note that $\lambda_1 \lambda_2 \lambda_3 \neq 0$ because $\tilde{Q} = 0$ is a Kummer surface.

The map $\overline{p}: \overline{A} \to \overline{C}$ restricted to a coordinate plane, say H_3 , looks as follows



According to the theory of Kummer surfaces (see [K-W] or [G-H]) the conic passes exactly through 6 of the 16 singular points, among them the coordinate points P_0 , P_1 , P_2 . We denote the other 3 points by Q_0 , Q_1 , Q_2 . The preimages of the coordinate points are the coordinate points, whereas \bar{p} is étale over Q_0 , Q_1 and Q_2 . Thus the corresponding preimages consist of 4 points for each Q_i . These 12 points are exactly the pinch points of the surface \bar{A} in the plane H_3 . We obtain

Proposition 2.2 \overline{A} has exactly 48 pinch points, 12 in each coordinate plane.

Remark 2.3. The pinch points can be determined explicitly in terms of the coefficients $\lambda_0, \ldots, \lambda_3$ of the equation (*):

It suffices to compute the points Q_0 , Q_1 , Q_2 of the Kummer quartic \overline{C} . In order to do this consider the linear projection $q: \mathbb{P}_3 - P_3 \to H_3 \simeq \mathbb{P}_2$ with center P_3 . The ramification locus of the restriction $q|\overline{C}$ consists of the 6 lines $\overline{P_0P_1}$, $\overline{P_1P_2}$, $\overline{P_2P_0}$, $\overline{Q_0Q_1}$, $\overline{Q_1Q_2}$, $\overline{Q_2Q_0}$ (see [G-H]). It suffices to determine the last 3 lines. The points of intersection of \overline{C} with the line passing through P_3 and a point $(z_0, z_1, z_2, 0)$ of H_3 is given by the equation

$$\tilde{Q}(tz_0, tz_1, tz_2, 1) = 0.$$

Since P_3 is a double point of \overline{C} , we can divide this equation by t^2 to get a quadratic equation in t. Its discriminant is an equation for the ramification locus of $q|\overline{C}$.

Thus we can divide it by $z_0 z_1 z_2$ and get the following cubic:

$$\begin{split} f &= 4\lambda_1\lambda_2\lambda_3^2z_0^3 + 4\lambda_1\lambda_2^2\lambda_3z_1^3 - 4\lambda_1^2\lambda_2\lambda_3z_2^3 \\ &+ z_0^2z_1(6\lambda_1\lambda_2^2\lambda_3 + 2\lambda_1^3\lambda_3 + 2\lambda_1\lambda_3^3 + \lambda_0^2\lambda_1\lambda_3) \\ &+ z_0^2z_2(-6\lambda_1^2\lambda_2\lambda_3 - 2\lambda_2^3\lambda_3 - 2\lambda_2\lambda_3^3 + \lambda_0^2\lambda_2\lambda_3) \\ &+ z_0z_1^2(6\lambda_1\lambda_2\lambda_3^2 - 2\lambda_1^3\lambda_2 + 2\lambda_1\lambda_2^3 + \lambda_0^2\lambda_1\lambda_2) \\ &+ z_0z_2^2(6\lambda_1\lambda_2\lambda_3^2 + 2\lambda_1^3\lambda_2 - 2\lambda_1\lambda_2^3 - \lambda_0^2\lambda_1\lambda_2) \\ &+ z_1^2z_2(6\lambda_1^2\lambda_2\lambda_3 - 2\lambda_2\lambda_3^3 - 2\lambda_2^3\lambda_3 + \lambda_0^2\lambda_2\lambda_3) \\ &+ z_1z_2^2(-6\lambda_1\lambda_2^2\lambda_3 + 2\lambda_1\lambda_3^3 + 2\lambda_1^3\lambda_3 + \lambda_0^2\lambda_1\lambda_3) \\ &+ z_0z_1z_2(2\lambda_1^2\lambda_2^2 - 2\lambda_1^2\lambda_3^2 - 2\lambda_2^2\lambda_3^2 + \frac{1}{4}\lambda_0^4 - \lambda_1^4 - \lambda_2^4 - \lambda_3^4). \end{split}$$

The zero set of f is just the union of the 3 lines $\overline{Q_0Q_1}, \overline{Q_1Q_2}, \overline{Q_2Q_0}$. Thus it suffices to decompose f into a product of linear forms. This has been done explicitly by W. Ruppert using a computer. Since the formulas are messy we do not repeat them here.

3. The quartic

In this section we will determine an equation for the surface $\overline{A} = \varphi_L(A)$ in \mathbb{P}_3 in the remaining case that is under the assumption that \overline{A} is a quartic. Let the notations be as in Sect. 1. In particular, \overline{A} is given by a quartic polynomial $Q(y_0, \ldots, y_3) = 0$ and $K_e(L)$ acts via a character χ . There is a quadratic polynomial $\tilde{Q}(z_0, \ldots, z_3)$ such that $Q(y_0, \ldots, y_3) = \tilde{Q}(y_0^2, \ldots, y_3^2)$, since $\chi(t) = +1$. Denoting $F_0 := \tilde{Q}(0, z_1, z_2, z_3), \ldots, F_3 := \tilde{Q}(z_0, z_1, z_2, 0)$ there is a $p \in \mathbb{C}[z_0, \ldots, z_3]$

Denoting $F_0 := \tilde{Q}(0, z_1, z_2, z_3), \dots, F_3 := \tilde{Q}(z_0, z_1, z_2, 0)$ there is a $p \in \mathbb{C}[z_0, \dots, z_3]$ such that

$$\vec{Q}(z_0, \dots, z_3) = F_0(z_1, z_2, z_3) + F_1(z_0, z_2, z_3) + F_2(z_0, z_1, z_3)$$

