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O. Introduction 

Let A denote an abelian surface over the complex numbers and L an ample line 
bundle on A. Suppose A = C2/A with a lattice A in C 2. The first chern class cl(L) 
may be considered as an integer valued alternating form E on A. According to a 
theorem of Kronecker there is a basis of A with respect to which E is given by 

t h e m a t r i x ( _  O D ) w i t h D = ( d t  dO2) and positive integers d, with dt l d 2. The 

pair (dl, d2) is called the type of L. According to Riemann - R o c h  h~ did2 
and L induces a rational map cpL:A~ Pn,d2-t. We want to study this map in the 
special case (dl, d2) = (1, 4). Let us first recollect what is known in the other cases: 

For d 1 > 3 tp L is an embedding by a classical theorem of Lefschetz (see [M]). 
For da = 2 cpL is an embedding if and only if d2 > 2 and (A, L) is not of the 

form (El x E2,p*LI | with elliptic curves E 1 and E 2 and line bundles L~ on 
E i. (see [L-N]). 

Suppose now dl = 1. The complete linear system ILl has base components if 
and only if (A, L)=  (Et x E2,p~LI | as above. We assume that (A,L) is not 
a product of eUiptic curves, since it is easy to work out the map q~L in the exceptional 
case. 

For d2 = 2 ILl has exactly 4 base-points. Blowing up we get a morphism ,~ ~ Pt  
with general fibre a smooth curve of genus 3 (see [B]). 

If d2 > 3, ILl is base point free and we get a morphism ~Pz:A ~ P~_ 1- 
If d2 = 3, ~pL:A ~ P2 is a 6:1 covering ramified in a curve of degree 18. 
If de > 4, there is a cyclic covering 

n:A-o B 

of degree d 2 and a line bundle M on B such that :r*M = L. Let X denote the 
unique divisor in IMI and put Y = n-I(X) (see Sect. 1). 

If d2 ~_ 5, ~PL is an embedding if and only if X.and Y do not admit elliptic 
involutions, compatible with the action of the Galois group of rr. In the exceptional 
case r is a double covering of an elliptic scroll (see JR; H-L]),  
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In this paper we study the remaining case  d 2 -- 4, and it turns out that something 
very similar to the case d2 > 5 happens. In fact, our main result is: 

Theorem 1. (i) tpL:A ---,,,1 _~ P3 is birational onto a singular octic A in P3 if and only 
if  X and Y do not admit elliptic involutions compatible with the action of the Galois 
group of 7~. 
(ii) In the exceptional case r :A--, A ~ P3 is a double covering of a singular quartic 
A, which is birational to an elliptic scroll. 

Apart from the 2~/47/-covering 

zc:A--, B 

it turns out that a certain Z/22~ • 2~/2Z-covering 

p:A --, C 

is of importance for the geometry of .4 (see Sect. 1). 
In case (i) of the theorem, C is a Jacobian, and in case (ii), C is the product of 

two elliptic curves. In both cases one can find an equation Q(yo, yl, y2, y3)= 0 for 
.4 c P3 from the equation Q(z0, zl, z2, za) = 0 for the image of the Kummer mapping 
C--, P3 just by setting zi = y2. 

In case (i) we find 
�9 2 44 44 2 44- Q(yo, yl, y2, y3).=21(yoYx+y2y3)+A2(yly3+y~y~) 2 4 4 + + 

2 2 2 2 2 2 
q- 2~l)]'2(y2y~ q" Y2Y3)(YlY3 --  YoY2) 
_l_ 22123(y~y2 __ 2 2 2 2 2 2 Yl Y2)(YoYl -- Y2Y3) (*) 

2 2  2 2  + 222)]'3(y2y 2 + Y o Y 3 ) ( Y l Y 3  + y 2 y 2 )  

2 2 2 2 2 
+ A o Y o Y l Y 2 Y s  

where (~0:/~1:/~2:/~3)~P3--S with S =  {2t2223 =0}. ,4 is smooth outside the 4 
coordinate planes H~ = { Yi = 0}. At the coordinate vertices ,4 has 4-fold points 
(tangent cone --- 4 planes), and in the coordinate planes ,] has a double curve with 
ordinary double points at the coordinate vertices. 

J ~.. I 

..o- , i "-... 

q.. :.) �9 ~ s s  

On each of the four double curves of .4 there are 12 pinch points, indicated 
by a cross. (Their position can be computed explicitly in terms of the ,~, see Sect. 
2.) We remark, that our quartie equation Q.(Zo, zl, z2, z3) = 0 is essentially the same 
as the one in [I-I, p. 198]. 
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Suppose now that we are in case (ii) of the theorem, that is there is a cartesian 
diagram 

y 2:1 ~ F = Y/Jr 

/t 1 ~t' 

X 2:1 ,E = X/j  x 

with elliptic curves E and F. The involution Jr extends to an involution j:A---,A 
and ~o L factorizes as follows 

A ~L ' .]--- P3 

A/j 

Moreover, All is a Pl-bundle over the elliptic curve F and 0 is birational. The 
coordinates Yo . . . . .  Y3 of P3 can be chosen in such a way, tha t /1  is given by the 
equation 

2 2 2 2 21(y2y 2 + YzYa) + 2 2 22(YtY3 -- YoY2) = 0 (**) 

for some (21:22)e Pl - {(1:0), (0:1), (1 :i), (1 : -- i)}..,~ is singular exactly along the 2 
coordinate lines Yo = Y3 = 0 and Yl = Y2 = 0. On each of these lines .4 has four 
pinch points, which determine the elliptic curve E. 

Note, that the family of abelian surfaces of type (ii) is 2-dimensional, whereas 
the family of a q__uartics ,4 is only one-dimensional. This means that over a fixed 
general quartic A there is a one-dimensional family of abelian surfaces, that is the 
ramification divisor of the map tpL varies. 

In the proof of Theorem 1 we use some properties of the action of the extended 
Heisenberg group He(L) on the map ~0L:A---, Pa. 

Furthermore, in the proof we have to distinguish between two cases for the 
map n:A --, B 

I. B = Jac (X) the Jacobian of a smooth curve X of genus 2. 
II. B = E 1 x E 2 a product of elliptic curves. 
In Sect. 6 we will see that in the octic case the point (2o: "." :2a)eP3 determines 

the abelian surface via equation (.). To be more precise: 

Theorem2. P 3 - S / { 2 o - - , + 2 0 }  is the moduli space of abelian surfaces with 
(i) polarization of type (1, 4) inducing a birational map A --, A and (ii) a decomposition 
of K into a direct sum of cyclic subgroups. 

Here K denotes the kernel of the isogeny of A onto the dual abelian surface 
.4 associated to the polarization. For  the precise definition see Sect. 1. Note that 
this moduli space is a 24:1 covering of the usual moduli space of polarized abelian 
surfaces of type (1:4). 
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Finally, in Sect. 7 we compute the subspace of this moduli space corresponding 
to abelian surfaces of type II above. We will show that these abelian varieties are 
represented by the points (;to: ..-:23)eP3, satisfying the cubic equation 

(42223 + 202 + 2(~2 + 23)2)(22 + 23) - 222(,;I.2 - 23) = O. 

