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Introduction. A sandwiched singularity is, by definition, a normal surface
singularity that admits a birational map to (2, 0). They therefore belong to the
simplest class of rational surface singularities. A surprisingly large number of
geometrically relevant singularities are sandwiched, for example, cyclic quotient
singularities or, more generally, rational singularities with reduced fundamental
cycle. Sandwiched singularities were studied by various authors including O.
Zariski [36], J. Lipman [24], H. Hironaka [14], and M. Spivakovsky [30], who
also seems to have invented the name. In this article we study deformations of
sandwiched singularities. Our main result is a geometric interpretation of defor-
mations of sandwiched singularities, the picture method, which we describe now.

Let be obtained from Z (2, 0) by a finite sequence of blow-ups. Any
sandwiched singularity can be obtained from some by blowing down the non-
(-1)-curves. Any Z as above can be obtained as the total space of a (not neces-
sarily minimal) embedded resolution of a plane curve singularity C. We therefore
can assign to every sandwiched singularity a so-called decorated curve (C, l).
Here is a function, assigning to each branch Ci of C a number l(i) that
expresses how nonminimal the embedded resolution of C is. For a precise defini-
tion, see Definition 1.3. Conversely, any decorated curve (C, l) gives rise to a
sandwiched singularity X(C, l). A representation of a singularity X as an X(C, l)
we call a sandwiched representation. A sandwiched representation is not given
naturally, and in fact, it usually happens that there are many different ways to
get a sandwiched representation for a given singularity.
We can interpret the function as defining a subscheme of length l(i) on the

normalisation of each branch C of C. We define the notion of 1-parameter
deformation of a decorated curve in Definition 4.2 as a -constant deformation
of C and as a deformation of the subscheme l, which satisfies a simple condition.
The main result of this article, Theorem 4.4, could be stated as follows:

Any 1-parameter deformation of a decorated curve (C, l) gives rise to a 1-
parameter deformation of the corresponding sandwiched singularity X(C, 1). All
1-parameter deformations ofX(C, l) can be obtained this way.

If the general fibre of the deformation of the subscheme is reduced (from which
it follows that the general fibre of the deformation of the curve has only d-fold
points), then the corresponding deformation of the sandwiched singularity is a
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smoothing. Therefore, by looking at special configurations of curves in the plane,
we can construct many interesting smoothing components. The Milnor fibre can
be understood completely from the associated picture. We describe H1, H2, and
the intersection form of the Milnor fibre. Moreover, in some cases we describe zrl
of the Milnor fibre.

In order to prove Theorem 4.4 we use the so-called projection method, which
we review in the appendix. Consider a projection Y in tEn+l of a normal CM
singularity X of dimension n, in such a way that X can be obtained as a normali-
sation of Y. If one considers so-called R.C. (ring condition) deformations of Y,
then the total space can be simultaneously normalised. Moreover, any deforma-
tion of X is obtained from an R.C. deformation of Y. In the second section we
therefore consider a very special projection of the surface X(C, l) into tE 3. The
equations of these projected sandwiched singularities are ridiculously simple;
they are just of the form

zf(x, y) g(x, y).

Here f(x, y)= 0 is a defining equation for C, and the vanishing order of the
function g(x, y) on the normalisation of the branch Ci of C is related to the
number l(i). The main point concerning deformations of sandwiched singular-
ities is, as proved in 3, that they can all be obtained from normalising R.C.
deformations of Y of the form

zfs(x, y) gs(x, y) 0

(where S is some parameter space). Here fs(x, y) defines a fi-constant deforma-
tion of C. So we have a ridiculously simple equation for a projection of any
deformation of a sandwiched singularity as well! This immediately leads to the
picture method; see 4.
The structure of the paper is as follows. In 1 we review some notions related

to sandwiched singularities. In 2 we consider the very special projection of the
surface X(C, l) into tE 3. In 3 and 4 we use our theory of R.C. deformations to
establish the picture method. In 5 we give a more detailed account of the topo-
logical aspects of the situation. In 6 we give examples and applications. Finally,
in the appendix we review the most important aspects of R.C. deformations.
What is missing in this paper is a discussion of Kollfr’s conjectures. According

to these conjectures, smoothings of rational surface singularities should corre-
spond to so-called P-resolutions. The existence of P-resolutions depends on the
finite generation of the relative canonical ring of a smoothing. Hopefully the
picture method can be used to shed light on Kollfir’s conjectures for sandwiched
singularities. We hope to come back to this in a future paper.

Acknowledgements. First we thank J. Christophersen, A. Campillo, and M.
Spivakovsky for suggesting the possibility of the generalisation of our picture
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method for rational surface singularities with reduced fundamental cycle to the
general class of sandwiched singularities. We also thank A. Laudal for inviting
us to the Senter for Hoyere Studier (SHS) in Oslo. During a visit in September
1993 we conceived many important ideas for this paper. We give thanks to G.
Pfister for showing us the relevant approximation theorems, which we, as it
turned out, did not need. We also give thanks to J. Wahl, J. Stevens, J. Steen-
brink, J. Kollfir, R. Kaenders, and all other people with whom we had discus-
sions on the subject of deformations of singularities. Finally, we thank S.
Endrass for making some of the figures with his program surf (see [10]).

1. Sandwiched singularities. In this section we review the basic construc-
tion and properties of a special class of surface singularities called sandwiched
singularities. We refer to [30] for all unproven statements about sandwiched
singularities.

Consider a normal surface singularity X (X, p) and a resolution

zr" M--- X.

If X admits a birational map b to Z := (E2, 0), then we get a diagram

So X is "sandwiched" between two smooth spaces via birational maps, and this
is the reason for calling such singularities sandwiched singularities. The simplest
example of a sandwiched singularity is the Al-singularity X {(x, y,z) E3"

xz- y2__ 0}. The projection onto the x, y-plane Z gives a birational isomor-
phism b" X Z.

X

FIG. 1. A1 as sandwiched singularity

It is easy to see that such a sandwiched singularity must be rational (use Leray’s
spectral sequence), but not all rational surface singularities are sandwiched. For
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example, it follows from the construction that a general hyperplane section of
such a singularity is a curve singularity that has a smooth branch. From this it
follows that the D4-singularity is not sandwiched. Being a sandwiched singu-
larity is a property of the dual resolution graph F, so it makes sense to talk
about sandwiched graphs. The class of sandwiched graphs is closed while taking
subgraphs and decreasing self-intersections. On the other hand, a nonsand-
wiched subgraph makes a graph nonsandwiched. As a consequence, of the
rational double points only the Ak’s are sandwiched, because the others have a
D4-subgraph. In general it is rather cumbersome to recognize sandwiched
graphs. In fact we do not know any algorithm other than just trying. In any case,
the class of sandwiched graphs is surprisingly large. For example, it includes the
cyclic quotient singularities and, more generally, the rational surface singular-
ities with a reduced fundamental cycle (sometimes called minimal singularities).
So we have the following hierarchy of rational surface singularities:

{cyclic quotients} c {minimal} c {sandwiched} {rational}.

Each inclusion is proper.

1.1. Decorated curves. Let p" Z (rE2, 0) be a sequence of point blow-
ups with the exceptional set F :- p-1 (0).

Definition 1.1. The sandwiched singularity X, determined by p" Z, is
obtained by contracting the set E of all non-(-1)-curves of . (We assume for
now that this configuration is connected.)

So if we choose some neighborhood M of E, we get the minimal resolution

(M, (x, 0).

Let T be the set of (-1)-curves in ,. For it T choose a curvetta i transverse
to the (-1)-curve El. We put t i7" (i and C p()= )iT Ci, where

Ci p(Ci). It is well known that p" Z Z can be seen as a good (but not
necessarily minimal) embedded resolution of C. So we have a diagram

C ’-- Z

C ’-" Z.

As any embedded resolution of C is obtained from the minimal resolution by a
number of further blow-ups at points on the branches of the strict transforms,
we can label modifications Z by what we call a decorated curve.
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Definition 1.2. For a plane curve germ C )iT Ci, we define the following
numbers.

(1) re(i) is the sum of multiplicities of branch in the multiplicity sequence of
the minimal resolution of C.

(2) M(i) is the sum of multiplicities of branch in the multiplicity sequence of
the minimal good resolution of C.

For example, for the ordinary cusp we have m 2, M 4.

Definition 1.3. A decorated curve is a pair (C, l) consisting of
(1) a curve singularity C iT Ci c (2, 0),
(2) a function l- T 7Z assigning to each branch of C a number,
(3) with the condition that l(i) > m(i).

The decoration defines a unique subscheme of length l(i) in (i. So we could
as well define a decorated curve as a curve, together with a subscheme of the
normalisation that maps to the singular point. This point of view is useful in 4.