+ $F_3(z_0, z_1, z_2) + p(z_0, z_1, z_2, z_3)$

Applying (1) of Sect. 1 we get

$$F_{1}(z_{0}, z_{2}, z_{3}) = \chi(\tau)F_{0}(z_{0}, -z_{3}, -z_{2})$$

$$F_{2}(z_{0}, z_{1}, z_{3}) = \chi(\sigma)F_{0}(z_{3}, z_{0}, z_{1})$$

$$F_{3}(z_{0}, z_{1}, z_{2}) = \chi(\tau\sigma)F_{0}(z_{2}, -z_{1}, -z_{0})$$

According to Lemma 1.4(b) F_0 is of the form

$$F_0(z_1, z_2, z_3) = \lambda_1 z_2 z_3 + \lambda_2 z_1 z_3 + \lambda_3 z_1 z_2$$

for some λ_1 , λ_2 , $\lambda_3 \in \mathbb{C}$. Inserting this we obtain with a small computation the following possibilities depending on the character χ :

χ(σ)	X(T)	Õ
+1	+ 1	$\lambda_1(z_0z_1 + z_2z_3) + \lambda_2(z_1z_3 - z_0z_2)$
-1	+ 1	$\lambda_1(z_2z_3 - z_0z_1) + \lambda_3(z_1z_2 - z_0z_3)$
+1	-1	$\lambda_2(z_1z_3 + z_0z_2) + \lambda_3(z_1z_2 + z_0z_3)$
-1	-1	not possible

One immediately checks that the 3 families are projectively equivalent. Hence we can choose the coordinates y_0, \ldots, y_3 of \mathbb{P}_3 in such a way that the quartic \overline{A} is given by the equation

$$\lambda_1(y_0^2 y_1^2 + y_2^2 y_3^2) + \lambda_2(y_1^2 y_3^2 - y_0^2 y_2^2) = 0$$
(4)

for some $(\lambda_1:\lambda_2) \in \mathbb{P}_1 - \{(1:0), (0:1), (1:i), (1:-i)\}$.

Note that $(\lambda_1:\lambda_2) \neq (1:0)$, (0:1), $(1:\pm i)$, since otherwise \overline{A} would be reducible, contradicting the irreducibility of A.

From (4) one immediately sees that \overline{A} is singular exactly along the coordinate lines $\{y_0 = y_3 = 0\}$ and $\{y_1 = y_2 = 0\}$.

Furthermore, one sees easily the pinch points at

(0: $y_1: y_2: 0$) with $(y_1^2: y_2^2) = (\lambda_2: \lambda_1)$ or $(\lambda_1: -\lambda_2)$ $(y_0: 0: 0: y_3)$ with $(y_0^2: y_3^2) = (\lambda_1: \lambda_2)$ or $(\lambda_2: -\lambda_1)$

Remark 3.1. Squaring (4) gives (*) with $\lambda_3 = 0$ and $\lambda_0^2 = 2(\lambda_1^2 - \lambda_2^2)$. Similarly, the two other characters correspond to $\lambda_2 = 0$ and $\lambda_0^2 = -2(\lambda_1^2 + \lambda_3^2)$ respectively $\lambda_1 = 0$ and $\lambda_0^2 = 2(\lambda_2^2 + \lambda_3^2)$. In this way one can consider the square of the quartic as a degeneration of the octic (*).

4. Birationality of φ_L

As introduced in Sect. 1 let $\pi: A \to B = A/K_2$ denote the natural projection. There is a line bundle M on B with $L = \pi^* M$. Let X be the unique divisor of |M| and $Y = \pi^{-1}(X)$. The aim of this section is to give a proof of the following theorem:

Theorem 4.1. Suppose that X and Y do not admit elliptic involutions compatible with the action of K_2 . Then $\varphi_L: A \to \overline{A} \subseteq \mathbb{P}_3$ is birational.

As a principally polarized abelian surface (B, X) is of one of the following 2 types: I. X is smooth of genus 2 and B = Jac(X).

II. $X = E_1 + E_2$ is the sum of 2 elliptic curves E_1 and E_2 intersecting in one point and $B = E_1 \times E_2$.

Case I. Assume that X is smooth of genus 2.

Since L and M are ample we have the following commutative diagram with exact rows

$$H^{0}(\omega_{Y})$$

$$\parallel$$

$$0 \to H^{0}(\mathcal{O}_{A}) \to H^{0}(L) \xrightarrow{r} H^{0}(L \mid Y) \to H^{1}(\mathcal{O}_{A}) \to 0$$

$$\uparrow^{\simeq} \uparrow^{\pi^{*}} \uparrow^{\pi^{*}} \uparrow^{\simeq}$$

$$0 \to H^{0}(\mathcal{O}_{B}) \xrightarrow{\sim} H^{0}(M) \to H^{0}(M \mid X) \to H^{1}(\mathcal{O}_{B}) \to 0$$

$$\parallel$$

$$H^{0}(\omega_{X})$$

Let H denote the hyperplane in \mathbb{P}_3 corresponding to Y. It suffices to show that

the restricted map $\varphi_L | Y: Y \to \overline{Y} \subseteq H$ is birational onto its image \overline{Y} , since then $\overline{Y} = \overline{A} \cap H$ and thus \overline{A} is of degree 8.

The map $\varphi_L|Y$ is given by the linear system $|\operatorname{Im} r|$. The galois group K_2 of π acts on $\operatorname{Im} r$ and the map $\varphi_L|Y: Y \to \overline{Y}$ is K_2 -equivariant. Furthermore we deduce from the above diagram

$$H^0(L|Y) = \operatorname{Im} r \oplus \pi^* H^0(M|X).$$

Comparing the dimensions we see that Im(r) is generated by the nontrivial representations of K_2 . From the equation

$$\deg(\varphi_L|Y) \cdot \deg \overline{Y} = \deg \omega_Y = 8$$

we get that deg $(\varphi_L | Y) = 1, 2$, or 4, \overline{Y} being non degenerate in \mathbb{P}_2 . Suppose first that deg $(\varphi_L | Y) = 2$ that is deg $\overline{Y} = 4$. Then there is an involution

 $j_Y: Y \to Y$ such that φ_L factorizes as $Y \xrightarrow{q_Y} Y' \xrightarrow{\psi} \overline{Y} \subseteq \mathbb{P}_2$ where $q_Y: Y \to Y' = Y/j_Y$

denotes the natural quotient. From the K_2 -equivariance of φ_L we get for every $y \in Y$ and $g \in K_2$

$$\varphi_L(gj_Y(y)) = g\varphi_L(j_Y(y)) = g\varphi_L(y) = \varphi_L(gy).$$

This implies

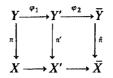
 $gj_{Y}(y) = \begin{cases} gy \\ \text{or} \\ j_{Y}(gy) \end{cases}$