We would like to thank W. Barth and D. Eisenbud for some valuable 
conversations as well as W. Ruppert for the computation in Remark 2.3. 

1. Preliminaries 

Let L denote an ample line bundle of type (1, 4) on an abelian surface A = C2/A 
over the field of complex numbers. We want to study the map cpL:A ~ P3 given 
by the complete linear system ILl. Since ~p does not depend on the group law of 
A, we may choose the origin of A in such a way that L is symmetric, that is 
( - 1)*L - L. In other words, without loss of generality we may assume that L is 
symmetric and will do this without further noticing. 

Lemma 1.1. ILl has a fixed component if and only if there are elliptic curves E 1 and 
E2 on A, such that (A,L) ~- (El x E2,P*L 1 | with line bundles L1 of degree 4 
on E 1 and L2 of degree 1 on E2. 

Proof. Suppose ILl has a fixed component F, that is L "~ N |  where N is 
a line bundle on A with h~ = h~ Let Ko(N ) (resp Ko(F)) denote the connected 
component containing 0 of the subgroup {xeAI T*N " N} (resp {xeA[ T*F ,,~ F}). 
An easy consequence of Riemann-Roch is, that E1 := A/Ko(N) and E2:= A/Ko(F) 
are elliptic curves. Moreover, there are line bundles L1 of degree 4 on Et and L2 
of degree 1 on E 2, such that N = p'L1 and d~A(F) = p~L2, where p~:A ~ E~ denotes 
the natural projection. From [L-N,  Corollary 2.3] we get that 

(pl,p2):A--. E1 x E 2 

is an isomorphism of abelian surfaces. This completes the proof of the lemma, 
the converse implication being obvious. [] 

For the rest of the paper we assume that (A, L) is not isomorphic to a product 
of elliptic curves as polarized abelian varieties. By Lemma 1.1 this means that ILl 
has no base component. 

Let ,,i = Pic ~ (.4) denote the dual abelian variety and tkL:A ~ ,4, a~-* TaL | L-1 
the canonical homomorphism associated to L. The kernel K(L) of tkL is isomorphic 
to Z147 ~ Z/4Z. 

Lemma 1.2. (a) The linear system ILl is base point fiee. 
(b) Every curve CEIL[ is of arithmetical genus 5. 
(c) A general member C of ILl is smooth and irreducible. 

Proof. (a) K(L) acts on the base locus of [LI. Hence, ff it would be nonempty, 
it would consist of at least 16 = #K(L) points. On the other hand, for the 
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self-intersection number of L we have (L 2) = 8 implying that there are at most 8 
base points, a contradiction. (b) and (c) follow from the adjunction formula and 
Bertini's theorem. []  

Let eL:K(L) x K(L)--, C* denote the alternating form associated to L, that is 
eL(x, y) = exp (-- 2~iE(,2, ~)), where E = cl(L) and ~, 37~C 2 are elements projecting 
to x ,y .  Choose a decomposition K ( L ) = K 1 0 ) K 2  with maximal isotropic 
subgroups Kt  and K2 with respect to the form e L. K1 and K 2 are cyclic groups 
of order 4 and e L induces a duality K 2 "--Hom(K1,C* ) (see [M1]). Let 

n:A -~B:= A/K 2 

denote the natural projection. ~ is a cyclic 6tale covering of degree 4. There is a 
line bundle M on B such that L = n 'M,  since K 2 is isotropic with respect to e L 
(see [M, p. 231]). L is symmetric, so we can choose M also to be symmetric. By 
Riemann-Roch h~ = 1, and M defines a principal polarization on B. Let X be 
the unique divisor of IM]. X is either smooth of genus 2 and B is the Jacobian of 
X or X consists of 2 elliptic curves E~ and E2 intersecting in 1 point and 
B = E t x E 2. For Y defined by the cartesian diagram 

Y ~ A  

X ~ B  

we have 

Lemma 1.3. (a) I f  X is smooth, Y is a smooth curve of genus 5, double-elliptic in 
at least 3 ways. In particular, Y is neither hyperelliptic nor trigonal. 
(b) I f  X = Et + E2, then Y = Ft + F2 is a union of 2 elliptic curves intersecting 
exactly in a cyclic subgroup of order 4 of A. 

Proof. (a) Let p:X---, P~ be the hyperelliptic double covering. The composition 
pozc: Y--, Pl  is a galois covering with the dihedral group Ds as galois group. Ds 
contains exactly 5 involutions and one can apply the formula of Chevalley-Weil 
(see [C-W])  to compute their genus. It turns out that 3 of them are elliptic 
involutions, one of genus 2 and one of genus 3. By a theorem of Castelnuovo 
(see [C]) such a curve cannot be hyperelliptic or trigonal. The smoothness of Y 
and assertion (b) follows from the fact that rc is 6tale. []  

The translation To of A given by a point of A is induced by an automorphism 
of P3 = Pa(H~ if and only if aeK(L). This yields a projective representation 
O:K(L)--,PGL3(C). Defining the group H(L) to be the fibre product of 0 and the 
canonical map GL4(C)--* PGL3(C) we get a commutative diagram with exact rows 

I ~ C * - - ,  H(L) ~ K(L) --*0 

1 -~ C* - ,  GL4(C) ~ PGL3(C)--, 1 
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H(L) is the Heisenberg group of L and Q its Schr6dinger representation (see I'M 1 ]). 
Since L is symmetric, ( -  I)A also induces an automorphism, say z of P3. Defining 
Ke(L) ~- K(L) >~Z/22~, the group generated by the translations Ta, aeK(L) and the 
automorphism t, we get similarly as above the extended Heisenberg group He(L ) 
over Ke(L ) and a representation He(L)--. GL4(C). 

Let a and ~ be elements of He(L) such that p(cr) and p(z) (which by abuse of 
notation we also denote by a and T) are generators of K(L). The coordinates 
Xo . . . .  , x3 of P3 can be chosen in such a way that 

a:Xj~--~Xj_t, Z:Xj~--~i-Jx], l:Xj~--~X_j 

where the indices of the coordinates are considered to be elements of 2z/4Z (see 
[MI]).  It turns out to be convenient to change the coordinates. Define new 
coordinates by 

Yo = Xo + x2 

YI = Xo - -  X2 

On these coordinates a, z and t act as 

l yo~-~ y2 

/ y2~--*yo 

LY3 ~'-~ - Yl 

Y2 = X3 -I- X l 

Y3 = X3 - -  X i "  

Iyo~--,yx [yo~--,yo 

z:~Yt~'*Yo I:~Yl~'-*Yl . 

/y2~"-~ iya lY21--*yz 
lYa~'*iy2 l Y 3  I' '* - -  Y3 

We consider Pa .as the space of hyperplanes in H~ Then the global sections of 
L can be considered in a natural way as points of P3. In particular, the coordinates 
Yo . . . .  ,Y3 correspond to the points Po=( l :0 :0 :0 )  . . . . .  P3=(0:0:0: l ) .  For 
i = 0 . . . . .  3 let H~ denote the coordinate plane {y~ = 0}. 

