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1. Introduction 

The following question has been posed in [12]: 

Question. Let R be a complete normal local ring with coefficient field C .  Does 
there exist a local ring Al essentially of finite type over C ,  such that the class group 
C1 (A) of A is generated by the canonical module w~ of A and its completion A E R? 

In general one knows that Cl(A) + Cl(R) is injective (see [I]) and the question 
of how small one can make Cl(A) arises. Srinivas has constructed UFD's (i.e., 
Cl(A) = 0) with arbitrary rational double point singularities in his study of the 
K-theory of these singularities (see [15]). KollAr conjectured that any isolated 
hypersurface singularity would have an UFD globalization and some partial results 
were obtained by Buium (see [2]). In [12] the first author and Srinivas settled the 
above question in the affirmative for isolated complete intersection singularities. 

Recently, Heitmann (see [6]) has constructed, for any complete local ring R 
over C of depth at least two, UFD's with completion R. But these rings are not 
geometric in general and they do not have dualizing modules. Indeed, a theorem 
of Murthy asserts that a geometric Cohen-Macaulay UFD is Gorenstein (see [ l l ] ) .  
So for non-Gorenstein R it seems more natural to look for geometric Als with class 
group generated by the canonical module. 

In this note we will prove that the above question has an affirmative answer in 
the case of normal surface singularities: 

Theorem 1.1. Given an analytic normal surface singulan'ty Spec(R) = (X, 0), 
there is an afine algebraic surface X = Spec(A) and a closed point 0 E X which rep- 
resents the same germ (X, 0) and the class group of X is generated by the canonical 
divisor w x  . 
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The proof follows by projecting the singularity into (C3, 0) and studying a suit- 
able equisingular algebraic family via the monodromy of Lefschhetz pencils and a 
variant of the Noether-Lefschetz theorem, as in [12]. 

2. Construct ion of t h e  Family 

Let (X,  0) = Spec(R) be the given analytic germ and (X, 0) C (cN, 0) be an 
embedding of it. Let L : cN + C3 be a generic linear projection and v : (X, 0) + 

(Y, 0) be the restriction of L to X ,  and let (Y, 0) be the image. Then the singular 
locus (C, 0) of (Y, 0) is a curve, possibly singular at 0 and generically (Y, 0) has A, 
singularities, i.e., locally defined by the equation x2 + y2 = 0. Moreover, in this 
situation v : X -+ Y can be identified with the normalization and hence one can 
reconstruct (X,  0) out of (Y, 0). As (Y, 0) is a hypersurface germ in (C3, 0) it is 
defined by an analytic function f E C{x, y, z}. Let I be the reduced ideal of (C, 0). 
Then we have the following: 

Theorem 2.1. (cf. 1131) The function f is finitely I-determined und is right- 
equivalent to a polynomial. Moreouer given an integer r, there exists an integer 
k = k(r, f )  such that whenever g E Mk n I('), f 'und f + g are right-equivalent via 
an automorphism which is identity modulo MT, where M is the maximal ideal of 

(3x1 Y, 2). 

Though the second part of the theorem is not explicity stated there, it can be 
easily obtained by multiplying by a power of the maximal ideal on both sides of the 
basic inclusion of Pellikaan C M*T* (F) (cf. [13], Page 375, line 12). 

Let C be a compactification of (C, 0) in P3, which is smooth outside 0. Then by 
a result of de Jong (cf. [7]), there exists a homogenous polynomial F E C[x, y, z, t] 
such that {F = 0,O) (Y, 0) and Y := {F = 0) is smooth outside C and has only 
A, and D, points on C - 0. 

Let .rr : 5 + P3 be an embedded resolution of Y. It can be assumed to be 
the blow up of a coherent sheaf of ideals Z supported on C (cf. [5], Theorem 7.17). 
Generically Z can be assumed to be the reduced ideal I of C. By the Artin-Rees 
lemma there is an integer r such that Z n  MT C M.Z.  Let k = k(r, F) be as in 
Theorem 2.1. Let do E N be an integer such that do > 1 := deg F and for all d > do 
we have 

(i) The restriction map r : Ho (P3, Mk n (d)) + HO (P, I(~)/M:.I(~)) is 
surjective for all p E C - 0 where M, is the maximal of OP3,,. 