In the first case we would have $j_Y(y) = y$ for all $y \in Y$, a contradiction. Hence j_Y commutes with the action of K_2 and there exists an involution j_X on X and a commutative diagram

where $X' = X/j_X$. Denote $L' := \psi^* \mathcal{O}_{\bar{Y}}(1)$. K_2 acts linearly on L' over the action of K_2 on Y'. This follows from the fact that K_2 is an isotropic subspace of K(L). Hence there is a line bundle M' of degree 1 on X' such that $\pi'^*M' = L'$. On the other hand, from the above statement on $\operatorname{Im} r$ we get that the map $\psi: Y' \to \mathbb{P}_2$ is given by the linear system associated to a subspace of $H^0(L')$ on which K_2 acts with no nonzero trivial subrepresentation. $h^0(M') \ge 1$ implies that $H^0(L')$ has a nonzero trivial subrepresentation. It follows that $g(Y') \le 1$, since otherwise ψ would be given by a complete linear system according to Riemann-Roch. On the other hand, $g(Y') \ne 0$, since Y is not hyperelliptic by Lemma 1.3(a). Hence we obtain g(Y') = 1.

Arguing as above we get $g(X') \neq 0$, since $h^0(M') = 1$. Thus we are left with the possibility g(Y') = g(X') = 1 and this is just the case excluded in our assumption.

Finally suppose that deg $(\varphi_L|Y) = 4$. \overline{Y} is a smooth conic in this case. As a map of degree 4 of smooth curves φ_L factorizes as $Y \xrightarrow{\varphi_2} Y' \xrightarrow{\varphi_2} \overline{Y} \subseteq \mathbb{P}_2$ with K_2 -equivariant morphisms of degree 2. As in the degree 2 case above we see successively that the involutions corresponding to φ_1 and φ_2 commute with the action of K_2 . So we obtain in 2 steps the following diagram:



with deg $\pi' = \text{deg } \bar{\pi} = 4$. Moreover, K_2 acts on $\bar{L} = \mathcal{O}_{\mathfrak{P}_2}(1) | \bar{Y}$ linearly over the action on \bar{Y} . It follows that there is a line bundle \bar{M} on \bar{X} with $\bar{L} = \bar{\pi}^* \bar{M}$, but this contradicts the fact that deg $\bar{L} = 2$ and deg $\bar{\pi} = 4$. This completes the proof of the theorem in Case I.

Case II. Assume now that $B = E_1 \times E_2$ and $X = E_1 + E_2$ with elliptic curves E_i and $(E_1 \cdot E_2) = 1$. Let $F_i = \pi^{-1}E_i$, that is $Y = F_1 + F_2$. The curves F_i are elliptic with $(F_1 \cdot F_2) = 4$, since π is étale. As in Case I we only have to show that $\varphi_{L_i}|Y: Y \to \overline{Y} \subseteq \mathbb{P}_2$ is birational.

Let us first consider the restriction $L|F_1$. We have the following diagram with exact lines similarly as above:

$$0 \to H^{0}(\mathcal{O}_{A}(F_{2})) \to H^{0}(L) \xrightarrow{r} H^{0}(L|F_{1}) \to H^{1}(\mathcal{O}_{A}(F_{2})) \to 0$$
$$\uparrow^{\simeq} \qquad \uparrow^{\pi^{*}} \qquad \uparrow^{\pi^{*}} \qquad \uparrow^{\simeq} \qquad \uparrow^{\simeq} \qquad 0 \to H^{0}(\mathcal{O}_{B}(E_{2})) \to H^{0}(M) \to H^{0}(M|E_{1})) \to H^{1}(\mathcal{O}_{B}(E_{2})) \to 0$$

The map $\varphi_L|F_1:F_1 \to \overline{F}_1 \subseteq \mathbb{P}_2$ is given by the linear series $|\operatorname{Im} r|$. From the above diagram we deduce

$$H^{0}(L|F_{1}) = \operatorname{Im} r \oplus \pi^{*}H^{0}(M|E_{1}).$$

Clearly $\pi^* H^0(M|E_1) = H^0(L|F_1)^{K_2}$ and the action of K_2 respects the decomposition. Thus Im r is the subvectorspace of $H^0(L|F_1)$ generated by the nontrivial representations of K_2 .

representations of K_2 . $L|F_1 = \mathcal{O}_{F_1}\left(\sum_{i=1}^4 a_i\right)$, where $\{a_1, \dots, a_4\} = F_1 \cap F_2$, is very ample on F_1 and the

complete linear system $|L|F_1|$ gives a K_2 equivariant embedding $F_1 \rightarrow \tilde{F}_1 \subseteq \mathbb{P}_3$. Denoting by P the point in \mathbb{P}_3 where K_2 and *i* act trivially and by H the K_2 - and *i*-invariant plane in \mathbb{P}_3 not containing P we have proved:

 \overline{F}_1 is the linear projection of the embedding $F_1 \to \widetilde{F}_1 \subseteq \mathbb{P}_3$ given by $|L|F_1|$ into the plane H with the point P as a centre. Thus the birationality of $\varphi_L|Y:Y \to \overline{Y}$ follows from the following lemma.

Lemma 4.2. Let m be a symmetric line bundle of degree 1 on E_1 , $l = \pi^*m$ and $F_1 \rightarrow \tilde{F}_1 \subseteq \mathbb{P}_3$ the embedding by the complete linear system |l|. The linear projection

 $p:\mathbb{P}_3 - \{P\} \rightarrow H$ with centre the K_2 - and *i*-invariant point P onto the K_2 - and *i*-invariant plane H induces a birational map $\tilde{F}_1 \rightarrow \bar{F}_1 \subseteq H$.