L e m m a  1.4. Let A denote the imaoe of the map (pL:A--*P3. 
(a) ,4 is a surface of degree 8, 4 or 2 in P 3. 
(b) The coordinate points Po .... , Pa are of multiplicity 4 (resp. 2, resp. 1) in .4 if 
deg A = 8 (resp. 4, resp. 2). 

Proof. (a) follows from the fact that (L 2) = 8. As for (b), the point P3 (resp. the 
plane H3) is the ( -  1)-eigenspace (resp. (+  1)-eigenspace) o f t  acting on H~ On 
the other hand, the set A~ (resp. A~) of 2-division points x of A, where ~ acts on 
the fibre Lx as multiplication by - 1 (resp. + 1), is of order 4 (resp. 12) (see [M1, 
p. 315]), and ~Pt. is H~(L)-equivariant. This implies that ~PL maps the 4 points in 
A~ to P3. But a(P3)= Pt, ~(Pa)= P2, and az(P3)= Pc and thus the preimage of 
any P~ consists of at least 4 points of A. Now the assertion follows from (a) noting 
that any coordinate line contains exactly 2 of the points Pt. []  

We can use the action of He(L) to determine an equation for A in P3. Let 
QeC[yo, .... Y3] denote a homogeneous polynomial with zero set .4. It is easy to 
see that the action of H~(L) induces a character Z of degree 1 of Ke(L} such that 
for all ~r 

~*Q = ~ ) . Q .  (1) 
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Ke(L) contains the 4 reflections 

t z62Z:yo  t-'~ --  Yo ~z2:y2 t'~ --  Y2 

ltr2: y l  ~---~ - -  y l  t : y a ~ - ~ - - y  3" 

The factor commutator group of K~(L) is (Z/27/) 3 such that the characters of degree 
1 of Ke(L ) take only values in { _+ 1}. Hence X(za2z) = Z(a 2) = Z(z 2) = 1, and for all 
4 reflections the character Z takes the same value, namely ~((t). 

If X(t) = - 1, Q is a sum of monomials of the form ay~o__yly2y3" k t ~ with aeC and 
odd numbers j, k, l and m such that j + k + l + m = deg A. But this contradicts 
Lemma 1.4(b). 

Hence ~((t) = + 1 and Q is actually a polynomial in the squares 2 2 Yo . . . . .  Y3, that 
is there is a polynomial Q over C such that 

Q(yo . . . . .  Y3) = (~(Yo 2 . . . .  , y2). (2) 

Denoting by C the surface in P3 = P3(zo . . . . .  za) defined by 0(Zo, . . . ,z3)=0,  
equation (2) means geometrically: 

Lemmal .5 .  The map P3(Yo,...,y3)---rP3(Zo . . . . .  z3), z i = y  2 induces a covering 
/~:,4~ C, 8:1 outside the coordinate planes. 

Corollary 1.6. ,~ is of degree 8 or 4 and C of degree 4 or 2 in P3. 

Proof. Suppose A is of degree 2 in P3. Then (S" is a plane in P3, which according 
to Lemma 1.4(b) contains all coordinate vertices Pi, a contradiction. (In order to 
keep notation as simple as possible, we do not distinguish between the coordinate 
vertices in P3(Yo . . . . .  Y3) and P3(Zo . . . . .  z3).) [ ]  

Our next aim is to show that ~ : A ~ C  is induced by an isogeny p:A-~C of 
abelian surfaces. 

Let K(L)2 = (2a, 2z) ,  the subgroup of 2-torsion points of K(L), and consider 
the isogeny p:A ~ C = A/K(L)2. Since K(L)2 is isotropic with respect to e L, there 
is a line bundle N on C with L = p*N. 

Proposition 1.7. The following diagram commutes 

A zL ~1~- P3 

C ~ , C . ~ P  3 

N defines a principal polarization on C and thus tpn2 is a Kummer-mapping. 

Proof. The map q~N2 ~ P:A ~ Pa is given by the linear system of Im (p*: H~ 2) --* 
H~ which is the subspace H~ KtL)2 of sections invariant under the action of 
K(L)2. On the other hand, y2 . . . . .  y~ can be considered as elements of H~ 2) and 
the map/~oqh ~ is defined by these sections. It suffices to show that yo 2 . . . . .  y2 a are 
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invariant under the action of K(L)2, since H~ x(~)* is of dimension 4. But this is 
clear from the action of a and ~. [] 

Corollary 1.8. ,4 is smooth outside the coordinate planes. 

For the proof note that C (as a Kummer surface resp. a smooth quadric in Pa) 
is smooth outside the coordinate planes and the map/5 is 6tale here. [] 

2. The octic 

It follows from Proposition 1.7 that tpL is birational if and only if the Kummer 
map q~s2 is 2:1, that is if and only if C is not a product of elliptic curves. We 
conclude that for a general abelian surface A of type (1, 4) the map q~L is birational 
and .4 is an octic, since the space of 6tale 4-fold coverings of products of 2 elliptic 
curves is two-dimensional. In Sect. 4 we will give another criterion for this (see 
Theorem 4.1). Here we assume that q~L is birational and derive an equation for 
the octic ,4 in P3. 

Let the notations be as in Sect. 1. Since z acts as identity on the curve ArcH3, 
the map q~LIq~LI(,4nH3) goes n:l  onto its image .4c~H3 for some n >2.  But n 
has to be 2, since q~2lq~(Cc~H3) is of degree 2. Applying the automorphisms 
a, T and aT we have proven 

Proposition 2.1. The  octic A has a double curve along the coordinate planes H~ for  
i = 0 ,  . . . .  3. 

Recall that tr and z act on the coordinates z~ = y~ as 

f Zo~--~z2 f Zo~--,zl 

a:~zl~-*z3 ~ .~z~-*Zo " 

Iz2~- ,Zo "[z2~--, - z3 

t za~-~zl Lz3~--~ - z 2 

and according to Lemma 1.4(b), Lemma 1.5 and Proposition 2.1 Q~C[zo . . . . .  z3] 
is a quartic with the properties 

(a) For i = 0, . . . .  3 there is a quadrie F~ in 3 variables such that 

Q(zo . . . .  , z , _ l , 0 , z , +  l . . . .  , z a ) =  F2(zo . . . . .  z i_ t , z ,+  t . . . . .  z3). 

(b) C = (Q = 0) is singular in the coordinate points Po . . . . .  P3. 
Applying (1) of Sect. 1 we get 

F2t(Zo, z2, z3) = Z(z)F2o(Zo, - z3, - z2) 

F (Zo, z l ,  z3)  =  ( )Fo2(z3, Zo, z l )  

F (zo, z , ,  z 9  = - - Zo) 

Now write Q in the following form: 

Q(Zo . . . . .  z3) = r~o(z,, z2, z3) + xtT)F~(zo, - z3, -- z2) + X(a)F~(za, To, z l)  

+ x(*~)~'o*(Z2, - z~, - Zo) + p(zo . . . . .  z~) 

with some p~C[z o . . . . .  z3]. 
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According to (b} there are constants 2~, 22, 2aeC such that 

Fo(ZI,Z2, Z3) = 21Z2Z 3 3 u 22ZIZ 3 "~- 13ZIZ2 . 