(ii) V := C . t d - ' ~  + H0(P3,Mk n ~ ( ~ ) ( d ) )  is very ample on P3 - C. 
(iii) Ad := (d3 -6d2 + l l d  - 6)/6 > h0 (OE (d -4)) (X, 0) where p, (X,  0) is the 

geometric genus of the singularity (X, 0 and hi of a sheaf is the dimension 
of Hi .  This is possible because p, (X, 0) is a constant and h0 (OE (d - 4)) is 
a linear function in d by the theorem of Riemann-Roch, while the left-hand 
side is a cubic polynomial in d. 

Let P C P(V*) be the hyperplane defined by the subspace Mk n ~ ( ~ ) ( d )  and 
S be the complement of P in P(V*) .  For each s E S let Y, denote the subscheme 
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- 
of P3 defined by s = 0 and Z, be the strict transform of Y, in P3. Consider the 
families, 

y : = {(X, s)  E p3 X S I X E Y,) 

2 : = { ( x , s )  E S  X S ) X E Z , ) .  

Let f : 2 + S be the second projection. 

3. Elementary  Proper t ies  of t h e  Family 

Recall that T : P3 + P3 was the embedded resolution of Y. Let I be the strict 
transform of Y in P3 and put 

For each s E S, we let C, C Zs be the "strict transform" of C, i.e., 

L e m m a  3.1. In the above situation we have 

(i) For every s E S, Z, n ~ ~ ' ( 0 )  = E. und Z, is non-singular along Eo. 
(ii) f : 2 + S is a submersion along E. X S C 2. 

(iii) there exists a codimension 2 subset T of S such that for all s E S - T, Z, 
is smooth along C,. 

Proof. Fix an s E S. By the theorem of Pellikaan there is an automorphism 
of (C3, 0) which is identity modulo M' and defines an isomorphism of (Y,, 0) with 
(Y, 0). Since MT nZ C M.Z it follows that this automorphism extends to the blow 
up of Z in a neighbourhood of 0 and acts trivially on the fibre T-'(o), because 
it acts trivially on ZIMT n Z which maps onto Z1M.Z and hence acts trivially 
on @Zm/M.Zm. Hence it fixes E. and defines an isomorphism of (Z,, Eo) with 
( I ,  Eo).  This proves (i). As (ii) is a local assertion, it follows from (i). 

By the classification of line singularities (cf. [14], table on Page 488), there 
is a subspace Tp C H0(P3,  I(~)/M:.I(~)) of codimension 3 for each p E C - 0 
such that all functions in H0(P3,  Mk n ~ ( ~ ) ( d ) )  - r-I (Tp) has singularities of type 
A,, D, or J, at  p. By assumption (i) it follows that r-I (T,) has codimension 3 in 
H'(P~, M n ~ ( ~ ) ( d ) ) .  Define T' to be the closure of ~ ~ ~ ~ - ~ r - ~  (Tp). Then T' has 
codimension 2 2 and is invariant under scalar multiplication. Let T be the image of 
T' in S .  Then T has codimension > 2 in S. Hence for every s E S - T, Y, has only 
singularities of the above-mentioned types. It  is easy to prove by local computations 
that A,, D, and J, are resolved by the blow up of reduced singular locus. Hence 
Z, is smooth along 2, for s E S - T.  This proves (iii). 

Let C and D be the critical and the discriminant locus of f ,  i.e., C := {(X, s) E 

2 I Z, is singular a t  X) and D := f (C). 

Corollary 3.2. Outside the set T C S ,  we have 
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(i) C - fP1(T) is smooth and irreducible of dimension dim S - 1. 
(ii) f : C - f -l(T) + D - T is birational. 

(iii) For general s E D - T, Z, has an ordinary double point. 
(iv) Y + S is an admissible family of surfaces over S - T. 

Proof. Since V is very ample, it gives rise to an embedding of P3 - C in P(V) .  
Let T' : C + P3 be the projection. Then C - T'-l(C) + P3 - C is the projective 
normal bundle of P3 - C in P(V) ,  by [9]. Moreover it is also proved there that 
C - T'-l(C) + D is birational with the general point corresponds to an ordinary 
double point on 2,. By Lemma 3.1 Z, is non-singular along Z, n r - l (C)  for all 
s E S - T.  Hence the discriminant of f : 2 - f - l (S  - T) + S - T is D - T.  
This proves (i), (ii) and (iii) of the corollary. The assertion (iv) follows from the 
definition of an admissible deformation (cf. [8]). Hence by normalizing yls-T we 
obtain a family of normal surfaces X + S - T with a section U such that each 
X, + Y, is the normalization and the singularities (X„ u(s)) are all isomorphic. 