Definition 1.4. Let (C, l) be a decorated curve.
(1) The modification Z(C,I) Z determined by (C,l) is obtained from the

minimal embedded resolution of C by l(i) re(i) consecutive blow-ups at the ith
branch of C.

(2) The analytic space X(C, l) is obtained from (C, l) t by blowing down
the maximal compact set, that is, the union of all exceptional divisors not inter-
secting the strict transform C Z(C, l).

The analytic space X(C,I) can be smooth or have several singularities. If,
however, the decoration satisfies the stronger condition

l(i) >/M(i)+ 1,

then the space Z(C, l) lies over the minimal good resolution and the maximal
compact set is connected. Hence X(C,I) has a unique singular point, which by
abuse of notation we call the sandwiched singularity X(C, l). It is clear that
every sandwiched singularity is of the form X(C,I) for certain C and
l(i) > M(i)+ 1. However, a singularity X can very well have many different
representations as X(C, 1) with various (C,l). We now give some examples to
clarify these definitions.

Example 1.5. (1) We have Ak X(Line, k + 1). Indeed, after blowing up
(k + 1) times, we create a chain of k (-2)-curves (and one (-1)-curve).

(2) Let C be an ordinary m-fold point, that is, a union of m smooth branches
with distinct tangents. If l(i) 2 for each branch, then X(C, l) is isomorphic to
the cone over the rational normal curve of degree m + 1. If l(i) 1 or 2 (but at
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least one of them is 1), then (C, l) ( does not contain any exceptional curves,
so X(C, l) is smooth.

(3) Let C be the ordinary cusp y2_ x3= 0. Then X(C, 2) and X(C, 3) are
smooth, X(C, 4) contains two singular points, X(C, 5) is a cyclic quotient, and
X(C, 6) has a nonreduced fundamental cycle.

(4) If X is a rational surface singularity with a reduced fundamental cycle,
then it has a sandwiched representation with a curve C, all of whose branches
are smooth. In fact, the strict transform of the generic hyperplane section con-
sists of mull(X) curvettas. If we pick out one of these and replace the others by
(-1)-curves, we get a space that contracts to 2. If we blow down curvettas ti
transverse to the (-1)-curves, we get our sandwiched representation as X(C, 1)
with smooth branches, and where l(i) is the length between the picked curvetta
of the hyperplane section and Ci. From this it is already clear that X has many
different sandwiched representations, by picking other branches of the hyper-
plane section. The first blown-up curve in the sandwiched representation is the
exceptional curve that intersects the chosen branch of the general hypersurface
section. But note also that X(A2,5) of Example 1.5(3) is isomorphic to
X(A, 2, 4). So a singularity with reduced fundamental cycle can very well have
representations with nonsmooth branches.

1.2. The ideals I(C, l). Another way to describe a sandwiched singularity is
as the singularity occurring in the blow-up of Z in a complete ideal. We denote
by I(C, l) the ideal needed to get X(C, l). This ideal can be described in several
ways.

PROPOSITION 1.6. (1) Let (’)c denote the compact part of the divisor of the
pull-back of a function to Z C, l). Then

I(C, l) {9 {x, Y}](9)c > (f)c}"

Here f 0 is a defining equationfor C.
(2) Let (t’,..., tr) I c (9c (9 I-[ir=l C{ti} be the conductor ideal of
n’C:

I(C, l) {g e rE{x, y}l(Ci.(g 0)) > ci +/(i)}.

(3) If we "shift" the curvettas i on ,(C, l) transverse to themselves, we 9et, by
blowin9 down, a curve C’, defined by some equation g O. I(C,l) is the ideal
9enerated by these O’S.

Obviously, I(C, l’) I(C, l) if l’(i) > l(i). The largest of these ideals is I(C,m),
with m(i) as in Definition 1.2. This ideal is also exactly the ideal Iev, introduced
in the appendix, which plays an important role in this paper.
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1.3. Multiplicity matrix.
curve C:

Consider as before an embedded resolution of the

The map p" Z Z can be factored into a finite sequence of blow-ups p
Pv o P1-1 o PlV-2 "Pl, where Pk Zk Zk-1 is the blow-up in a finite number of
points of Zk-1. The totality of points in which we blow up, that is, the set of
infinitely near points, we denote by J. For p je c Zk, we put

Ep strict transform of (Pk+l)-1 (p) in ,
Ep total transform of Ep in Z.

The Ep’s are usually identified on the different Zk’S. Let P "= Pic(/Z) be the
lattice of divisors contracted by p. It is clear that both Ep, p d and E, p
form bases for P. The Ep are lpl’s, whereas the E in general are reducible but
have self-intersection -1. The relationship between the Ep and E is expressed in
terms of the multiplicity and proximity matrices.

Definition 1.7. The multiplicity matrix is defined as

(Mp,q)p,qede := multiplicity of Ck in Ep.

Here Ck is the strict transform of C in Zk, where q Zk. One says that q ff is
proximate to p if, notation q p, if q is on Ep. One then has

q---p q

Hq,p is called the proximity matrix. One has E -q Mq,pEq, so the multiplicity
matrix is the inverse of the proximity matrix.

Example 1.8. Take the minimal resolution of the ordinary cusp to a divisor
with normal crossings. We have to blow up three times. Denote the arising
exceptional divisors by El, E2, E3.
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FIG. 2

The multiplicity and proximity matrices are

1 1 0 H= -1 1 0
2 1 1 -1 -1 1

We let L be the free Z-module spanned by the (-1)-curves El, it T. There is a
natural map

I" P L, x (i.x).Ei.
leT

Clearly, the kernel H of this map is the sublattice spanned by all Ep, where p T.
So this is the lattice of the resolution graph of X(C, 1). If we choose as a
basis for P the divisors E, then the intersection form becomes diagonal. If we
choose for H the natural basis consisting of Ep, p q T, then the matrix of the
inclusion H P is described by the restricted proximity matrix, obtained by
removing all columns corresponding to a (-1)-curve. The natural basis for L is
Ei, it T. The matrix of the map P L with respect to these bases now is that
certain part of the restricted multiplicity matrix, obtained by keeping only the
rows corresponding to the (-1)-curves. This state of affairs can be formulated as
follows: The rows of the restricted multiplicity matrix are the coefficients of the
equations for the resolution graph inside the trivial diagonal lattice P.

This restricted multiplicity matrix is essentially the same thing as the multi-
plicity sequence of C.

Example 1.9. For the cusp, the map I P L is given by looking at the third
row of the multiplicity matrix, that is, the multiplicity sequence of C,

7Z (2,1,1))
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Indeed, the resolution graph can be obtained by looking at the first two columns
of the matrix H. One finds a (-2) and a disjoint (-3). If we blow up further, we
get

7Z 3
(2,1,1 11 Z,

which has kernel elements of the form

11 0

111
0

0 0

0
0

These vectors make up precisely Figure 3.

I (-2)-curve C): (-3)-curve

FIG. 3. The series of the ordinary cusp

Note that the map I: P L defines a priori its kernel H as lattice, but from
the structure of the proximity matrix we in fact can find a natural basis in it.

1.4. The infinitely near points made visible. The set J of infinitely near points
are points on some blow-up. However, one can make these points visible by a
small deformation of the curve. This was first described in a nice paper by C.
Scott [29]. For this reason we call it informally the Scott deformation. The same
deformation was also used by N. A’Campo [1] and S. Gusein-Zade [13]. For
the convenience of the reader we include a proof.

PROPOSITION 1.10. Let C c Z be an isolated plane curve sinoularity of multi-
plicity m. Then there exists a 1-parameter 6-constant deformation of C, such that
on a 9eneral fibre one has the followin9 singularities:

(1) the singularities occurrin9 on the strict transform of C under the blow-up of
C2 at the orioin,

(2) a singularity consistin9 of rn smooth branches intersectin9 mutually trans-
versely (we call such a singularity an ordinary m-fold pointfrom now on).
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Proof. After a change of coordinates, we may assume that C is given by the
zero set of a Weierstrass polynomial f:

f(x, y) ym + al (x)ym-1 +... + am(x) O.

Because we assumed C to have multiplicity m, the vanishing order of ai at the
origin is at least i. The total transform after the blow-up (in the interesting chart)
is given by

al(X)ym_ am(X))Xm ym + +"’+ --0,
X xm

The intersection multiplicity of the exceptional divisor with the strict transform
is m. Now move the strict transform "down" by replacing x with x- s. We then
have as singularities the singularities of the strict transform, and we have m
intersection points with the exceptional divisor. Blowing down gives the ordi-
nary m-fold point. In terms of f itself, we are looking at the deformation

al (x s) ym-1fs--ym+ x+"’+
am(X- s)xm
(x-- S) m

--0.