Now a small computation shows that Z - 1 and 

~(Zo, . , ~ }  ~ ~ ~ ~ ~ 2  ~ 2 2  .. + 23(ZoZ3 + zlz2)  =;q(ZoZ~+Z2Z3)+i2(z l z3+ZoZ2)  2 2 2 

+ 22122(ZoZI + Z2Za)(ZlZ3 -- ZoZ2) 

+ 22123(ZoZ3 - ziz2)(ZoZ 1 - z2z3) (3) 

+ 222~3(ZiZ2 + ZoZ3)(ZlZ3 + ZoZ2) 

~- [AoZoZIZ2Z 3 

for some #oeC. Choosing 2 o to be a square root of It o and inserting z~ = y~ we 
get equation (,) of the introduction. Note that 212223 # 0  because (~ = 0  is a 
Kummer surface. 

The map/~:A ~ C restricted to a coordinate plane, say Ha, looks as follows 

, f~ ,  Q2 P1 / /  \ \ ..'~r176 . . . . .  . . . . . . . .  ~- . . . . . . . . . . .  .>r 

i i, ]r176 "~',, 
t 

t t ,' Po , . .... , P~ P , ; 

/" ...... "'X ' / 

"" -'N:'" J "" / 
J~2 .............. "'~ . . . . . . .  "~""" 

F3(Yo 2, 2 2. 0 Q~ . . . . . . . . . . . .  * . . . . . . . . . . .  Qo Ya, Y2J = P2 
Fa(zo, Z,,Z2) = 0 

According to the theory of Kummer surfaces (see [K-W] or [G-H])  the conic 
passes exactly through 6 of the 16 singular points, among them the coordinate 
points Po, PI, P2. We denote the other 3 points by Qo, Q1, Q2- The preimages of 
the coordinate points are the coordinate points, whereas/~ is 6tale over Qo, QI 
and Q2. Thus the corresponding preimages consist of 4 points for each Qi. These 
12 points are exactly the pinch points of the surface .4in the plane Ha. We obtain 

Proposition 2.2 .4 has exactly 48 pinch points, 12 in each coordinate plane, 

Remark  2.3. The pinch points can be determined explicitely in terms of the 
coefficients 2o . . . . .  23 of the equation (.): 

It suffices to compute the points Qo, Q,, Q2 of the Kummer quartic C. In order 
to do this consider the linear projection q: Pa - P3 - ' H a  ~- P2 with center P3. The 
ramification locus of the restriction ql C consists of the 6 lines POP1, P,P2,  P2Po, 
QoQ1, Q1Q2, Q2Qo (see [G-H]). It suffices to determine the last 3 lines. The points 
of intersection of C with the line passing through Pa and a point (z o, z,,z2,0) of 
H a is given by the equation 

(~(tZo, tzl, tz2,1) = o. 

Since P3 is a double point of (7, we can divide this equation by t 2 to get a quadratic 
equation in t. Its discriminant is an equation for tho ramification locus of qlC'. 
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Thus we can divide it by ZoZ~Z2 and get the following cubic: 

f 2 3 2 3 = 4,~1~2~320 + 4~1~2)~321 -- 4~2/~2~3223 
2 2 3 + ZoZl(6~l/]-2.,~3 + 2~.t,~. 3 + 2~1~. 3 + ~.2,~1~3) 

+ Z~Z2{-- 6,12222a -- 22323 -- 2222 ] + 2222233 
2 2 a 222t~.2) + ZOZl(6~-122~, 3 -- 22122 + 22123 + 

+ Zoz~ita~a~a 2 + 2alz~ - 2a~a~ - a o ~ z , )  

+ zlz2(6a~,t=23 - 2222] -- 22~3  +/1.o2a2/~3) 

+ z , z~{-6 ,1 ,~ .~2a  + 22,233 + 2)~3~,3 + )~2ala3) 

+ ZoZlZ2(2,~,,], ~ 2 2 2 2 I 4__ - 2 ~  - 2 a ~  + ~ao ~ - ~ -  a4). 

The zero set o f f  is just  the union of  the 3 lines QoQ1, QIQ2,  Q2Qo. Thus it suffices 
to decompose f into a product  of linear forms. This has been done  explicitly by 
W. Rupper t  using a computer .  Since the formulas are messy we do not  repeat 
them here. 

3. The quartic 

In this section we will determine an equat ion for the surface A = ~PL(A) in ~3 in 
the remaining case that is under  the assumption that  A is a quartic. Let the 
notat ions be as in Sect. 1. In particular,  A is given by a quartic polynomial  
Q(yo . . . . .  ya) = 0 and Ke(L)  acts via a character  Z. There is a quadrat ic  polynomial  

(~(Zo . . . . .  z3) such that  Q(yo . . . .  , y3 )=  (~(y02,= .- , Y]), since Z(0 = + 1. 
Denot ing Fo:= (~(0,zl, z2,z3) . . . .  , Fs:  = Q(zo, z l, z2, O) there is a p~C[zo . . . . .  z3] 

such that  

~(zo . . . . .  z~) = Fo(Z.  z2, z3) + Fdzo,  z2, z3") + f2(zo,  z~, z~) 

+ F3(ZO, 2I,Z2) + p(ZO, ZI,Z2, Z3) 

Applying (1) of Sect. 1 we get 

Fl(ZO, Z2, Z3) ~--" X(~)Fo(zo, - z3, - Z2) 

F2(zo, z:, z3) = Z(a)Fo(z3, Zo, z l )  

F3(z O, zt, z2) = Z(zo')Fo(g2, - Zl, - Zo) 

According to Lemm a  1.4(b) Fo is of the form 

F o ( z l s  z2 ,  z3) = ,~lzZZ3 -~- 2 2 z i z  3 --1- ,~3z1z2 

for some 2~, 22, 23eC. Inserting this we obtain with a small computa t ion  the 
following possibilities depending on the character  X: 

+1 

- 1  

+1 

- t  

~ )  

+ l  

+1 

- 1  

- I  

0 
21(zozl + z2z3) + 22{zlz3 - zoz2) 

,h (z~z~ -- ZoZd + ,t3(zlz2 - ZoZ3) 

/~2(glz3 -I- goZ2) + ~3(ziz2 -~ ZoZ3) 

not possible 
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One immediately checks that the 3 families are projectively equivalent. Hence we 
can choose the coordinates Yo . . . . .  Y3 of P3 in such a way that the quartic ,4 is 
given by the equation 

2 2 2 2 2 2 
21(Y2Y 2 + Y2Y3) + 22(YlY3 -- YoY2) = 0 (4) 

for some (21:22)eP 1 -{(1:0) , (0 :1) , ( I : i ) , (1 : -  i)). 
Note that (21:22):]: (1:0), (0:1), (1:_+ i), since otherwise .4 would be reducible, 

contradicting the irreducibility of A. 
From (4) one immediately sees that _~ is singular exactly along the coordinate 

lines { Yo = Y3 = 0 )  and { Yl = Y2 = 0}. 
Furthermore, one sees easily the pinch points at 

(0:yl:y2:0) with (y~:y2)=(~,2:2z) or (21:-) ,2) 

(yo:0:0:y3) with (yo2:y~)=(21:22) o r  ( 2 2 : - 2 1 )  

Remark 3.1. Squaring (4) gives (.) with ~-a = 0 and 22 = 2(22 - 22). Similarly, the 
two other characters correspond to 22 = 0 and 22 = - 2(22 + ).32) respectively 21 = 0 
and 22 = 2(22 + 2az). In this way one can consider the square of the quartic as a 
degeneration of the octic (,). 