Lemma 3.3. For general s E S - D one has 

(i) r1 (2,) = 0, hence H 2  (Z,, Z) is torsion free 

( 4  H 2  (2.3, OZ, ) # 0- 

Proof. (i) By stratified Morse theory (cf. [4:], Part 11, Theorem 1.1(1), pp. 150- 
151) it follows that Y, - C is simply connected for general s E S, because V is 
very ample on P3 - C, which is simply connected. Since Z, is smooth and contains 
Y, - C as a dense Open subset, it is simply connected. 

(ii) Choose an s E S - D and write X ,  Y and Z for X„ Y, and Z, respectively. 
Then we have the following exact sequence: 

Here C = I is the conductor liomoy (C, Oy) and is also the ideal sheaf of C. Also 
note that v,Ox = liomoy (C, Oy) ,  as Oy-modules. If we take liomoy (-, Oy)  to 
the above exact sequence, we get 

Hence we obtain an exact sequence: 

0 + O y  + v*Ox + Ext&,(Oc, Oy)  + 0 

because the map liomo, (Oy,  Oy)  + liomoy(C, Oy) is the natural map 
O y  + v,Ox. From the long exact cohomology sequence of this exact sequence, we 
obtain, 

Also note that, 

Ext&, (Oe, OY) = WE C3 W?' = wc(4 - d )  . 
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Hence h2(y, v,Ox) = h2(X, OX) 2 h2(Y, OY) - hl(Y, &xtOy (OE, OY)) = Ad - 
h l ( ~ , & x t & ~ ( ~ ~ , ~ y ) )  = Ad-h1(C,w~(4-d)) = Ad-h0(C,Oz(d-4)) > pg(X,O). 

F'rom the Leray spectral sequence applied to p : Z + X ,  we obtain an exact 
sequence, 

HO(X, R ~ P , O ~ )  + H ~ ( X , P , O ~ )  + H ~ ( z ,  OZ) . 

Hence h2(Z, Oz) > h ( X, p* , Oz) - p, (X, 0) = h2 (X, Ox)  - P, (X, 0) > 0. Hence 
H z  ( 2 ,  Oz) # 0, which proves (ii). 

4. A Noether-Lefshetz Theorem 

Here we prove that for a general s E S, Z, has Pic generated by the exceptional 
cycles (the reduced irreducible components of Eo), f *Oy, (1) and 2,. The repre- 
sentation of r l ( S  - D, s) on H2(ZS, Q) gives rise to a local system 7-t on S - D. 
Let 7-t" be the space of invariants of this representation and P be its orthogonal 
complement with respect to the intersection form. Note that the restriction of the 
intersection form is non-degenerate on X" as it contains an ample divisor. Hence 
we have an orthogonal direct sum decomposition, 

7-t=7-tT@P. 

Let us denote by As C H2(Zs,  Z) the subgroup generated by the irreducible 
components of Eo, 2, and f * (Oys (1)). 

Lemma 4.1. In the above situation we have 

(i) 7-t: = As 8 Q. 
(ii) The local sub-system P is irreducible. 

Proof. The theorem of the fixed part of Deligne (cf. [3]) states that 

Now choose a line L C S that intersects D transversely. Then L n D C D - T 
and Zs has exactly one quadratic singularity for each s E L n D. Let L' = L - D 
and ZLi = f (L'). By a theorem of Zariski .rrl (L', s) + .rrl (S  - D, s) is surjective. 
Hence 

1m(H2(2, Q) + H2(ZS, Q)) = 1 r n ( H 2 ( ~ L ~ ,  Q) H2(zs ,  Q)) = 7-t: - 

Since ZLI is a pencil of hypersurfaces in P3,  it is smooth and rational. Let ZLI be - 
a smooth compactification of ZLt, with a morphism 7i : ZL1 + P3 which restrict 
to .rr on Z p .  Then ZL, is also smooth rational and complete, hence the cycle map 
E : pic(ZLt) + H2(ZL,, Z) is an isomorphism. Now look at the diagram (with exact 
top row): 

pic(zL1) - Pic(ZL,) - 0 

1 C 1 
H ~ ( Z L ~ , Z )  - ~ ~ ( 2 ~ 1 ,  Z) L H~(z„z)  
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Hence it suffices to compute the image of pic(ZL,). Since E. X S C 2, it follows 
that each reduced irreducible component of E. is in the image. The complement of 
all irreducible components of the exceptional divisor of ZL, + P3 is isomorphic to 
P3 - C. Hence its Picard group is generated by T*Op3(1). It is also clear that Cs 
is in the image as it is Zs n x-l(C - 0). This proves (i). 