We may assume that each branch Ci of C (whose multiplicity is mi) is given by a
parametrisation of the form

mi mix y (/)i(ti).

One then checks that the deformation of this parametrisation

x t’ + s, y (tn’ + s)i(ti

is a parametrisation of fs(X, y) 0.

From a repeated application of the above proposition, we have the following
corollary.

COROLLARY 1.11. There exists a 1-parameter deformation of the curve C such
that for generic s v 0 there are points Pq, q in the plane, which are ordinary
Mi,q-fold points of Cis.

For pictures we refer to [1], [13], [28], and [29].
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The corollary has a very nice interpretation: the matrix of the map I, that is,
the multiplicity matrix, is the incidence matrix of the set of points Pq, q e and
the curve Cs. The g-constancy of the family is then equivalent to the classical
formula of M. Noether for the -invariant of the curve singularity C:

1
(C) - .ma. (ma 1),

with mq ’ie T Mi,q.
We see later that this particular deformation corresponds to the Artin-compo-

nent deformation of X(C, l). Moreover, in a similar way, every smoothing of
X(C, l) corresponds to a certain 6-constant deformation of C, as well as to cer-
tain points on it. This description of the smoothings of X(C, l) is what we call
the picture method, because the curves and points are conveniently drawn in the
plane. We consider it as the most important result of this paper. A precise state-
ment and the proof are given in 4.

2. The shape of the surface. To get a feeling for what is going on, we need
some insight into the shape of the surface.

2.1. The spaces X(C) and Y(C). Remark that sandwiched singularities come
naturally in series, indexed essentially by the l(i). So what happens if we let the
l(i) go to infinity? According to [34], we can refind the series by deforming the
improvement of the limit, which we call X(C). This improvement can be de-
scribed as follows. Take for each branch e T a smooth plane (2, 0) and an
embedding C/ (2, 0)i. Take

and identify the curves C/in 2 and ({l2, 0)i. It is now clear that this space is the
improvement of the following singularity.

Definition 2.1. Let C Uie T Ci c Z. Consider the normalisation map

Choose an embedding

II 11 o),.
leT leT
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Then the space X(C) is defined to be the push-out

We say that X(C) is the space obtained by glueing planes along the branches
of C. This X(C) is naturally a weakly normal Cohen-Macaulay space, with sin-
gular locus C. Note that under the identification map the smooth planes (2, 0)
get mapped in general to something singular in X(C). The corresponding com-
ponents are then non-Cohen-Macaulay.
The use of projections of surface singularities into 3-space, in order to under-

stand the deformations and equations, has turned out to be very fruitful. In [19]
this idea was used to obtain the structure of the base space for rational quad-
ruple points. Here we use the same method to study sandwiched singularities.
For a review of the method of projections, we refer to the appendix. We start
with a special projection of the limit X(C), which is a surface that is very easy to
define.

Definition 2.2. Let C be an isolated plane curve singularity defined by f 0,
where f {x, y} c {x, y, z}. We put

Y(C) := {(x, y,z): zf(x, y) 0} = (3, 0).

So Y(C) consists of a smooth plane {z 0} together with the product of the
z-axis with the curve C. The singular locus of Y(C) therefore consists of two
parts: (1) the curve C in the plane {z 0}, and (2) the z-axis through the singular
point of C. It is easy to construct a finite, generically one-to-one map from X(C)
to Y(C). We can resolve the curve C by a sequence of point blow-ups. We now
can apply the same sequence of blow-ups crossed with the z-axis to Y(C) to
construct a modification

z(c) Y(C).

This Z(C) is exactly the improvement of X(C) constructed above, and by the
universal property of glueing and blowing down, we get a factorisation

Z(C) --, X(C) (C).

To put it in another way, X(C) is obtained from Y(C) by a partial normalisation
that removes only the singularities on the z-axis.

Example 2.3. We consider the ordinary cusp C:x2- y3 0. The improve-
ment of the surface X(C) is shown in Figure 4, whereas Y(C) is shown in Figure 5.
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FIG. 4. Improvement of the surface X(C)

FIG. 5. The surface Y(C) z(y x3) 0

2.2. The spaces X(C,I) and Y(C,I). As X(C,I) should be a small deforma-
tion of X(C), one expects to be able to define a (C, l) as a small deformation of
(C) (which in fact is a so-called R.C. deformation; see the appendix), from
which X(C, l) can be obtained as normalisation. This in fact is the case, as we
show now.



DEFORMATION THEORY OF SANDWICHED SINGULARITIES 465

THEOREM 2.4. Let (C, 1) be a decorated curve, and let X(C, l) be the analytic
space determined by it. Let (tl,..., tr) I c (9c c (9 1-Iir__l C{ti} be the con-
ductor ideal of n" - C. Then, for every function g {x,y} such that its
restriction gi has exact vanishing order ci + l(i) on Ci, X(C, l) is the normalisation
of the surface

Y(C,I) {(z,x,y)lzf(x,y)- g(x,y) -0} Z.

Proof. Let (C, l) be the modification of Z determined by (C, l). On it
we have functions x_ and y, the pull-backs of t_he functions x and y on C2. The
function f(x, y) on Z vanishes exactly on F C. Then we define a meromorphic
function z on by

Replacing g by g + f we can arrange that the divisors (f) and (g) on have the
same compact part. As the vanishing order of gi on (i is assumed to be exactly
ci +/(i), it follows that the noncompact parts of_ (f) and (g) are disjoint; see
Proposition 1.6. So z has a simple pole along C and is zero along the non-
compact part of (g). In particular, z is nonconstant on every compact curve in Z
intersecting C. So we get a holomorphic map

(z,x,y) - tr x z.

As X(C, l) is obtained from - t by contracting the maximal compact set, the
above map factorises to give a map

p X(C, 1) -- Y(C,I) x Z.

Clearly, p is birational, as the map to Z already is birational. The inverse image
on of the z-axis tE3 is the set F. The function z is finite (because it is non-
constant) on each of the exceptional curves intersecting C. It follows that
p X(C, l) Y(C, l) is the normalisation map.

Remark 2.5. We note that, strictly speaking, the space Y(C, l) depends on the
choice of g. However, its normalisation X(C, l) only depends on g via its vanish-
ing orders encoded in the l(i), and therefore we do not mind. Note also that the
surface Y(C, l) has a natural partial compactification (C, l) IP x Z. The nor-
malisation of this space could be called X(C, l), which is also precisely the space
obtained by blowing up Z in the complete ideal I(C, l).
Example 2.6. We consider the decorated curve (C, 6), where C is the cusp

x2 y3 0; see Figures 6 and 7.
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FIG. 6. Resolution of the surface X(C, 6)

FIG. 7. The surface Y(C, 6) z(y x3) + (0.05)x 0

We now turn to the algebraic relation between X(C) and Y(C) and between
X(,l) and Y(C,I). Let 1 be the conductor of the normalisation map ( C.
Consider the extension of I to (x, y,z}, which we denote by L The ideal of
functions

ICv := (g C(x, y}lord(gi) > ci + m(i)}
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plays an important role in the R.C. description of the 8-constant deformations of
the curve C; see the appendix. We note that because l(i) > re(i), the particular #
constructed in Remark 2.5 is Iev. Because Iev is an ideal we conclude that both
zf and zf t are elements of Iev, so the ideal I satisfies the ring condition both
for Y(C) and Y(C, l).

THV.OREM 2.7. We have

(_gX(C) ,komy() (I, I), (9X(C,I) ,gomy(c,l) (I, I).

Proof. We give the proof of the second statement only. The singular locus of
Y(C, l) is exactly the z-axis. Taking fomg(c,l)(I, I) commutes with localisation.
So for a generic z, zf- g gives the general fibre of a 8-constant deformation of C,
and thus for generic z, omy(c,l)(I,_I) describes a smooth space. We conclude
that the space defined b_y omy(c,l)(I, I) is CM and has a codimension-2 singular
locus. Thus ;fomy(c,o(I,I) is the normalisation of (Y(C,l), which by Remark 2.5
is (x(c,o.

This description of (x(c) and (gx(c,l) is very useful in getting explicit equations
for these spaces in ambient space. This is explained in the appendix, and is illus-
trated by the following example.