4. Birationality of ~L 

As introduced in Sect. 1 let n :A ~ B = A/K 2 denote the natural projection. There 
is a line bundle M on B with L = 7r*M. Let X be the unique divisor of IMI and 
Y = n -  I(X). The aim of this section is to give a proof of the following theorem: 

Theorem 4.1. Suppose that X and Y do not admit elliptic involutions compatible 
with the action of g 2. Then tPL:A --} A ~_ P3 is birational. 

As a principally polarized abelian surface (B, X) is of one of the following 2 types: 
I. X is smooth of genus 2 and B = Jac (X). 

II. X = El + E2 is the sum of 2 elliptic curves E 1 and E 2 intersecting in one 
point and B = E1 • E2.  

Case I. Assume that X is smooth of genus 2. 
Since L and M are ample we have the following commutative diagram with 

exact rows 

H~ 
II 

0--* H~ ~ H~ ~ H~ Y) ~ Ht(~ a)"* 0 

T ~- T~" T~" ~-- 
0 ~ H~ -~ H~ ~ H ~  -~ H l(~s) ~ 0 

I1 
H~ 

Let H denote the hyperplane in P3 corresponding to Y. It suffices to show that 
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the restricted map ~L[Y:Y~ Y'~_H is birational onto its image Y, since then 
Y = A n H and thus ,4 is of degree 8. 

The map t#LI Y is given by the linear system Ilmr[. The galois group K2 of z~ 
acts on Im r and the map ~OL[ Y: Y ~  Y is K2-equivariant. Furthermore we deduce 
from the above diagram 

H~ Y) = I m  r ~ n*H~ 

Comparing the dimensions we see that Im(r) is generated by the nontrivial 
representations of K2. From the equation 

deg (CPLI Y).deg Y = deg cot = 8 

we get that deg(~oL[Y)= 1,2, or 4, ~" being non degenerate in P2. 
Suppose first that deg (r Y) = 2 that is deg Y = 4. Then there is an involution 

j r :Y~Ysuch  that ~PL factorizes as Y - ~ Y ' ~ Y ~ _  P2 where qr:Y~Y '=Y/ j r  
denotes the natural quotient. F rom the K2-equivariance of q~L we get for every 
ye Y and g~K 2 

This implies 

~L( g Jr (Y)) = gtPL(Jr(Y)) = g~P~-(Y) = ~PL(gY). 

gy 

oJr(y) - - -  o r  . 

Jy(gy) 
In the first case we would have Jr(Y)= Y for all y e  Y, a contradiction. Hence j r  
commutes with the action of K2 and there exists an involution Jx on X and a 
commutative diagram 

y qr y, I ,L 
qx 

X ~X' 
2:1 

where X' = X/j  x. Denote E:= r K2 acts linearly on L' over the action of 
K2 on Y'. This follows from the fact that K2 is an isotropic subspace of K(L). 
Hence there is a line bundle M' of degree 1 on X' such that rt'*M' = g. On the 
other hand, from the above statement on Im r we get that the map r Y'--, P2 is 
given by the linear system associated to a subspaee of H~ on which K2 acts 
with no nonzero trivial subrepresentation, h~ ') > 1 implies that H~ has a 
nonzero trivial subrepresentation. It follows that g(Y') = 1, since otherwise ~ would 
be given by a complete linear system according to Riemann-Roch. On the other 
hand, o(Y')#O, since Y is not hyperelliptic by Lemma 1.3(a). Hence we obtain 
g(Y ' )  = 1. 

Arguing as above we get g(X') ~ O, since h~ ') = 1. Thus we are left with the 
possibility g(Y') = 0(X') = 1 and this is just the case excluded in our assumption. 
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Finally suppose that deg (CpL I Y) = 4. Yis a smooth conic in this case. As a map 
of degree 4 of smooth curves tp L factorizes as Y ~2 y, ~2 ~.__p2 with 

K2-equivariant morphisms of degree 2. As in the degree 2 case above we see 
successively that the involutions corresponding to q~ and cp2 commute with the 
action of K2. So we obtain in 2 steps the following diagram: 

y ~ ;y, ~ ,~  

X ,X'  ,X" 

with deg n' = deg ~ = 4. Moreover, K2 acts on [, - ~p2(1)_l Y linearly over the action 
on Y.. It follows that there is a line bundle M on X with L = ~*M, but this 
contradicts the fact that deg L = 2 and deg I /=  4. This completes the proof of the 
theorem in Case I. 

Case II. Assume now that B = E 1 x E 2 and X = E1 + E 2 with elliptic curves Ei 
and (E 1 "E2) = 1. Let Fi = 7r- ~Ei, that is Y = F x + F 2. The curves F, are elliptic 
with (Ft'F_2)=4, since n is &ale. As in Case I we only have to show that 
cPLI Y: Y ~  Y -  P2 is birational. 

Let us first consider the restriction LIF1. We have the following diagram with 
exact lines similarly as above: 

0.._~HO(t~/l(F2))___~ HO(L) .5. no(LiFt)  __.~ HI(~A(F2))..~O 

0 -* H~ ~ H~ ~ H~ ~ Hl(t~s(E2)) ~ 0 

The map q~L[FI:FI--*/71 ~ P2 is given by the linear series [Imrl. From the 
above diagram we deduce 

H~ = Imr~)rt*H~ 

Clearly ~z*H~ = H~ F1)r2 and the action of K 2 respects the decomposition. 
Thus Imr  is the subvectorspace of H~ generated by the nontrivial 
representations of K 2. 

LIF1 = Or, ai , where {al . . . . .  a4} = FI r~F2, is very ample on F1 and the 

complete linear system ILIF~[ gives a K2 equivariant embedding F~--*if1--P3. 
Denoting by P the point in P3 where K2 and ~ act trivially and by/ - / the  K2- and 
~-invariant plane in P3 not containing P we have proved: 

f l  is the linear projection of the embedding F 1 ~/~1 - P3 given by ILIFI[ into 
the plane H with the point P as a centre. Thus the birationality of q~LI Y: Y - '  ~" 
follows from the following lemma. 

Lemma 4.2. Let m be a symmetric line bundle of degree 1 on E I, l= 7z*m and 
F 1 ~ ffl c P3 the embedding by the complete linear system I11. The linear projection 
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p : P 3 - { P } - * H  with centre the K2- and t-invariant point P onto the g 2- and 
~-invariant plane H induces a birational map fit  "--} f f  ~ ~ H. 