Proof. For a suitable choice of coordinates x_0, \ldots, x_3 of \mathbb{P}_3 the quartic \tilde{F}_1 in \mathbb{P}_3 is the complete intersection of the 2 quadrics

$$Q_1 = x_1^2 + x_3^2 - 2\lambda x_0 x_2$$
$$Q_2 = x_0^2 + x_2^2 - 2\lambda x_1 x_3$$

for some $\lambda \in \mathbb{C} - \{0, \pm 1, \pm i, \infty\}$ (see [M1, p. 351-353]). In these coordinates the group K_2 is generated by the automorphism $\tau: x_j \mapsto i^j x_j$ for j = 0, ..., 3 (see [M1]). Since *l* is symmetric the occurring maps are equivariant under the involution $(-1)_{F_1}$, which induces in the above coordinates of \mathbb{P}_3 the involution

$$i:\begin{cases} x_0 \mapsto x_0 & x_1 \mapsto x_3 \\ x_2 \mapsto x_2 & x_3 \mapsto x_1 \end{cases}$$

(see [M1]). By assumption P and H are invariant under the action of i and τ and H does not contain P. There are 2 possibilities for such a pair (P, H) namely

(i)
$$\begin{cases} P = (1:0:0:0) \\ H = \{x_0 = 0\} \end{cases}$$
 (ii)
$$\begin{cases} P = (0:0:1:0) \\ H = \{x_2 = 0\} \end{cases}$$

The projection $p: \tilde{F}_1 \to \bar{F}_1$ is birational if each line through P intersects \tilde{F}_1 in at most one point. This means in case (i) (the case (ii) is similar) that for any fixed $(0:x_1:x_2:x_3) \in H$ the system of equations

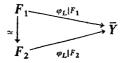
$$\begin{cases} Q_1(1, tx_1, tx_2, tx_3) = 0\\ Q_2(1, tx_1, tx_2, tx_3) = 0 \end{cases}$$

has at most one solution in t. But $P \notin \tilde{F}_1$ implies that $t \neq 0$ for any solution and the equations are equivalent to

$$\begin{cases} t(x_1^2 + x_3^2) = 2\lambda x_2 \\ t^2(2\lambda x_1 x_3 - x_2^2) = 1. \end{cases}$$

Now the assertion is obvious. \Box

We will continue with the proof of Theorem 4.1. We have seen that $\varphi_L|F_1:F_1 \to \overline{F}_1$ is birational. Similarly this is true for $\varphi_L|F_2:F_2 \to \overline{F}_2$ and we have to show that $\varphi_L|Y:Y \to \overline{Y}$ is birational. But $\overline{Y} = \overline{F}_1 \cup \overline{F}_2$ and $\varphi_L|Y$ can only be of degree 1 or 2. If it is of degree 2, then $\overline{Y} = \overline{F}_1 = \overline{F}_2$ and there is an isomorphism $F_1 \to F_2$ such that the diagram



commutes. K_2 -equivariance of the map $\varphi_L|F_1$ implies that the isomorphism $F_1 \rightarrow F_2$ commutes with the action of K_2 and this is just the situation which we excluded by assumption. This completes the proof of Theorem 4.1. \Box

5. The double covering φ_L

Let the notations be as above. In this section we want to study the situation excluded in Theorem 4.1. We will prove

Theorem 5.1. Assume that X and Y admit elliptic involutions compatible with the action of K_2 . Then the map $\varphi_L: A \to \overline{A} \subseteq \mathbb{P}_3$ is of degree 2 onto its image.

The assumption means that there is a commutative diagram

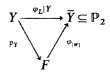
$$Y \xrightarrow{p_{Y}} F = Y/j_{Y}$$

$$\downarrow^{\pi} \qquad \qquad \downarrow^{\pi}$$

$$X \xrightarrow{p_{X}} E = X/j_{X}$$
(5)

with elliptic curves E and F. For the proof we need

Lemma 5.2. The line bundle L|Y descends to a line bundle N_F on F. K_2 acts on $H^0(N_F)$. Let W denote the subspace of $H^0(N_F)$ generated by the nontrivial representations of K_2 and $\varphi_{|W|}:F \to \mathbb{P}_2$ the associated map. Then the following diagram commutes



Proof. By the adjunction formula $L|Y = \omega_Y$, the canonical line bundle on Y. (Note that this makes sense also in the case $Y = F_1 + F_2$, since Y is a Gorenstein curve.) The involution j_Y acts on L|Y. Hence there is a line bundle N_F on F such that $\omega_Y = p_Y^* N_F$. $h^0(N_F) = 4$, since deg $N_F = 4$ and F elliptic.

Similarly $M|X = \omega_X$ descends to a line bundle N_E in E with $h^0(N_E) = 1$. It is now easy to see that $\bar{\pi}^* N_E = N_F$ and that the following diagram commutes:

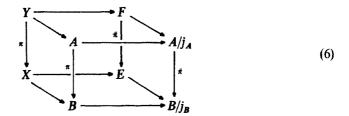
$$\begin{array}{ccc} 0 \longrightarrow H^{0}(N_{F}) \xrightarrow{p_{Y}^{*}} H^{0}(L \mid Y) \\ & \uparrow & \uparrow & \uparrow \\ \pi^{*} & \uparrow & \uparrow \\ 0 \longrightarrow H^{0}(N_{E}) \xrightarrow{p_{X}^{*}} H^{0}(M \mid X) \end{array}$$

This implies the remaining assertions. \Box

For the proof of Theorem 5.1 we will show that the involution j_Y extends to an involution j_A on A and that there is a birational map $\psi: A/j_A \to \overline{A} \subseteq \mathbb{P}_3$ such that the following diagram commutes

$$A \xrightarrow{\varphi_L} \overline{A} \subseteq \mathbb{P}_3$$
$$\bigwedge_{A/j_A} \psi$$

To prove this note that the involution $j_X: X \to X$ extends to an involution $j_B: B \to B$, since we are in the principally polarized case. Identifying $\operatorname{Pic}^0(X) = \operatorname{Pic}^0(B)$, we can say that both étale coverings $Y \to X$ and $A \to B$ are given by a cyclic subgroup $\langle \alpha \rangle \subset \operatorname{Pic}^0(X) = \operatorname{Pic}^0(B)$ of order 4. By assumption $j_B^*(\alpha) = j_X^*(\alpha) \in \langle \alpha \rangle$. This means that j_B lifts to an involution $j_A: A \to A$ commuting with the action of K_2 on A and restricting to the involution j_Y on Y. In other words we have a commutative diagram



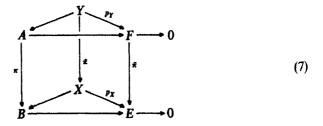
Thus j_A is an extension of the involution j_Y on Y such that $j_A^*L = j_A^*\mathcal{O}_A(Y) = \mathcal{O}_A(Y) = L$ and L descends to a line bundle $N = \mathcal{O}_{A/j_A}(F)$ on A/j_A . In particular the restriction |N||F is exactly the linear system $|N_F|$ implying that $h^0(N) = h^0(N_F) = h^0(L) = 4$. Hence φ_L factorizes via A/j_A . Finally if ψ would not be birational, φ_L would be of degree > 2 contradicting Corollary 1.6.