Example 2.8. Take the decorated curve C consisting of the E6-singularity,
defined by y3_ x4 0, and the function defined by the number 8 attached to
its only branch. The equation for Y(C) is z(y x4) 0. Equations for the limit
X(C) in the space with coordinates x, y,z, u, v can be obtained, as explained in
the appendix, as follows. The conductor ! (x, y)2 of the curve is obtained as
the ideal of minors of the matrix

x y 0).0 x y

A presentation matrix of x(c) as an C(3,0)-module is then

zy 0 -zx2 Ix y 0
0 x y

Thus, we get linear equations

zy + ux 0, uy + vx 0, -zx2 + vy 0,

and quadratic equations

U
2

1)2 z2y.
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Now we have to choose a 9. The E6-singularity is P2arametrised by x 3,
y 4. The conductor is given by the ideal (t6) (x, y) Hence the function 9
has to have vanishing order 6 + 8 14. So x2y2 TM will do. We conclude that
the projection Y(C, 8) has equation

z(y3 X4) x2y2.

From this information, equations of X(C, 8) can be computed. For the corre-
sponding presentation matrix of (9x(c,8) we get

zy xy -zx1x y 0
0 x y

From this we get linear equations

zy + ux O, xy + uy + vx 0, -zx2 + vy O,

and quadratic equations

U2 21) -t- yz, uv -z2x I)
2 z2y X2Z

for the sandwiched singularity X(C, 8).
In general, the equations for the limit X(C) are easy to describe in terms of the

equations of C, as in the appendix.

PROPOSITION 2.9. If

Z Mijl’li--- O, tlkl’ll Z 9klUi
i=0 i=0

are the linear (resp., quadratic) equations for , then the linear (resp., quadratic)
equations for X(C) are

zMoj -Jr- Mijui O, Uktl z 9kl q- Z ZgklU’"
i=1 i=1

(Recall that in the module basis uo 1.)

Remarks 2.10. (a) There is a 1-parameter R.C. deformation

y) y) o.
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For the special fibre s 0 we have the space Y(C), and for all s # 0 the fibre is a
Y(C, 1). If we consider the normalisation, we get a 1-parameter deformation of
X(C) such that for all s 0 the fibre is isomorphic to X(C, l). We remark that
this deformation can be obtained from the minimal improvement of X(C) by
deforming away the Ao-singularity at Ci to an At(O_m(O-singularity in the way
also described in [34].

Similarly, there is a 1-parameter deformation Xs ---, S with zero-fibre X(, l)
and all other fibres isomorphic to X(C, l’) if l(i) > l’(i) for all i. Just look at

zf(x, y) so’ (x, y) 9(x, y).

These deformations are useful in various situations.
(b) Although in Example 2.8 the computation of equations of X(C, l) was

quite easy, the computation of equations for X(C,I) in general becomes very
lengthy and boring. This is even more true for deformations, which we consider
later. The advantage of the theory of R.C. deformations is that one can circum-
vent these calculations. One only needs to take care of the linear equations,
while the ring condition exactly says that one can compute the quadratic equa-
tions without actually doin9 so.

(c) The resulting embedding of X(C, l) need not be minimal, although it is in
most cases. For example, take the sandwiched singularity with the dual resolu-
tion graph of Figure 8.

I (-2)-curve C) (-3)-curve

Fxc. 8

There exists no sandwiched representation for this singularity such that the
resulting embedding is minimal. Note that this example is the standard counter-
example to the T and T2 formulae; see [3] and [5].

[}3. Deformations of sandwiched singularities. In 2 we see how to get equa-
tions for X(C, l) using a projection to a surface Y(C, l). With the same ease, the
theory of R.C. deformations can be used to describe the deformations of X(C, l)
in terms of Y(C, l). The main result of this section is a theorem that expresses the
stability of the normal form zf-9- 0 of the projection under arbitrary defor-
mations, in a strong sense. To formulate this appropriately, we need to define
a new deformation functor. To simplify notation we put X X(C,I) and
Y= Y(C,I).
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3.1. The functor Def(E, C, 9). Let Y be defined by an equation of the form
zf- O 0. As usual, f 0 is an equation for the curve C, and Z is the fat point
defined by the conductor I of the normalisation. We denote by $2 the fat line
defined by I in 3. We define a functor Def(E, C, O) of what we call normalform
deformations.

Definition 3.1. Let S be a local analytic space. A triple (Es, Cs, 9s) is called a
nice triple if and only if

(1) (Es, Cs) is an R.C. deformation of (, C) over S;
(2) (Zs, Os) is an R.C. deformation of (Z, 0) over S.

Two nice triples (Es, Cs, gs) and (E C’s, Os) are called isomorphic if there is a
coordinate transformation in the x, y-plane over S that maps (Es, Cs) to s, C)
and Os to 0 modulo some multiple of f.
We define the functor Def(E, C, 9) by putting

Def(Z, C, 9)(S) := {(Zs, Cs, 9s); nice triple over S}/{isomorphism}.

It is easy to see that this is a semihomogeneous functor. In a moment we see that
Def(, C, 9)([e]/(e2)) is finite-dimensional, so that by Schlessinger’s theorem it
has a hull.

PROPOSITION 3.2. There is a a natural transformation offunctors

Def(E, C, 9) -- Def(, Y(C, l))

cs, as) rs {zfs as 0}).

Proof Given a nice triple (Es, Cs, gs), the function fs defining Cs is deter-
mined up to a unit u, and Os is determined up to a multiple a ms(x,y of fs. In
the equation zfs gs 0, these ambiguities can be absorbed in z by the replace-
ment z uz + a, so Ys is well defined. The pair (Xs, I) satisfies the R.C. if
and only if the evaluation map eVzfs-os is the zero-map. We have eVzfs-os
z.evfs-evgs. As both (Xs,fs) and (E, gs) satisfy the R.C., we have evfs
eros 0. So indeed (Es, zfs- 9s) satisfies the R.C., and we get a well-defined
transformation of functors.

Hence, we have a chain of transformations of functors

Def(Z, C, O) Def(Z, Y) -% Def(X -, Y) --, Def(X).

The main result of this section is the following theorem.

THEOREM 3.3. The composed transformation offunctors

Def(E, C, 9) Def(X)

is formally smooth.
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This formal smoothness is a strong form of surjectivity. It means in particular
that every fiat deformation of X over S can be projected into 3-space to an R.C.-
admissible family of the form zfs gs O.

3.2. Infinitesimal deformations. As before, let C be described by an equation
f --0, f {x, y} =: (9, and let (A) (A1,..., At) I c (9 be the conductor
ideal and E the fat point it defines. The infinitesimal deformations of the functor
Def(E, C, g) are represented by admissible triples

zC(I,f,g) {(n, fl,/1) (tl, fl) ff zC(I,f) and (n, gl) ff M’(I,g)} c N: (9 ( (9.

The infinitesimal coordinate transformations (i.e., vector fields 0 O := 02,0)
give a submodule of triples of the form

(O(A),O(f),O(g)).

Furthermore, the equation of C is determined up to a unit, and the function is
determined up to multiples of f. As a consequence, the triples (0, f, 0), (0, 0, f)
are zero in TI(E, C,g)’= Def(E, C,g))([e]/(e2)). As a result we have the fol-
lowing proposition.

PROPOSITION 3.4. There is an exact sequence of the form

0 IeV/(f, Oc(g)) TI(E, C,g) -- TI(E, C).

Here (R)c {0 e (R) O(f) c (f)} is the module of vector fields tangent to the curve
C. In particular, T (Z, C, g) is a finite-dimensional vector space as soon as g is not
identically zero on any branch of C.

Our next goal is to prove that the map TI(E, C, ) - T (S) is surjective. For
this it is useful first to look at the limit X- X(C) for which TI(x) can be
understood completely. We use the following notation. If M is any {x,y}-
module, we write M for its extension to {x, y, z}. A similar notation is used for
spaces.

PROPOSITION 3.5. Let Ta Ker(hf’Tl(E) N*/I). Then there are exact
sequences

0--o I%/(f zJ(f)) -- T(, Y(C)) -- Tal "-+ 0

0 --+ (Iev/(f)) ) (zleV/(zJ(f),zf)) - T(X(C)) ---+ To --+ O.