Proof. For a suitable choice of coordinates Xo . . . . .  x 3 of P3 the quartic Ft in P3 
is the complete intersection of the 2 quadrics 

Q1 = x~ + x ~ -  2~XoX2 

Q2 = x2o + x ~, - 2 Z x : 3  

for some 2~C - {0, _ 1, + i, oo} (see [M1, p. 351-353]). In these coordinates the 
group K2 is generated by the automorphism 1::xjv--}iJxj for j = 0 . . . . .  3 (see [M1]). 
Since ! is symmetric the occurring maps are equivariant under the involution 
( - l)r,, which induces in the above coordinates of P3 the involution 

l:~Xob',XO Xt~-',X 3 
~X21---}X 2 X3b-+X t 

(see l-M1]). By assumption P and H are invariant under the action of t and ~ and 
H does not contain P. There are 2 possibilities for such a pair (P, H) namely 

,re = (1:o:o:o) ,re = (o:o:1:o) 
(i) ( H  = {Xo = 0} (ii) t n  = (x2 = 0 }  

The projection p:F~ ~ff~ is birational if each line through P intersects ff~ in at 
most one point. This means in case (i) (the case (ii) is similar) that for any fixed 
(0:xl:Xz:X3)EH the system of equations 

QI(1, tx l ,  tx2, txs) = 0 

Q2(1, tx l ,  tx2, txa) = 0 

has at most one solution in t. But P~P~ implies that t ~= 0 for any solution and 
the equations are equivalent to 

te(22xtx3 - x z) = 1. 

Now the assertion is obvious. [] 

We will continue with the proof of Theorem 4.1. We have seen that 
~0LlFx :Ft --* Ft is birational. Similarly this istrue_for ~o~IF2:F 2 --} if2 and we have 
to show that g0LI Y: Y ~  Y is birational. But Y = F~ w F 2  and ~OLI Y can only be of 
degree 1 or 2. If it is of degree 2, then Y= F~ =/~2 and there is an isomorphism 
Ft-~F2 such that the diagram 

commutes. K2-equivariance of the map ~oLIF~ implies that the isomorphism 
Ft  -~F2 commutes with the action of Ks and this is just the situation which we 
excluded by assumption. This completes the proof of Theorem 4.1. [] 
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5. The double covering ~L 

Let the notations be as above. In this section we want to study the situation 
excluded in Theorem 4.1. We will prove 

Theorem 5.1. Assume that X and Y admit elliptic involutions compatible with the 
action of  K 2. Then the map (OL:A~A ~_ P3 is of  deoree 2 onto its imaoe. 

The assumption means that there is a commutative diagram 

y pr , F = Y / j r  

X ~ , E = X / j x  

with elliptic curves E and F. For  the proof we need 

(5) 

Lemma 5.2. The line bundle LI Y descends to a line bundle N~ on F. K 2 acts  on 
H~ Let W denote the subspace of H~ generated by the nontrivial 
representations of K 2 and q~lwl:F~P2 the associated map. Then the followin9 
diagram commutes 

F 

Proof. By the adjunction formula LI Y = cot, the canonical line bundle on Y. (Note 
that this makes sense also in the case Y = F 1 + F2, since Y is a Gorenstein curve.) 
The involution Jr acts on LI Y. Hence there is a line bundle Nv on F such that 
co r = p~N~. h~ 4, since deg Nr  = 4 and F elliptic. 

Similarly M I X  = COx descends to a line bundle Nr  in E with h~ 1. It is 
now easy to see that ~*Ne = N r and that the following diagram commutes: 

0 P~ 
0 , H (Nv) ~ n~ Y) 

p* 
0 , H~ ~ H~ 

This implies the remaining assertions. []  

For the proof of Theorem 5.1 we will show that the involution jr_extends to 
an involution Ja on A and that there is a birational map O/:A/jA~A ___ P3 such 
that the following diagram commutes 

A ~L ~,4__. P 3 

A/L, 
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To prove this note that the involution jx:X'-" X extends to an involution ja:B--* B, 
since we are in the principally polarized case. Identifying Pic ~ (X)= Pic ~ (B), we 
can say that both &ale coverings Y--, X and A --* B are given by a cyclic subgroup 
<a > c Pie ~ (X) = Pie ~ (B) of order 4. By assumption j*(00 = if(a)~ < o~ >. This means 
that jn lifts to an involution jA:A ~ A commuting with the action of K2 on A and 
restricting to the involution j r  on Y. In other words we have a commutative diagram 

Y , F  

�9 . A/i, 

L'! ' 
B/jB 

(6) 

Thusja is an extension of the involution j r  on Y such that j*L = J ~ ( P A ( Y )  = ~ a ( Y )  = L 
and L descends to a line bundle N = r on AliA. In particular the restriction 
INI IF is exactly the linear system INFI implying that h~ h~ h~ 4. 
Hence ,;% factorizes via Alia. Finally if ~b would not be birational, ~PL would be 
of degree > 2 contradicting Corollary 1.6. [] 

The morphism $:A/ jA-*A is not an embedding. In fact we know that A is 
singular along 2 lines in P3. On the other hand the following proposition shows 
that A/ja is a smooth surface. 

Proposition 5.3. A/jA is a •l-bundle over the elliptic curve F. 
Moreover one can determine explicitely a vector bundle ~ such that A/jA = P(~)  

(see [H-L ,  Sect. 5]. In fact, ~ is the direct sum of two line bundles in this case.) 

Proof. In the case B = El x E2 the proof was given in I-H-L, Sect. 5], so we will 
assume X smooth and B = Jac (X). By the universal property of the Jacobian for 
a suitable embedding X ~ B there is a surjective homomorphism B--,E = X/jx 
such that the bottom triangle of the following diagram commutes 

. 0  

[ I, 
.0  

(7) 

From the property that the right hand square of diagram (6) is cartesian we get 
a homomorphism A-+ F completing diagram (7). Denote by P the Prym variety 
of the double covering Px. P is the kernel of the homomorphism B - ,  E (which is 
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connected since Px is ramified). Furthermore let Q be the kernel of A--* F. By 
diagram (7) Q is the preimage of P under n. 

We claim that Q is isomorphic to P. 
To see this, consider the following diagram 

O ~ Q --* A--r F-*  O 

0"-* P --, B-'~ E ~ O 

and apply the serpent lemma. 
Ja acts nontrivially on Q, since the upper sequence of (8) is exact as a sequence 

of groups. Moreover since JA acts trivially on F, the homomorphism A--, F 
factorizes via A/ja and we obtain the diagram 

0--' Q --, A - . F - ~ 0  

Q/JA --* A/jA 

a fibre bundle over the elliptic curve F with fibre This implies that A/j a is 

Q/ jA '~P l  �9 [] 

6. Moduli 

Given an ample line bundle L on the abelian surface A = C2/A, its first Chern 
class cl(L) may be considered as an alternating form EA on the lattice A. We call 
E A the polarization of A determined by L. It depends on the class of L modulo 
algebraic equivalence. Similarly the kernel K = K(L) of the isogeny ~bL:A --* A depends 
only on the polarization E A. There are 24 possibilities to decompose K into a 
direct sum of cyclic subgroups K1 and K2 maximal isotropic with respect to the 
alternating form e L (e z also depends only on the polarization, See Sect. 1). 
Consequently the moduli space ~r of triples (A, E A , K ~ K 2 )  is a 24:1 (i ,4) 
covering of the moduli space ~r of abelian surfaces with a polarization of 
type (1, 4). 