The morphism $\psi: A/j_A \to \overline{A}$ is not an embedding. In fact we know that \overline{A} is singular along 2 lines in \mathbb{P}_3 . On the other hand the following proposition shows that A/j_A is a smooth surface.

Proposition 5.3. A/j_A is a \mathbb{P}_1 -bundle over the elliptic curve F.

Moreover one can determine explicitly a vector bundle \mathscr{F} such that $A/j_A = P(\mathscr{F})$ (see [H-L, Sect. 5]. In fact, \mathscr{F} is the direct sum of two line bundles in this case.)

Proof. In the case $B = E_1 \times E_2$ the proof was given in [H-L, Sect. 5], so we will assume X smooth and B = Jac(X). By the universal property of the Jacobian for a suitable embedding $X \to B$ there is a surjective homomorphism $B \to E = X/j_X$ such that the bottom triangle of the following diagram commutes



From the property that the right hand square of diagram (6) is cartesian we get a homomorphism $A \to F$ completing diagram (7). Denote by P the Prym variety of the double covering p_X . P is the kernel of the homomorphism $B \to E$ (which is connected since p_X is ramified). Furthermore let Q be the kernel of $A \rightarrow F$. By diagram (7) Q is the preimage of P under π .

We claim that Q is isomorphic to P.

To see this, consider the following diagram

$$\begin{array}{cccc} 0 \to Q & \to A \to F \to 0 \\ & & & \downarrow & & \downarrow_{\pi} & \downarrow_{\pi} \\ 0 \to P & \to B \to E \to 0 \end{array} \tag{8}$$

and apply the serpent lemma.

 j_A acts nontrivially on Q, since the upper sequence of (8) is exact as a sequence of groups. Moreover since j_A acts trivially on F, the homomorphism $A \rightarrow F$ factorizes via A/j_A and we obtain the diagram

$$\begin{array}{cccc} 0 \to & Q & \to & A & \to F \to 0 \\ & & & \downarrow & & \swarrow \\ & & & Q/j_A \to A/j_A \end{array}$$

This implies that A/j_A is a fibre bundle over the elliptic curve F with fibre $Q/j_A \simeq \mathbb{P}_1$. \Box

6. Moduli

Given an ample line bundle L on the abelian surface $A = \mathbb{C}^2/A$, its first Chern class $c_1(L)$ may be considered as an alternating form E_A on the lattice Λ . We call E_A the polarization of A determined by L. It depends on the class of L modulo algebraic equivalence. Similarly the kernel K = K(L) of the isogeny $\phi_L: A \to \hat{A}$ depends only on the polarization E_A . There are 24 possibilities to decompose K into a direct sum of cyclic subgroups K_1 and K_2 maximal isotropic with respect to the alternating form e^L (e^L also depends only on the polarization, See Sect. 1). Consequently the moduli space $\mathscr{A}^0_{(1,4)}$ of triples $(A, E_A, K_1 \oplus K_2)$ is a 24:1 covering of the moduli space $\mathscr{A}_{(1,4)}^0$ of abelian surfaces with a polarization of type (1,4).

For an ample line bundle L of type (1,4) the fact, that the map $\varphi_L: A \to \mathbb{P}_3$ is birational or not, only depends on L modulo algebraic equivalence. So it makes sense to talk of a birational polarization. Let $\mathscr{A}_{(1,4)}^0$ denote the subset of triples $(A, E_A, K_1 \oplus K_2)$ of $\mathscr{A}_{(1,4)}^0$ such that E_A is birational. We have seen that $\mathscr{A}_{(1,4)}^0$ is open and dense in $\mathscr{A}_{(1,4)}^0$. It is the aim of this section to give an explicite description of $\mathscr{A}_{(1,4)}^0$.

Consider $\mathbb{P}_3 = \mathbb{P}_3(\lambda_0, \dots, \lambda_3)$ as the space of octic surfaces in $\mathbb{P}_3 = \mathbb{P}_3(y_0, \dots, y_3)$ with an equation (*) of the introduction. Equation (*) depends only on λ_0^2 and not on λ_0 itself. This defines an action of $\mathbb{Z}/2\mathbb{Z}$ on \mathbb{P}_3 . If $S \subset \mathbb{P}_3(\lambda_0, \dots, \lambda_3)$ denotes the set of $(\lambda_0; \dots; \lambda_3)$, such that (3) does not represent a Kummer surface, then we have

Theorem 6.1. There is a cononical bijection $\widetilde{\mathscr{A}}^{0}_{(1,4)} \xrightarrow{\sim} \mathbb{P}_{3} - S/\{\lambda_{0} \mapsto \pm \lambda_{0}\}$. In particular, $\widetilde{\mathscr{A}}^{0}_{(1,4)}$ is a rational variety.

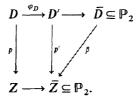
Proof. In Sect. 2 we associated to every triple $(A, E_A, K_1 \oplus K_2) \in \tilde{\mathscr{A}}_{(1,4)}^0$ an equation (*). Therefore it remains to show that a point $(\pm \lambda_0: \lambda_1: \lambda_2: \lambda_3) \in \mathbb{P}_3 - S$ determines $(A, E_A, K_1 \oplus K_2)$ in a canonical way.

Suppose $(\lambda_0:\dots:\lambda_3)$ is a point in $\mathbb{P}_3 - S$ and \overline{A} is the octic in $\mathbb{P}_3(y_0,\dots,y_3)$ defined by $(\lambda_0:\dots:\lambda_3)$ and (*). According to Lemma 1.5 there is a morphism $\overline{P}:\overline{A} \to \overline{C}$ of degree 8 with \overline{C} is the quartic given by (3) and the coefficients $\lambda_0,\dots,\lambda_3$.