Proof. We first determine the admissible pairs sO(/, zf) c N’ x Ny(c)of the
function zf. Elements of the form (0, h) are admissible if and only if h e Iev. Fur-
thermore, if (n, fn) sO(I, f), then (n, zfn) e s([, zf). One has (n, h) e sO(i, zf) if
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and only if hzf(n)- 0, where hzf" N’- ;7I is the Hessemap. As hzf(n)=
zhf(n) and N*/I is {z}-free, one sees that Ker(hzf)= Ker(hf), which means
that there is nothing else. To obtain the first exact sequence, one has to note that
that dz maps to the pair (0, f).
For the second exact sequence, we recall that, according to the appendix, one

obtains TI(x(c)) as a quotient of TI(, (C)) by dividing out the image of the
vector fields of the form Ukdx, and so on, in the space of admissible pairs. As is
smooth, we have TI()--0. This means that all of (I,f) is obtained by
applying UkSx, and so on. From the explicit equations for X(C) in terms of the
equations of C, Remark 2.10, and the description of the R.C.-admissible pairs
obtained from vector fields in the appendix, one concludes that if (n,h) is an
R.C.-admissible pair for C, then (zn, z2h) gives an R.C.-admissible pair for X(C),
which then is a trivial infinitesimal deformation of X(C). Dividing out these ele-
ments in the first sequence gives the second sequence. [-]

COROLLARY 3.6.
diatram

The map T (Y, C, O) --. T (X) is an isomorphism. It sits in a

0-- Iev/(f) - TI(E,C, 0) -* TI(E,C) -- 0

0 -* (IeV/(f)) (zIeV/(zJ(f),zf) -* TI(x(c)) --* Ta -* O.

Here we see one of the main reasons for introducing Def(E, C, g): it maps nat-
urally to Def(Z, C), whereas TI(X(C)) only maps to Ta1. Using the isomorphism,
T (X(C)) gets a beautiful structure: it has a finite-dimensional piece TI(E, C) corre-
sponding to the 8-constant deformations of C, and it has an infinite-dimensional
piece IeV/(f) corresponding to the "series" deformations (which deform X(C) to
sandwiched singularities X(C,I)). Note that this infinite-dimensional part
IeV/(f) has support on C, the singular locus of X(C).

Let us turn to sandwiched singularities. We let X X(C, l), Y Y(C, l), and
so on. For these we do not have such an explicit description of T. But what
matters for now is the following.

PROPOSITION 3.7. The map

T (E, C, g) T (X)

is surjective. In other words, the vector space TI(x) of infinitesimal deformations
has a basis represented by admissible pairs of the form

(0, h), h e Iv @ zI*v

(n, zfn #n) with (n, fn) e (I, f) and (n, /n) e (I, g).
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Proof. Recall from Remark 2.10 that the normalisation Xs S of the 1-
parameter family {zf-sg =0} has special fibre X(C) and all other fibres
isomorphic to X(C, 1). It follows from general principles that there is a relative
Tl-sequence that reads as

...-_ TrI(XS)- TrI(XS)--+ TI(x(c))

By Proposition 3.4, there is a basis of TI(X(C)) consisting of elements of the
form (0, h) Iev @ zIev and elements of the form (n, zfn) with (n, f) e (I, f).
The question now is which of these elements can be lifted to TrI(Xs). Obviously,
the elements (0, h) can be lifted in the trivial way. Elements of the form (n, zfn)
can be lifted if ho(n O, because then for some gn one has (n, gn) (I, g), so
(n, zfn Sgn) is a lift to (_/, zf- sg). The condition hg(n) 0 is also necessary:
Take any lift n + sin, m N of n. Then n + sm can be extended to an element.__.of
(_,zf- sg) if and only if hzf_(n / sm)- 0 in the free rE{z, s}-module N*/I.
But this is zhf(n) + zshf(m) shg(n) s2hg(m). The coefficient of s, hg(n), has to
vanish. So Trl(Xs has S-module generators of the stated type. Now we can
restrict to any fibre, for example, s 1, to get the result for TI(X(C,I)). U]

3.3. Proof of Theorem 3.3 for l(i) big. We first prove Theorem 3.3 in the case
where all the l(i) are big. In fact, for all we need

l(i) >/ci.

Then one can choose 9(x, y) 12. The crucial consequence of this condition is
that the Hesse map

ho N N*/I

is the zero-map. Recall that formal smoothness of a transformation of functors
F G means that for all small extensions 0 V T S 0 the canonical
map

F(T) F(S) x a(s) G(T)

is surjective. Assume that we have (Z,s, Cs, gs) representing an element of
Def(, C, 9) (S). We have corresponding elements (Es, Ys) Def(E, Y)(S) and
Def(X)(S). Assume that we can lift the corresponding deformation of X to T.
We show that then we can find (ET, CT, #T) lifting (Es, Cs, gs) and mapping to
the corresponding deformation of X over T.
The functor of 8-constant deformations of the curve C is unobstructed, so we

can lift fs to fT and Es to ET in an R.C.-admissible way. Consider an arbitrary
lift of #s to gT. The condition of R.C. admissibility of the family zfT- 9T is
expressed by the vanishing of the evaluation map

eVfr_or Ny. (_9 (R) V.



474 DE JONG AND VAN STRATEN

By construction of the lift (ET, fT), evfT 0, and so the condition for admis-
sibility on gT becomes independent of z, that is,

eVzfr-or -eVor N* (R) V c N* (R) V.

The obstruction element of the family zfs gs 0 e Def(;, Y)(S) is given by the
class of eVzfr-oT -eVgr in the obstruction space

+ (R) v.

Because l(i) > ci we know that ho(N 0; hence the obstruction space is equal
to

(*/([ + hzf([))) (R) V.

As the element of Def(X)(S) can be lifted to Def(X)(T) by assumption, this
obstruction element in fact has to vanish. This means that

ev0r I** (R) V;

hence ev0r is of the form n n(h) for some h e I (R) V. Change the chosen lift to
g- gr h to get evo) 0. This means that we have lifted (Es, Cs, gs) to T. As
the possible lifts of Def(X)(S) to Def(X)(T) form a principal homogeneous
space for T (R) V, the result follows from Proposition 3.7.

3.4. The argument for l(i) small. As the transformation Def(E,C,g)-
Def(X) is smooth for large l, one has that the complete local ring R1 of the base
space of the formal semiuniversal deformation of Def(E, C,g) is of the form
R[[sl,..., sn]], where R is the complete local ring of the base space of X(C, l). As
we know that one can take R to be the completion of an analytic local ring, the
same is true for R1. Because the ring conditions are expressed by polynomial
equations, it follows from the ordinary Artin approximation theorem that one
can construct an analytic family that is formally semiuniversal for Def(Z, C, g).
(Alternatively, one could argue as in [18] .) So we get a smooth map of analytic
spaces

as base spaces for Def(E, C, g) Def(X). Recall that according to Remark 2.10,
X(C, l’) occurs as a small deformation of X(C, l) if l’(i) < l(i). We can apply the
theorem of openness of versality to conclude that Theorem 3.3 is true for small
as well.
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Remark 3.8. Also in case all the l(i) are big, we can get a clearer description
of the T1. In fact we have the diagram

where (R)z is the module of vector fields on C generated by toO/cOt. In particular,
we have the dimension formula

dim(T(X)) (l(i) m(i)) + dim(T(E, C)).
iT

It is also known that dim(T(E, C)) ---z(C) -. It is unclear, however, how big
one has to take the l(i) to have the above formula.

For lack of a more appropriate place, here we state and prove the stability
result.

THEOREM 3.9. Consider two decorated curves (C, l) and (C, lt). Suppose that
for all one of the following cases occurs:

(1) l(i) l’(i),
(2) l(i) > ci, lt(i) > ci.

Then the base spaces of a semiuniversal deformation of X(C, l) and X(C,I) are
isomorphic up to a smoothfactor.

Proof. Under the assumption of the theorem one chooses a g for Y(C, l) and
a g’ for Y(C, l’) with the property that g- g’ e 12. The theorem follows from the
principle of I2-equivalence 16, (1.16)]. [2]

If for all the second case of Theorem 3.9 occurs, then the theorem is sharp, as
then there always is a special smoothing that exists if l(i) ci for all but does
not exist if for at least one we have l(i) < ci. See Cases 4.13.
We refer to the singularities with l(i) > ci as being in the stable range, because

here the general phenomenon of stability has set in. If we go higher in the series,
the base space gets crossed with a smooth factor, and hence the component
structure is the same.

[}4. Pictures and components. We see in 3 that the base space of the semi-
universal deformation B(X) of a sandwiched singularity X X(C, l) is, up to a
smooth factor, the same as the base space B(E, C, g). This leads us to a descrip-
tion of smoothing of X in terms of geometry in the plane.

4.1. Decoration as divisor on C. When a sandwiched singularity X(C,I) is
constructed as the normalisation of zf- g 0, it is only the vanishing order of g
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on C that matters. In other words, the functor Def(Z, C, #) contains a little too
much information.

It is useful to cha_nge the perspective and try to reformulate everything in
terms of divisors on C. For example, in Definition 1.3 we introduced the concept
of a decorated curve as a curve with numbers attached to its branches. From
now on we think of the/(i) as information encoding the unique subscheme c C,
whose comp_onents c Ci have length l(i). Equivalently, we may think of it as a
divisor on C. We are sloppy here and denote this subscheme or divisor by the
same symbol, C, with components l(i) Ci.
The divisor (g) of the function g on C consists of subschemes of length

ord(g, Ci) ci + l(i) or, in terms of divisors,

(0) c + I.