For an ample line bundle L of type (1,4) the fact, that the map ~oc:A--* Pa is 
birational or not, only depends on L modulo algebraic equivalence. So it makes 
sense to talk ofa birational polarization. Let ~r denote the subset of triples 
(A, EA, KI  ~ K : )  of ~r 4) such that Ea is birational. We have seen that M~I 4) is 
open and dense in ~r It is the aim of this section to give an explicite description 
of,~l ,4).  

Consider Pa = P3(2o . . . . .  23) as the space of octic surfaces in Pa = Pa(Yo,.-., Y3) 
with an equation (.) of the introduction. Equation (.) depends only on 202 and not 
on 20 itself. This defines an action of Z/2Z on Pa. If S c Pa(2o . . . . .  ,~3) denotes the 
set of(2o: ... :,~3), such that (3) does not represent a Kummer surface, then we have 

Theorem 6.1. There is a cononical bijection ~1 .4 ) -7 ,P3-S / {2o~-*+ 2o}. In 

particular, d~t,4 ~ is a rational variety. 
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Proof. In Sect. 2 we associated to every triple (A, EA, K~ ~ K2) f f~ l , 4  ) an equation 
(.). Therefore it remains to show that a point (_+ 2o:2~:22:23)~ P3 - S determines 
(A, Ea, K1 @ K2) in a canonical way. 

Suppose (20:'-" :2a) is a point in P 3 -  S and ,4 is the octic in P3(Yo . . . . .  Y3) 
defined by (2o:.-': 23) and (*). According to Lemma 1.5 there is a morphism P: A ~ C 
of degree 8 with C is the quartic given by (3) and the coefficients Ao . . . . .  2~. 

Step I. The abelian surface A. 
A general surface with equation (3) has 16 singular points and this is the 

maximal number of singular points for an irreducible quartic in P3. Hence for 
any (2o:.--:23)EP3-S the surface (7 is a Kummer surface. It determines a 
principally polarized abelian surface C as follows: The coordinate plane H o 
intersects C in a double conic. On this conic there are 6 distinguished points 
PI . . . . .  P6,  namely the nodes of C on H 0. Let ~pz:Z--r Z denote the double cover 
ramified in P1 . . . . .  P6- It is well known that C = Jac (Z) is the principally polarized 
abelian surface defining the Kummer surface C, that is if N = (gc(Z), then IN21 
gives the Kummer mapping C ~ C __. P3 (see [G-HI).  

The normalization D' of the quartic D = A n H o  with double points in P1, P2 
and P3 is isomorphic to Pl. If D denotes the smooth curve associated to the 
composition of the function fields of D' and Z over the function field of Z, we 
have the following situation 

Z ' Z ~ - P 2 .  

One easily sees, that tpD is exactly ramified over the 12 pinch points p'-1(P4), 
p'-1(P5) , p'-1(P6), hence D is smooth of genus 5 and the map p is unramified. 
Thus p:D - ,  Z extends to an 6tale cover of abelian surfaces, also denoted by p: A --, C. 

As a composition of galois covers D[Z is a galois covering. Hence p:D- ,Z  
and p:A- ,C  are galois coverings with groups Z/2]_ x Z/2Z. 

Finally note that the group structure in A, that is the choice of the point 0 in 
A, is determined by the group structure of the principally polarized abelian surface 
C only upto translation by an element of ker (p). 

Step II. The line bundle L. 
Define L = p*N and let tpL:A -,.'~ -- Pa denote the map associated to  ILl. We 

have to show that the coordinates of P3 can be chosen in such a way that A = A. 

For this we use the fact, that tp L restricts to the composition D % ) D' -*/) ~ P2 

and that we know this map. First of all ~ cannot be a Kummer surface, since 
D = tp~ a(/~) is smooth of genus 5, Hence L is of type (1,4). It follows that ~ is an 
octic, since otherwise (See Sect. 3) A would not have a hyperplane section of type 
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/). According to Sect. 2 we can choose the coordinates of P3 in such a way that 
is defined by a polynomial of type (.) for some (2~:...:2~)eP3 and such t h a t / )  

is a hyperplane section. 
But the hyperplane section determines the coefficients 2], 22 and 2~ uniquely 

(see Sect. 2). This implies 2'~ = 2~ for i = 1, 2, 3. Moreover, the pinch points in the 
hyperplane of / )  are uniquely determined by the situation. But they determine the 
discriminant f of Remark 2.3. One immediately sees that the equation f = 0 and 
2~, 22 and 23 determine the coefficient 20 uniquely upto a sign. This completes 
the proof of the assertion. Summarizing we have the following diagram 

A ~'l, =,~c:: P3 

Pl 4:1 8:11~ 
C- ,s, _~,c::::p 3 

Step III. The decomposition K(L) = K 1 ~ K2. 
The group K(L) is independent of the group structure chosen at the end of 

Step I, since K(L) is invariant under translation by elements of p-1(0)_ K(L). It 
follows from Step II that the map tpL:A-~,'1_ P3 is K(L)-equivariant, where K(L) 
acts on P3 as above via the matrices for a and z of Sect. 1. 

~o L maps the 4 points in A2 to the coordinate point Pa (see proof of Lemma 
1.4), whereas the remaining 12 2-division points, namely the points in A~', are 
mapped bijectively onto the set of pinch points in the coordinate plane H3. Now 
the inclusion ker(p)_  Af  implies that for all xeker(p) and for all ~e(tr, z) the 
set t0~ l(~(q~L(x))) consists only of 1 point. 

In particular the following definition makes sense: Let xl := q~ l(tr(cpL(0))) and 
x2:= cp{l(z(tpL(0))). K1 = ( x l )  and K2 = (x2 )  are isotropic subgroups of K(L) 
cyclic of order 4 and we have ker (p) = (0, 2xl, 2x2, 2xl + 2x2 ). We have to show 
that K~ and K 2 are independent of the choice of 0 in A. But this follows from the 
fact that for every x = ker(p) we have 

q~i. l(~ - x = xl and ~o i l(z(q~L(x))) - x = x2 

which is easily checked. This completes the proof of Theorem 6.1. [] 

Remark 6.2. In fact, the set S c •3(2o . . . .  ,23) turns out to be simply the set 
212223 = 0 .  In the family of octics (,) the following degenerations occur: 

1. One of the 2i = 0 (i = 1, 2, 3), other general: The quartic (~ = 0 is an elliptic 
scroll with 2 singular lines. These can be interpreted as Kummer varieties of 
generalized Jacobians. 

2. Two of the 21 = 0 (i = 1, 2, 3), others general: (~ decomposes into two distinct 
quadrics. 

3. The three conics {21 = 0; 2o 2 = 2(22 + 2])}, {22 = 0; 2o 2 = - 2(22 + 2]} and 
{23 = 0; 22 = 2(22 -22)}: Q becomes a perfect square (see Remark 3.1). 