Step I. The abelian surface A.

A general surface with equation (3) has 16 singular points and this is the maximal number of singular points for an irreducible quartic in \mathbb{P}_3 . Hence for any $(\lambda_0:\dots:\lambda_3)\in\mathbb{P}_3-S$ the surface \overline{C} is a Kummer surface. It determines a principally polarized abelian surface C as follows: The coordinate plane H_0 intersects \overline{C} in a double conic. On this conic there are 6 distinguished points P_1,\dots,P_6 , namely the nodes of \overline{C} on H_0 . Let $\varphi_Z:Z \to \overline{Z}$ denote the double cover ramified in P_1,\dots,P_6 . It is well known that C = Jac(Z) is the principally polarized abelian surface defining the Kummer surface \overline{C} , that is if $N = \mathcal{O}_C(Z)$, then $|N^2|$ gives the Kummer mapping $C \to \overline{C} \subseteq \mathbb{P}_3$ (see [G-H]).

The normalization \overline{D}' of the quartic $\overline{D} = \overline{A} \cap H_0$ with double points in P_1 , P_2 and P_3 is isomorphic to \mathbb{P}_1 . If D denotes the smooth curve associated to the composition of the function fields of D' and Z over the function field of \overline{Z} , we have the following situation



One easily sees, that φ_D is exactly ramified over the 12 pinch points $p'^{-1}(P_4)$, $p'^{-1}(P_5)$, $p'^{-1}(P_6)$, hence D is smooth of genus 5 and the map p is unramified. Thus $p:D \to Z$ extends to an étale cover of abelian surfaces, also denoted by $p:A \to C$.

As a composition of galois covers $D|\overline{Z}$ is a galois covering. Hence $p:D \to Z$ and $p:A \to C$ are galois coverings with groups $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

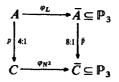
Finally note that the group structure in A, that is the choice of the point 0 in A, is determined by the group structure of the principally polarized abelian surface C only upto translation by an element of ker (p).

Step II. The line bundle L.

Define $L = p^*N$ and let $\varphi_L: A \to \overline{\overline{A}} \subseteq \mathbb{P}_3$ denote the map associated to |L|. We have to show that the coordinates of \mathbb{P}_3 can be chosen in such a way that $\overline{\overline{A}} = \overline{A}$.

For this we use the fact, that φ_L restricts to the composition $D \xrightarrow{\varphi_D} D' \to \overline{D} \subseteq \mathbb{P}_2$ and that we know this map. First of all $\overline{\overline{A}}$ cannot be a Kummer surface, since $D = \varphi_L^{-1}(\overline{D})$ is smooth of genus 5. Hence L is of type (1,4). It follows that $\overline{\overline{A}}$ is an octic, since otherwise (See Sect. 3) $\overline{\overline{A}}$ would not have a hyperplane section of type \overline{D} . According to Sect. 2 we can choose the coordinates of \mathbb{P}_3 in such a way that \overline{A} is defined by a polynomial of type (*) for some $(\lambda'_0; \dots; \lambda'_3) \in \mathbb{P}_3$ and such that \overline{D} is a hyperplane section.

But the hyperplane section determines the coefficients λ'_1 , λ'_2 and λ'_3 uniquely (see Sect. 2). This implies $\lambda'_i = \lambda_i$ for i = 1, 2, 3. Moreover, the pinch points in the hyperplane of \overline{D} are uniquely determined by the situation. But they determine the discriminant f of Remark 2.3. One immediately sees that the equation f = 0 and λ_1, λ_2 and λ_3 determine the coefficient λ_0 uniquely upto a sign. This completes the proof of the assertion. Summarizing we have the following diagram



Step III. The decomposition $K(L) = K_1 \oplus K_2$.

The group K(L) is independent of the group structure chosen at the end of Step I, since K(L) is invariant under translation by elements of $p^{-1}(0) \subseteq K(L)$. It follows from Step II that the map $\varphi_L: A \to \overline{A} \subseteq \mathbb{P}_3$ is K(L)-equivariant, where K(L)acts on \mathbb{P}_3 as above via the matrices for σ and τ of Sect. 1.

 φ_L maps the 4 points in A_2^- to the coordinate point P_3 (see proof of Lemma 1.4), whereas the remaining 12 2-division points, namely the points in A_2^+ , are mapped bijectively onto the set of pinch points in the coordinate plane H_3 . Now the inclusion ker $(p) \subseteq A_2^+$ implies that for all $x \in \text{ker}(p)$ and for all $\alpha \in \langle \sigma, \tau \rangle$ the set $\varphi_L^{-1}(\alpha(\varphi_L(x)))$ consists only of 1 point.

In particular the following definition makes sense: Let $x_1 := \varphi_L^{-1}(\sigma(\varphi_L(0)))$ and $x_2 := \varphi_L^{-1}(\tau(\varphi_L(0)))$. $K_1 = \langle x_1 \rangle$ and $K_2 = \langle x_2 \rangle$ are isotropic subgroups of K(L)cyclic of order 4 and we have ker $(p) = \langle 0, 2x_1, 2x_2, 2x_1 + 2x_2 \rangle$. We have to show that K_1 and K_2 are independent of the choice of 0 in A. But this follows from the fact that for every $x \subset \ker(p)$ we have

$$\varphi_L^{-1}(\sigma(\varphi_L(x))) - x = x_1$$
 and $\varphi_L^{-1}(\tau(\varphi_L(x))) - x = x_2$

which is easily checked. This completes the proof of Theorem 6.1. П

Remark 6.2. In fact, the set $S \subset \mathbb{P}_3(\lambda_0, \dots, \lambda_3)$ turns out to be simply the set $\lambda_1 \lambda_2 \lambda_3 = 0$. In the family of octics (*) the following degenerations occur:

1. One of the $\lambda_i = 0$ (i = 1, 2, 3), other general: The quartic $\tilde{Q} = 0$ is an elliptic scroll with 2 singular lines. These can be interpreted as Kummer varieties of generalized Jacobians.