In our construction of sandwiched singularities, we had to assume that
l(i) > re(i). This means that has to contain another certain scheme

incl.

Here of course m := m(C, p) is the unique subscheme on with length re(i) on
branch i. These concepts now can be globalised as follows.

Definition 4.1. Let n" C C be the normalisation of any plane curve. We
define its multiplicity scheme m(C) as

m(C) Upec re(c, p).

Here m(C,_p) denotes the local multiplicity scheme of length m(i)~on the ith
branch of Ci. A pair (C, l) consisting of a curve and a subscheme = C is called a
decorated curve if

m(C) = I.

We also can define what we call a 1-parameter deformation of a decorated
curve. For this, let S be the germ of a smooth curve, {0} be the special point, and
S* S- {0} be the set of generic points.

Definition 4.2. A 1-parameter deformation of a decorated curve (C, l) over S
consists of

(1) a -constant deformationCs S of C,
(2) a flat deformation ls Cs C S of the scheme l,
(3) with the condition that

ms Is.

Hre w define the rlatiw ms of Cs -* Cs as
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We want to stress here that the formation of m is in general not compatible
with base change in the sense that re(Co) :/: (ms)o. But in any case we have an
inclusion m(Co) c (ms)o.
The idea of course is that a 1-parameter deformation of a decorated curve

gives rise to a 1-parameter deformation of the corresponding sandwiched singu-
larity. We first construct geometrically the fibre X(Cs, Ds), s S*, which is noth-
ing but a global version of the construction of a sandwiched singularity. See
Definition 1.4 and Remark 2.5.

Construction 4.3. Let (C, l) be a decorated curve (in the sense of Definition
4.1), where C is a curve in a smooth surface Z. Locally on Z we have the sit-
uation as in Definition 1.4, so we can construct a modification

p" ,(C,/) -- Z
by blowing up in points p n(q), q supp(/). The analytic space X(C, 1) is
obtained from ,,(C, l)\t by blowing down the maximal compact set.

As the above construction involves blowing up, it is not obvious how to
obtain a fiat family of surfaces X(Cs, ls) directly from any 1-parameter deforma-
tion of decorated curves (Cs, ls). The problem of obtaining the deformation
directly via blow-up is related to the problem of finding P-resolutions. We hope
to come back to this theme on a future occasion.

The central theorem of this section is the following.

THEOREM 4.4. For any 1-parameter deformation (Cs, ls) of a decorated curve
(C, D), there exists a flat 1-parameter deformation

Xs - S

with the properties that
(1) X0 X(C, l),
(2) Xs X(Cs, ls) for all s S*.

Moreover, every 1-parameter deformation ofX(C, l) is obtained in this way.

Proof. For X(C, l) we choose / {x, y}, so that n X(C, l) -- Y(C, l),
where Y(C, l)= {(x, y,z): zf(x, y)- 9(x, y)= 0}, as in 2. Write 9 ah with a,
h 60d such that a generates the conductor I c (gd, and the divisor of h is 1. This
is possible because the vanishing order of / is c + l(i).

Suppose we are given a 1-parameter deformation (Cs, ls) of (C,l). The g-
constancy implies that the conductor Is (gcs (-9 is S-flat. So we can lift a, h
to elements as, hs (-9ds. Pick any gs e (gs{x,y} lifting g and hsas. Define a
family of surfaces I c 113 x S by the equation zfs gs O. From the descrip-
tion of Iev in the appendix and the fact that m(Cs) l, it follows that, in fact,
(Es, I)e Def(E, Y(C, 1)). So we can normalise over S to obtain a family
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ns’Xs Ys, which is a fiat deformation of X(C,I). As the construction of
X(Cs, ls) is local on Z, one can use Theorem 2.5 to conclude that the normali-
sation of Y(C,I) {(x,y,z)lzf 9 0} is X(C,ls).

Conversely, any deformation Xs S of X(C, 1) can be obtained from
Def(E, C, 9) by Theorem 3.3 and so is of the above type. q

Example 4.5. First, it follows from the theorem that sandwiched singularities
only deform into sandwiched singularities. We consider Example 2.7 and the 1-
parameter deformation of the decorated curve depicted in Figures 9 and 10.

6

FIG. 9

FIG. 10. Deformation of Y(C, 6) corresponding to smoothing of X(C, 6)" z(y X2(X "-[" (0.3))) +
(0.2)(x2)(x (0.3))(x- (0.6)) 0
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As a second example, we consider the deformation of a decorated curve given
in Figure 11.

3 7 2 4 2

FIG. 11

This gives a deformation of the rational surface singularity with the dual resolu-
tion graph shown in Figure 12.

I (-2)-curve t (-4)-curve

FIG. 12

On the general fibre we have singularities coming from X(A2, 4), X(A1,2,2),
and X(A1, 1, 1) so we have two cones over the rational normal curve of degree 3
and an A1-singularity; see Example 1.5.

4.2. Picture deformations and smoothin9 components. Every singularity X
has a collection 5e(X) of smoothing components, that is, irreducible compo-
nents of its base space B(X) over which smoothing occurs. It is well known
that for rational singularities all components of B(X) are smoothing compo-
nents.

Let us try to describe the smoothing components for a sandwiched singular-
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ity. Any (nontrivial) 1-parameter deformation Xs S is induced from a map
j S B(X). If Xs S is a smoothing, then j(S) is contained in a well-defined
component of B(X). In principle, Theorem 4.4 gives us a complete description of
all 1-parameter deformations, in particular, of all smoothings. The general fibre
Cs of the corresponding family of curves can have all sorts of singularities; see,
for example, Example 1.5(3). We show however that a generic 1-parameter
smoothing is of a very particular type.

Definition 4.6. A 1-parameter deformation (Cs, ls) is called a picture defor-
mation if for generic s 0 the following holds:

the divisor ls on (s is reduced.

This implies in particular that the singularities of Cs only consist of ordinary
m-tuple points, for various m. By convention, we call an ordinary 1-tuple point a

free point. So these are the points of the divisor l that map to a nonsingular
point of Cs.

LEMMA 4.7. A generic smoothing of X(C,I) is realised by a picture deforma-
tion of (C,l). Hence for every picture deformation P:Xs- S we get a well-
defined smoothing component c(p) 6a(X).

Proof. By openness of versality, it suffices to show that for any decorated
curve (C, 1), there exists a 1-parameter picture deformation. To see this, use the
Scott deformation of the curve singularity C; see Corollary 1.11. Because we
have l(i) > m(i) for all i, we can make a 1-parameter deformation of the deco-
rated curve, such that on the general fibre of the deformation of the curve C we
have just ordinary m-fold points. Having done this, it is easy to make a 1-
parameter deformation of the decorated curve for which the divisor ls is reduced
on the general fibre. /--1

We remark that the procedure in the proof of Lemma 4.7 defines a pre-
ferred smoothing for each sandwiched singularity X. It should not surprise the
reader that this smoothing occurs on the Artin component, as stated at the end
of 1.

Example 4.8. The cone over the rational normal curve of degree 4 has two
different smoothing components, as discovered by H. Pinkham in [26]. We
explain how to see this with our method. As curve C we take three lines in the
plane, with the number 2 attached to each branch. The corresponding surface
(C, 2, 2, 2) in 3-space appears as in Figure 13.
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FIG. 13. The surface Y(C, 2,2,2) z(3x y2)y + (0.1)x4 0

12

FIG. 14



482 DE JONG AND VAN STRATEN

The two possible picture deformations are shown in Figure 14. The picture on
the right corresponds to the Artin component, the picture on the left is the qG-
smoothing, occurring on the 1-dimensional component of the base space.
The corresponding surfaces in 3-space appear as in Figures 15 and 16.

FIG. 15. Deformation of Y(C, 2,2,2) corresponding to smoothing of X(C, 2,2,2) over the Artin
component: z(3x y2)y + (0.1)(x3)(x- (0.35)) 0

4.3. The map b’(X) J(C, 1). Using the picture interpretation of
smoothing components, we can define a discrete invariant that contains a lot of
interesting information.

Definition 4.9. Consider a picture deformation P :Xs -- S. Let Ps be the set
of points of Cs obtained as the image of ls, counted without multiplicity. Let P be
the free 7Z-module on the set P, and let L be the free Z-module on the branches
Ci of C (or the branches Cis of C). Then we define the incidence map of a picture
deformation
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FIG. 16. Deformation of Y(C, 2, 2, 2) corresponding to smoothing of X(C, 2, 2, 2)2 over the 1-dimen-
sional component: z(3x y )(y + (0.3)) + (0.02)(3x + (0.3)y)

by defining it for the basis elements p P by

p Ci

Here m(Cis,p) denotes the multiplicity of the branch Cis at the point p.