4. All 2i = 0, i = 1, 2, 3: Q deeomposes into four planes. 



644 C. Birkenhake et al. 

7. Cyclic covers of products of elliptic curves 

Let (A, EA, K~ (9 K2) denote a point of ~1,4).  In the proof of the main result we 
had to distinguish the 2 cases A/K2 ~ Jac(X) and A/K 2 ~- E1 x E 2. In this section 
we want to determine explicitely the set of (20:... :23)6 F 3 for which the latter case 
occurs. We will see that this is a certain cubic in P3: 

Theorem 7.1. Let (A, E a, K l ~ K 2 )e~1 ,4 )  corresponding to a point (20 :-'-:23) e P 3 
under the isomorphism of Theorm 6.1. Then A/K2 ~- Et x E2 if and only/f  (2o:.'. :23) 
satisfies the equation 

(42223 + 202 + 2(22 + 23)2)(22 + 23) - 2)~21(22 - 23) = 0. 

Proof. Step I. Let the notations be as in the proof of Theorem 6.2. First recall 
that the linear system ILl l Y is the subspace of H~ Y) generated by the nontrivial 
representations of K2 and ( -  1)4 (note that ( -  I)A acts on Y), and that the induced 
map ~or. I Y: Y --* Y - P 3 is K 2- and ( - 1)A-equivariant. Hence Y lies in a hyperplane 
H on which L and n act. If Q denotes the polynomial (,) of the introduction 
associated to the point (20:.--:23)e P3, then the restriction Q IH is an equation for 
~" in H. Moreover B = E1 x Ez if and only if Y = F~ + F2 with elliptic curves Ft  
and F2. The restrictions ILl IFi map Fi K2- and ( -  1)A-equivariantly onto /~ in 
H and ~" = / T  w if2. Thus the plane octic Q [H splits into 2 quartics both invariant 
under the action of t and ~. 

The idea of the proof is to compute the equations of ff~ and F2 and to compare 
its product with the equation for Y.. 

Step II. The conditions zH = H and ~H = H leave us with the following 2 
possibilities for H:{yo = Yl} and {Yo = -Y~}. But the octic Q is a polynomial in 
the squares y02 . . . . .  y] such that Q I{ yo = yl } = Q I { yo = - yt }, and without loss of 
generality we may assume 

Identifying H with P2 via the isomorphism (YI:Y~:Y2:Y3)--'(Y~:Y2:Y3) we get as 
an equation for Yin P2: 

2 8  6 2 2 2 4 2 2  
2: Yx + 221(22 + )~3)Yi ( Y3 - Y2) + (22 + )'3)2y~(Y24 + Y34) + (4~2)~3 + ~o)Yt Y2 Y3 

2 2 2 2 + 2 ~ l ( ~ . 2 _ ~ 3 ) y l y 2 y 3 ( y  3 y22) 2 4. 4 --  q- 21Y2Y 3 = 0  (9) 

Step II. In order to compute equations for F1 and F2 we will consider some special 
_points on the ,~'s. On one hand, as a curve of geometric genus 1 the plane quartic 
Ft is singular in exactly 2 points. On the other hand, F1 and F2 intersect each other 
in 16 points. Thus Y is singular in exactly 20 points. Of course, everything has to 
be counted with multiplicities here. 

Some of the singularities are the intersection of Y with the coordinate planes 
He, . . . ,  Hs, since A is singular there. Explicitely we have: 

6) Yr~no= ~'nH1 = {P2,P3} both with multiplicity 4, since Q(0,0, y2, y3) = 
2 . 4 . 4  
0.vzY3 �9 
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(ii) ~'nH2 = {Pa,(x/~2 + 23:x/~2 + 23:0:--- i-v/~0} again with Pa of multiplicity 
4 and the other points with multiplicity 2, since Q(yl,  y l ,0 ,  y a ) = y 4 ( ) . l y 2 +  

+ 2. 

(iii) Yc~Hs = {P2,(x/~2 + 23:x/~2 + 23: + ,,/~-1:0)} with multiplicities as above, 
since Q(yl, y ~, y2, 0 )=  y~(21 y2 _ (;~2 + 23)y2) 2. 

According to the multiplicities P2 and P 3  a r e  the singular points 
of ffl and if2 and the other points ( ~ 2 + ~ . 3 : ~ : + x / ~ : 0 )  and 
( ~ 2  + 23:x//~2 + 23 :0 : -  i-v/~-0 are points in P~nff2. 

Step IV. Now we can compute equations for ff~ and if2: Let 

P(Yt, Y2, Y3) E i " k = a j k l  Y t YI2 Y 3  
0< j,k,/_-< 4 
j + / ~ + l = 4  

be a polynomial defining ffi in P2. There are complex numbers X(z) and ;~(t) such 
that the action of r and t gives as usual: 

z*P(yl ,  Y2, Ys) = P(Yl, iy3, iY2) = X(z)P(y~, Y2, Y3) 

t*P(yl ,  22, Y3) = P(Yl,  Y2, - -  Y3) = Z(t)P(Yl, Y2, Ya) 

Comparing coefficients we get 

;((z)ajkt = iZ+kajlk and z(Oaju = (-- 1)tajkt 

This implies 

z(~) z(0 P 

+ 1  + 1  a y ~ + b ( y ~ +  4 2 2 2 2 z Ys) + c y l ( Y 2  - Y3) + d Y 2 Y 3  

- 1 + 1 (a(y~ - y~) + by~)(y~ + y~) 

+ 1 - 1 y : y 3 ( y  2 + y~)  

- 1 - 1 (a(y~ - y~) + b y ~ ) Y 2 Y 3  

i -- 1 Y2Y3(Y2 + iy~) 

- i - 1 yzy3(y22  - -  iy~)  

i + 1  4 . 4  2 2 . 2  a(Y2  + lY3) + b y  l ( Y 2  - ~Y3) 

- i  + 1  4 -,~ z 2 a ( y  2 - ly3) + b y l ( y  2 + iy~)  

The condition P 2  = ( 0 : 0 : 1 : 0 ) e f t ,  implies that a is zero in the last 2 equations. 
Hence the last 7 equations are reducible and cannot occur as equations for the 
irreducible quartic ffi. 

We are left with the first case. Since/7i has to contain the special points of step 
III, we get b = 0, (a: c) = (21: - 0-2 + 23)) and there are complex number #, such that 

/~={21y~_(22+23)y2(y~_y2)+#,y2Y322=0 } 

for i =  1 and 2. 
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Step K In terms of equations the condition Y = ffl u/72 means: 
2 

2 ) 2" 2 2x.]_ 2 2 Q(Yl,Yl, Y2, Y3) = I I  (21y 4 - ( 2 2  + 3 y i [ y 2 -  y3) piy2y3) 
i = 1  

__ 2 8 2 4 4 + y ~ )  -- 2 iYl  + 221(3,2 + 23)y6(y32 --  Y~) + (22 + 23) Yl(Y2 
2 4 2 2 

+ (21(#i  + #2) --  2(22 + 23) )YlY2Y3 
4,. ( 2  2 .~- 23)(/ .11 2 2 2 2 2 4 4- + #2)Yl Y2Y3(Y3 --  Y2) + #l/22Y2Y3 �9 

Comparing this with (9) above we obtain 

42223 + 22 = 21(#1 + #2) - -  2(22 + 23) 2 

221(22 -- 23) = (22 + 23)(#1 "~/-/2) 

22 = gig2 

which immediately implies the assertion of Theorem 7.1. []  
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