2. Two of the $\lambda_i = 0$ (i = 1, 2, 3), others general: \tilde{Q} decomposes into two distinct quadrics.

3. The three conics $\{\lambda_1 = 0; \lambda_0^2 = 2(\lambda_2^2 + \lambda_3^2)\}, \{\lambda_2 = 0; \lambda_0^2 = -2(\lambda_1^2 + \lambda_3^2)\}$ and $\{\lambda_3 = 0; \lambda_0^2 = 2(\lambda_1^2 - \lambda_2^2)\}: \tilde{Q}$ becomes a perfect square (see Remark 3.1). 4. All $\lambda_i = 0, i = 1, 2, 3: \tilde{Q}$ decomposes into four planes.

7. Cyclic covers of products of elliptic curves

Let $(A, E_A, K_1 \oplus K_2)$ denote a point of $\widetilde{\mathscr{A}}^0_{(1,4)}$. In the proof of the main result we had to distinguish the 2 cases $A/K_2 \cong \operatorname{Jac}(X)$ and $A/K_2 \cong E_1 \times E_2$. In this section we want to determine explicitly the set of $(\lambda_0 : \cdots : \lambda_3) \in \mathbb{P}_3$ for which the latter case occurs. We will see that this is a certain cubic in \mathbb{P}_3 :

Theorem 7.1. Let $(A, E_A, K_1 \oplus K_2) \in \tilde{\mathcal{A}}_{(1,4)}^0$ corresponding to a point $(\lambda_0; \dots; \lambda_3) \in \mathbb{P}_3$ under the isomorphism of Theorm 6.1. Then $A/K_2 \cong E_1 \times E_2$ if and only if $(\lambda_0; \dots; \lambda_3)$ satisfies the equation

$$(4\lambda_2\lambda_3+\lambda_0^2+2(\lambda_2+\lambda_3)^2)(\lambda_2+\lambda_3)-2\lambda_1^2(\lambda_2-\lambda_3)=0$$

Proof. Step 1. Let the notations be as in the proof of Theorem 6.2. First recall that the linear system |L||Y is the subspace of $H^0(L|Y)$ generated by the nontrivial representations of K_2 and $(-1)_A$ (note that $(-1)_A$ acts on Y), and that the induced map $\varphi_L|Y:Y \to \overline{Y} \subseteq \mathbb{P}_3$ is K_{2^-} and $(-1)_A$ -equivariant. Hence \overline{Y} lies in a hyperplane H on which L and π act. If Q denotes the polynomial (*) of the introduction associated to the point $(\lambda_0:\dots:\lambda_3) \in \mathbb{P}_3$, then the restriction Q|H is an equation for \overline{Y} in H. Moreover $B = E_1 \times E_2$ if and only if $Y = F_1 + F_2$ with elliptic curves F_1 and F_2 . The restrictions $|L||F_i$ map $F_iK_{2^-}$ and $(-1)_A$ -equivariantly onto $\overline{F_i}$ in H and $\overline{Y} = \overline{F_1} \cup \overline{F_2}$. Thus the plane octic Q|H splits into 2 quartics both invariant under the action of i and τ .

The idea of the proof is to compute the equations of \overline{F}_1 and \overline{F}_2 and to compare its product with the equation for \overline{Y} .

Step II. The conditions $\tau H = H$ and $\iota H = H$ leave us with the following 2 possibilities for $H:\{y_0 = y_1\}$ and $\{y_0 = -y_1\}$. But the octic Q is a polynomial in the squares y_0^2, \ldots, y_3^2 such that $Q|\{y_0 = y_1\} = Q|\{y_0 = -y_1\}$, and without loss of generality we may assume

$$H = \{y_0 = y_1\}.$$

Identifying H with \mathbb{P}_2 via the isomorphism $(y_1:y_1:y_2:y_3) \rightarrow (y_1:y_2:y_3)$ we get as an equation for \overline{Y} in \mathbb{P}_2 :

$$\lambda_{1}^{2}y_{1}^{8} + 2\lambda_{1}(\lambda_{2} + \lambda_{3})y_{1}^{6}(y_{3}^{2} - y_{2}^{2}) + (\lambda_{2} + \lambda_{3})^{2}y_{1}^{4}(y_{2}^{4} + y_{3}^{4}) + (4\lambda_{2}\lambda_{3} + \lambda_{0}^{2})y_{1}^{4}y_{2}^{2}y_{3}^{2} + 2\lambda_{1}(\lambda_{2} - \lambda_{3})y_{1}^{2}y_{2}^{2}y_{3}^{2}(y_{3}^{2} - y_{2}^{2}) + \lambda_{1}^{2}y_{2}^{4}y_{3}^{4} = 0$$
(9)

Step II. In order to compute equations for \overline{F}_1 and \overline{F}_2 we will consider some special points on the \overline{F}_i 's. On one hand, as a curve of geometric genus 1 the plane quartic \overline{F}_i is singular in exactly 2 points. On the other hand, \overline{F}_1 and \overline{F}_2 intersect each other in 16 points. Thus \overline{Y} is singular in exactly 20 points. Of course, everything has to be counted with multiplicities here.

Some of the singularities are the intersection of \overline{Y} with the coordinate planes H_0, \ldots, H_3 , since \overline{A} is singular there. Explicitly we have:

(i) $\overline{Y} \cap H_0 = \overline{Y} \cap H_1 = \{P_2, P_3\}$ both with multiplicity 4, since $Q(0, 0, y_2, y_3) = \lambda_0^2 y_2^4 y_3^4$.

(ii) $\overline{Y} \cap H_2 = \{P_3, (\sqrt{\lambda_2 + \lambda_3}; \sqrt{\lambda_2 + \lambda_3}; 0; \pm i\sqrt{\lambda_1})\}$ again with P_3 of multiplicity 4 and the other points with multiplicity 2, since $Q(y_1, y_1, 0, y_3) = y_1^4(\lambda_1 y_1^2 + (\lambda_2 + \lambda_3)y_3^2)^2$.

(iii) $\overline{Y} \cap H_3 = \{P_2, (\sqrt{\lambda_2 + \lambda_3}; \sqrt{\lambda_2 + \lambda_3}; \pm \sqrt{\lambda_1}; 0)\}$ with multiplicities as above, since $Q(y_1, y_1, y_2, 0) = y_1^4(\lambda_1 y_1^2 - (\lambda_2 + \lambda_3) y_2^2)^2$.