The information of the incidence map is of course the same as that of the inci-
dence matrix with respect to the natural bases of the curves and the points. This
matrix is determined up to permutation of columns (utpoc) because the lattice P
has a natural basis of points, which is determined up to an ordering. The
branches of the curve C, however, can be ordered once and for all, so this gives
the lattice L a fixed basis.
We use the notation IArtin PArtin L for the incidence map of the special

deformation considered in Corollary 1.11.

Example 4.10. In Example 4.8 we get, for the incidence matrices for the Artin
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component and the small component,

1 1
1 0
1 0

respectively,

00)1 0
0 1

0 1 1)1 0 1
1 1 0

We define a set J(C, l) of maps that could a priori occur as incidence maps of
picture deformations of X(C, 1).

Notation 4.11. For any free Z-module P* with an (unordered) set of basis
elements p P* we define the following.

(1) We define the trivial inner product by <p, p> -1, <p, q> 0 for p # q.
(2) We define the characteristic vector K -pp p.
(3) We define the quadratic function Q P* 7z; v H 1/2((v,v> + (K, v>).
(4) Every linear map I: P L induces by composition with its transpose a

quadratic function

QI: L* Z, v H Q(I*(o)).

(5) In particular, we have a quadratic function QArtin belonging to IArtin
PArtin ---* L.

Definition 4.12. Let (C,/) be a decorated curve and L be the free module
spanned by its branches. We define

J(C, l) {I: P - L IQI QArtin}.

Here P runs over all possible free Z-modules with an unordered set P of basis
elements, and I runs over all possible linear maps with l(p) > 0 for all p e P. We
call J(C, l) the set of combinatorial smoothin9 components of X(C, l) or of (C, l).

In more down-to-earth terms, elements of (C, l) can be represented by inci-
dence matrices I consisting of r row vectors vi (vii, vi2,... ). The condition on
the quadratic function QI is translated into the following properties:

(1) -’j vij(v- 1) 2(C) for all i,
(2) (vi, v)= (Ci.C) for all/ j,
(3) _’ vij l(i) for all i.

We see that the first two conditions express numerically the -constancy of the
deformation of C, whereas the third expresses the flatness of l, that is, the con-
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servation of the number of points on each branch of C. Therefore, every picture
deformation gives us an element of dr(C, l). As result we get a well-defined map

#i. S(X(C, l)) --+ dr(C, l).

This map is our first approximation of a combinatorial description of 6e(X).
In ideal situations one would have that this map is an isomorphism. This
happens, for instance, for cyclic quotient singularities in their standard sand-
wiched representations; see Theorem 6.18. The determination of the image of is
equivalent to the problem of realising a combinatorial possibility by a picture
deformation of the curve. This can be a very difficult and delicate problem and
depends in general on the moduli of the singularity X(C,/); see Example 6.4. The
fibres of the map correspond to irreducible strata in the fi-constant base space
of C, which realise on their generic point the given incidence map, forgetting
about the free points. We do not have any example where injectivity fails, and
we hope that is always injective or is, at least, if the Ci are smooth. In some
cases we know the irreducibility of these strata.

Cases 4.13. (1) There is one component corresponding to IArtin, the Artin
component.

(2) In the case l(i) > ci for all i, there is one component corresponding to Igen,
the incidence matrix of the oeneric 6-constant deformation of C, where Cs has
only ordinary double points.

(3) The multiplicity of C is less than 4.

Proof The second case is easy, as the corresponding stratum in the O-
constant base space of C is in fact the base space itself. For (3), the cases are
trivial in which the multiplicity of C is 1 or 2; the case in which the multiplicity is
3 follows from [19]. To give a proof of the first case it suffices to show that the
deformation of X(C, l) has simultaneous resolution after base change, if the inci-
dence matrix is the multiplicity matrix. So suppose we have a 1-parameter O-
constant deformation Cs S of the curve C over a small disc S, which has the
desired incidence matrix. In particular there is an ordinary m-fold point, where m
is the multiplicity of the curve C. After a finite base change we have a section
o" S {l2 X S, with the property that tr maps all s S- {0} to the ordinary
m-fold point, and such that tr(S) is smooth. Let us first look at what happens in
the limit. The -constant deformation induces a 1-parameter R.C. deformation
I S of Y(C) and a 1-parameter deformation Xs S of X(C). We blow up
3 x S in the tr(S) x z-axis. This induces a modification s of I and, there-
fore, a modification Xs of Xs. The special fibre is obtained from the blow-up of
2 by glueing smooth planes along the branches of the strict transform of C. On
the general fibre the same is done at the ordinary m-fold point. Blowing up sec-
tions one after another we conclude that the deformation Xs S has simulta-
neous improvement. To conclude the proof for the sandwiched singularity
X(C, l), we use the deformation of X(C) (Remark 2.10), which is unobstructed
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against our deformation Xs S. This deformation is realised by a deformation
of the improvement, so one deduces that the deformation of X(C,I) has, after
finite base change, a modification for which just rational double points occur on
every fibre. [--]

4.4. Reduced fundamental cycle. Suppose we have X X(C,I)-X(C’,I),
two different sandwiched representations of the same singularity. We then have
two different maps b 6e(X) (C,l), b’ ff’(X) -- (C’,l’). The question
arises: How can we relate the incidence matrix of a smoothing of X in the sand-
wiched representation (C, l) to the incidence matrix of the same smoothing of X
in the sandwiched representation (C’, l’)?

If C and C’ have different numbers of branches, it is not clear at all how to
relate combinatorial solutions for (C, l) and (C’, l’). In fact, it may very well
happen that (C,/) and (C’,l’) have different numbers of elements; see
Example 4.20. The complete combinatorial information contained in all different
sandwiched representations seems to require some new information. We hope to
come back to this matter in a future paper.

There is, however, a simple answer if both curves C and C’ have only smooth
branches. Then X X(C,I) X(C’,I’) is a rational surface singularity with
reduced fundamental cycle. There are at most mult(X) sandwiched representa-
tions, with curves just having smooth branches; see Example 1.5. In this case it is
true that each representation gives equivalent information and that the combi-
natorial structure can be related directly to the resolution graph F. In order to
formulate the result we need some notions from [21].

Let X be a rational surface singularity of multiplicity m mult(X), with
reduced fundamental cycle and with resolution graph F. A general hypersurface
section of X is isomorphic to the m-coordinate-axes in m. We denote by
{Hp:p ,} the set of irreducible components of this general hypersurface
section. We can lift the general hypersurface section to the minimal resolution of
X. Then the strict transform Hp of Hp intersects exactly one exceptional curve,
which we call Ep.

Definition 4.14. (1) For p,q , p v q, we put l(p,q) equal to 1 plus the
number of exceptional curves in the chain from Ep to Eq.

(2) For p, q, r W, p, q, r all different, we put p(p, q; r) equal to the number of
exceptional curves in the intersection of the chain from Ep to Er and the chain
from Eq to Er.

(3) We call l(p, q) and p(p, q; r) the length and overlap functions of the graph
F.

Definition 4.15. Let X be a rational surface singularity with reduced funda-
mental cycle. A F-representation of X consists of vectors

13pq 13qp {0, 1 }n for some n, p : q t,
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with the conditions
(1) the number of nonzero entries in 1)pq is l(p, q),
(2) Vpq + Vqr + vrp 0 modulo 2,
(3) (vpq, Vpr) p(q, r; p).

Here (., ) denotes the ordinary inner product.

So in a F-representation, the vectors Vpq represent the chains in F, and inner
products represent lengths and overlaps of chains. Of course, F-representations
are considered utpoc.

Recall from Example 1.5 that for every choice p we get a sandwiched
representation (C, l). A combinatorial solution of the smoothing problem for the
(C, l) gives us vectors Vpq with exactly l(p, q) nonzero entries for this fixed chosen
p and arbitrary q e ot, q # p. Moreover, one has (1)pq, 1)pr ) p(q, r; p). Therefore,
it is trivial that any F-representation of X X(C,I) gives a combinatorial
smoothing of (C, l). The main result on F-representations is that the converse
also holds.

THEOREM 4.16. Let X(C,I) be a sandwiched representation with smooth
branches of X, corresponding to a p ’. Then any solution of the combinatorial
smoothing problem for (C, l) gives rise to a F-representation of X, and vice versa.
It follows that if one has a decorated curve (C’,l), such that C’ has smooth
branches and X X(C’, l), then there is a bijection o(C, l) -- (C’, l).