Now each point of L n D defines a vanishing cycle and the space of invariants is 
precisely the orthogonal complement to the Span of vanishing cycles, by the Picard- 
Lefschetz formula (cf. [9]). Hence the Span of vanishing cycles is the stalk 'Ps of 'P 
at each point. Since the smooth points of D form a connected subset of S, it follows 
that the vanishing cycles form a 'single conjugacy class and hence 'P is irreducible. 
This proves (ii). 

Lemma 4.2. For s E Sv, where Su i s  the complement of countably many 
analytic subsets in S,  we have: 

Proof. By Hodge theory, the rnap of sheaves-'P + R2 f , O ~ l ( ~ - ~ )  is surjective 
after tensoring with C .  Since P is irreducible and the kerne1 of this rnap is a local 
sub-system, it has to be injective. If s E S - D, then in some Open neighbourhood 
U of s (in the Euclidean topology), 'P can be trivialised as a local system, and 
R2 f ,02  l s - ~  as an Ou-module, so that a non-zero element v E 'Ps yields a holo- 
morphic function of several variables on U which is not identically Zero. Hence the 
Zero set of this function is a closed analytic subset Z, C U of smaller dimension, 
and the collection of such v is countable as 'P, C H2(Zs, Q )  is countable. Hence for 
s E {U-U,+~Z,}, the rnap 'P, + H2(Zs, Oz,) is injective. But S-D can be covered 
by a countable collection of such sets U. Then for any s E Sv := UU{U - Uw+oZw} 
the rnap 'P, + H2(Zs, Oz,) is injective. By the exponential sequence and GAGA 
we have, 

NS(Zs) 8 Q = ~ e r ( ~ ' ( z ~ ,  Q) + H2(Zs, 02 , ) )  . 

Hence 'P, is orthogonal to NS(Z,) 8 Q ,  i.e., the cycles representing 'Ps are not 
algebraic. Hence the statement. 

Corollary 4.3. For s E Su one has 

Proof. One clearly has 

As by Lemma 4.2 the result is true over Q and by Lemma 3.3 (i) we know that 
H2(Zs, Z) is torsion free, it is sufficient to show that A, is a primitive lattice in 
H2(Zs, Z). Now take a look at the diagram used in the proof of Lemma 4.1. From 
the Leray spectral sequence of the rnap ZLt - L' one gets that the rnap j is 



ALGEBRAIZATIONS WITH MINIMAL CLASS GROUP 995 

injective, with as image the invariants of the monodromy. Hence H ~ ( Z L „  Z) is 
primitive in H2(Zs, Z). It follows from the exponential sequence that the cokernel 
of C : Pic(ZL1) - H2(ZL5 Z) injects into a C-vectorspace, hence its image also 
must be primitive (cf. [12], Lemma 12 for a proof that works for algebraic Pic). 
Hence, As as the image of pic(ZL,) in H2(Z„ Z) is primitive. 

Proof of Theorem 1.1. Choose an s E U S V  and write X ,  Y and Z for Xs,  Y, 
and Z, respectively. Let C' C X be the inverse image v-l(C) of C. By corollary 
4.3, it follows that the class group of X is generated by C' and u*Oy(l). So it 
only remains to prove that the class of C' represents the dualizing module of (X, 0). 
Duality for finite maps applied to  U gives: 

u,'Homo, (OX, wx) = 'Homo, ( ~ * O X ,  WY) . 

Since wy is locally free as Y is a hypersurface, we have 

U*Wx = 'Homo, (u*Ox, WY) = 'Homo, (U*~x,&y) C3 wy = C C3 wy 

Hence the class of C represents the dualizing module as wy = Oy(d - 4) is locally 
free. L3 
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