According to the multiplicities P_2 and P_3 are the singular points of \overline{F}_1 and \overline{F}_2 and the other points $(\sqrt{\lambda_2 + \lambda_3}: \sqrt{\lambda_2 + \lambda_3}: \pm \sqrt{\lambda_1}: 0)$ and $(\sqrt{\lambda_2 + \lambda_3}: \sqrt{\lambda_2 + \lambda_3}: 0: \pm i\sqrt{\lambda_1})$ are points in $\overline{F}_1 \cap \overline{F}_2$.

Step IV. Now we can compute equations for \overline{F}_1 and \overline{F}_2 : Let

$$P(y_1, y_2, y_3) = \sum_{\substack{0 \le j, k, l \le 4\\ j+k+l=4}} a_{jkl} y_1^i y_2^j y_3^k$$

be a polynomial defining \overline{F}_i in \mathbb{P}_2 . There are complex numbers $\chi(\tau)$ and $\chi(t)$ such that the action of τ and ι gives as usual:

$$\tau^* P(y_1, y_2, y_3) = P(y_1, iy_3, iy_2) = \chi(\tau) P(y_1, y_2, y_3)$$
$$\iota^* P(y_1, y_2, y_3) = P(y_1, y_2, -y_3) = \chi(\iota) P(y_1, y_2, y_3)$$

Comparing coefficients we get

$$\chi(\tau)a_{jkl} = i^{l+k}a_{jlk} \quad \text{and} \quad \chi(\iota)a_{jkl} = (-1)^l a_{jkl}$$

This implies

χ(τ)	χ(ι)	Р
+ 1	+ 1	$ay_1^4 + b(y_2^4 + y_3^4) + cy_1^2(y_2^2 - y_3^2) + dy_2^2y_3^2$
-1	+ 1	$(a(y_2^2 - y_3^2) + by_1^2)(y_2^2 + y_3^2)$
+ 1	-1	$y_2 y_3 (y_2^2 + y_3^2)$
- 1	- 1	$(a(y_2^2 - y_3^2) + by_1^2)y_2y_3$
i	-1	$y_2y_3(y_2^2+iy_3^2)$
- <i>i</i>	-1	$y_2 y_3 (y_2^2 - iy_3^2)$
i	+1	$a(y_2^4 + iy_3^4) + by_1^2(y_2^2 - iy_3^2)$
- i	+ 1	$a(y_2^4 - iy_3^4) + by_1^2(y_2^2 + iy_3^2)$

The condition $P_2 = (0:0:1:0) \in \overline{F}_i$ implies that *a* is zero in the last 2 equations. Hence the last 7 equations are reducible and cannot occur as equations for the irreducible quartic \overline{F}_i .

We are left with the first case. Since \overline{F}_i has to contain the special points of step III, we get b = 0, $(a:c) = (\lambda_1: -(\lambda_2 + \lambda_3))$ and there are complex number μ_i such that

$$\overline{F}_i = \{\lambda_1 y_1^4 - (\lambda_2 + \lambda_3) y_1^2 (y_2^2 - y_3^2) + \mu_i y_2^2 y_3^2 = 0\}$$

for i = 1 and 2.

Step V. In terms of equations the condition $\overline{Y} = \overline{F}_1 \cup \overline{F}_2$ means:

$$Q(y_1, y_1, y_2, y_3) = \prod_{i=1}^{2} (\lambda_1 y_1^4 - (\lambda_2 + \lambda_3) y_1^2 (y_2^2 - y_3^2) + \mu_i y_2^2 y_3^2)$$

= $\lambda_1^2 y_1^8 + 2\lambda_1 (\lambda_2 + \lambda_3) y_1^6 (y_3^2 - y_2^2) + (\lambda_2 + \lambda_3)^2 y_1^4 (y_2^4 + y_3^4)$
+ $(\lambda_1 (\mu_1 + \mu_2) - 2(\lambda_2 + \lambda_3)^2) y_1^4 y_2^2 y_3^2$
+ $(\lambda_2 + \lambda_3) (\mu_1 + \mu_2) y_1^2 y_2^2 y_3^2 (y_3^2 - y_2^2) + \mu_1 \mu_2 y_2^4 y_3^4.$

Comparing this with (9) above we obtain

$$4\lambda_2\lambda_3 + \lambda_0^2 = \lambda_1(\mu_1 + \mu_2) - 2(\lambda_2 + \lambda_3)^2$$

$$2\lambda_1(\lambda_2 - \lambda_3) = (\lambda_2 + \lambda_3)(\mu_1 + \mu_2)$$

$$\lambda_1^2 = \mu_1\mu_2$$

which immediately implies the assertion of Theorem 7.1. \Box

References

- [B] Barth, W.: Abelian surfaces with (1,2)-polarization. Alg. geometry, Sendai, (1985), 41-84. Amsterdam: North-Holland 1987
- [C] Castelnuovo, G.: Sulle serie algebriche di gruppi di puorti appertenenti ad una curva algebrica. Rom. Acc. Linc. Rend. (5) 15, 337-344 (1906)
- [C-W] Chevalley, C., Weil, A.: Über das Verhalten der Integrale erster Gattung bei Automorphismen des Funktionenkörpers. Abh. Math. Semin. Univ. Hamb. 10, 358-361 (1934)
- [G-H] Griffiths, Ph., Harris, J.: Principles of algebraic geometry. New York: Wiley 1978
- [H−L] Hulek, K., Lange, H.: examples of abelian surfaces in P₄. J. Reine Angew. Math. 363, 200–216 (1985)
- [H] Humbert, G.: Théorie générale des surfaces hyperelliptic. J. Math. 4e Ser. (1893)
- [K-W] Krazer, A., Wirtinger, W.: Abelsche Funktionen und allgemeine Thetafunktionen. Enzyklopädie der Math. Wiss. II B 7, Leipzig 1920-21
- [L-N] Lange, H., Narasimhan, M.S.: Squares of ample line bundles on abelian varieties. Exp. Math. 7, 275-287 (1989)
- [M] Mumford, D.: Abelian varieties. Oxford: University Press 1970
- [M1] Mumford, D.: On the equations defining abelian varieties I. Invent. Math. 1, 287-354 (1966)
- [R] Ramanan, S.: Ample divisors on abelian surfaces. Proc. Lond. Math. Soc. 51, 231–245 (1985)

Received March 3, 1989