Proof. As described above, we have already 13pq for some fixed p ’, satisfy-
ing the statement about the intersection product. The second condition for a F-
representation for X gives that one can define Vrq vp / Vpq mod 2. Having done
that, one has Vq + Vs + Vqs Vp + 1)pq / 1)ps / 13pr /Jr- 13pq / 1)ps 0 mod 2. We have
to prove that the number of nonzero entries in Vqr is equal to l(q, r). But this is by
definition equal to

l(p, q) / l(p, r) (Vpq, vpr) l(p, q) / l(p, r) p(q, r; p).

It follows from an easy property of trees that this number is equal to l(q,r).
Finally, we must show that (Vqs, Vqr)= p(r, s; q). We do this for the case s p
first. Because Vqr Vp + Vpq mod 2, this translates to (Vpq, vpr) + (Vpq, vpq)
2(Opt, l)pq) p(r, p; q). But we know the left-hand side to be l(p, q) p(r, q; p).
The general case is similar, as we now also know all (1)qp, l)qr) for all q.

We need some more results from [21]. A general fibre of a 1-parameter
smoothing of a rational surface singularity with reduced fundamental cycle X can
also be given directly (i.e., without using projections) by the system of equations

Zpq Zqr (p, q; r)(x),
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satisfying the so-called Rim equations:

Tpq (r, q; p)(r, p; q),

(p, q; s) + (q, r; s) + (r, p; s) 0.

We may suppose that all roots of Tpq are distinct.

Definition 4.17. One can define vectors Vpq in the following way. Look at the
roots of all Tpq on the complex line. The total number of them (counted without
multiplicity) we call n. Take any numbering pl,..., Pn of these roots. Then entry
j of Vpq is 1 exactly when pj is a root of the function Tpq.
LEMMA 4.18. With these definitions of Vpq one gets a F-representation ofX.

Proof. Because of the Rim equations Tpq (/’, q; p)b(r, p; q) one sees that the
roots of k(r, q; p) and of b(r, p; q) are different and all of multiplicity 1. Look at
the product Tpq Tqr Tp, which by the Rim equations is equal to

(r, p; q)(r, q; p)(p, q; r)q(p, r; q)(q, r; p)(q, p; r),

which is equal to

-(r, p; q)E(r, q; p)E(q, P; r)2.

So every root appears twice, from which Vpq + Vqr-[-Vrp---0 modulo 2 follows.
For the same reason and because the number of roots of b(q,r; p) is equal to
p(q, r; p), the statement (Vpq, Vpr) p(q, r; p) follows.

THEOREM 4.19. Suppose X X(C,I) X(C’,g), with both C and C’ having
smooth branches. Then the diagram

b: 6t’(X) (C, l)

b’: 5a(X) J(C’, l’)

is commutative, with as in Theorem 4.16.

Proof. Fix a p and some s ’, different from p. To make notation sim-
pler, we put

Zq Zqp, Tpq Tq, Zps y, b(q, s; p) b(q)

in the above equations.
One can eliminate variables in the equations of the smoothing, so as to get the
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system of equations

%,

We can interpret the equations I-[(Y q) as a f-constant deformation of a curve
C and the Tq as divisors on the branch defined by (y- bq) O. In this way we
get a pair (C, l), and it is left to the reader to show that the above equations give
the space X(C, 1) of Remark 2.5.

Example 4.20. It is not true in general that dr(C, l) --dr(C’, l’) for decorated
curves such that X(C, l) X(C’, l’). For example, take (C, l) the decorated curve
(C, 9), with C the curve given by the equation y5 + x4 0. The sandwiched sin-
gularity X(C, l) is a cyclic quotient singularity with the dual graph of resolution
depicted in Figure 17.

I" (-2)-curve (D (-5)-curve

In a sandwiched representation X(C’,I’) with smooth branches as considered
in the subsection on cyclic quotient singularities, we have that the set dr(U, l’)
consists of two elements. However, the set dr(C,/) consists of the elements
(4, 1, 1, 1, 1, 1), (3, 2, 2, 2), and (3, 3, 1, 1, 1). As one can realise the first two inci-
dence matrices, it follows that there exists no deformation of the curve
{y5 + x4 0} to a curve with two Da-singularities. An elementary argument for
the nonexistence of such an adjacency runs, for example, as follows. Consider the
line L between the two D4-singularities. So L intersects the curve with multi-
plicity greater than or equal to 6. If we degenerate to {y5 + x4 0}, L becomes a
smooth curve with contact greater than or equal to 6. But the maximal contact
with {y5 + x4 0} is only 4. This example clearly shows that in the case when C
has nonsmooth branches, the set dr(C,/) does not contain all combinatorial
information of the situation.

5. Topological aspects. In this section we study in more detail the topology
of the smoothing obtained from a picture deformation as explained in 4.

Let as always X X(C,I) be a sandwiched singularity. The first remark is
that a picture deformation P:Xs S gives us a precise description of the
Milnor fibre F := Xs occurring on the component cg(p) 6e(X). We have the
following.
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PROPOSITION 5.1. Choose a small contractible disc D representin# the smooth
space Z. Let Ps and Cs be the points and the curves in D of the #eneral fibre of the
picture deformation Ys -- S. Then the Milnor fibre F :-- Xs is diffeomorphic to the
complement of the strict transform of Cs on D blown up in Ps.

Proof. This is just a special case of the construction in Example 4.5. The
remark is that because we have a picture deformation, the curve Cs has on!y
ordinary d-fold points, which are resolved by one blow-up.

FIG. 18. Model of the Milnor fibre over the small component of the (-4)

5.1. The homology of the Milnor fibre. From the model in Figure 18, one
readily obtains a description of the homology of the Milnor fibre F in terms of
the incidence map I:P L. (In this paper, all (co)homology is with integer
coefficients.)

THEOREM 5.2. There is an exact sequence

0 - HE(F) P _,I L - H1 (F) 0.

Proof. This is an easy application of the Mayer-Vietoris sequence. Never-
theless, let us spell_it ou_t. Let D be the space D blown up in the points Ps, and
denote by ( L[ ci c D the strict transform of C. The space /)* obtained by
removing the interior of a small tubular neighborhood " LI /around ( is
diffeomorphic to the Milnor fibre. Note that c/)* d#, the boundary of the
tubular neighborhood. We write the Mayer-Vietoris sequence for the pair
(,/*).

../2(z3" c, ) --,/-/2(6*) /-/2() /2(z3) --+/-/(6" )...,
which reduces to

o--+/-/2(,5*) --+/-/2(6)--,/-/, (o)--+ u(,5*) --, o.
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We have an isomorphism P H2(D) by taking a point p Ps to the funda-
mental class [Ep] of the exceptional IP over p. Furthermore, L H1 (3’) via the
map that associates to a branch of C a small loop running in the positive direc-
tion on the boundary/)* 3 of the ’. From the definition of the bound-
ary map in the Mayer-Vietoris sequence, we get the geometrical description of
the resulting map P L as follows. Take p Ps, look at Ep, intersect this with, and take its boundary; this is a collection of circles around t and, hence, is an
element of L. This means that the resulting map P L is exactly the incidence
map I.

With the same ease we get the cohomology of the Milnor fibre.

COROLLARY 5.3. Applying om.(-, Z) to P L we get the map

with kernel H(F) 0 and cokernel H2(F).
We note that the vanishing of H (F) for general normal surface singularities is

due to Greuel and Steenbrink [11]. Equivalently, the group H(F) is finite. It is
not clear to us how to see directly that the incidence map has maximal rank.
Also note that we have a/z 0-smoothing, meaning that/z(F) := rk(H2(F)) 0
exactly when rk(L) rk(P), that is, if the incidence matrix is a square matrix.

Example 5.4. For the two components in Pinkham’s example we find the fol-
lowing immediately from the incidence matrices in Example 4.10:

the Artin component: Hi(F) 0, H2(F) Z;
the small component: H(F) 7Z/2, H2(F) 0.

Remark also that in the case when there is a free point on every branch,
HI(F) 0. It turns out that even the fundamental group is zero. For this we
refer to the discussion on the fundamental group at the end of this section.

5.2. The intersection form. Recall that we have an intersection form on the
Milnor fibre. To be more precise, we have a natural map

HE(F) d HE(F, dF) HE(F),

which by transposition gives us the intersection form

(-,-) H2(F) x H2(F) --* E.

This intersection form is very easy to describe in terms of the incidence matrix.
For this, we put on P the trivial inner product (p, q 0 if p v q, p, q Ps, and
(p, p)=-1 for all p Ps as in Definition 4.9. Using (-,- we get an identi-
fication P P*.
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THEOREM 5.5. The intersection form on H2(F)c P is the restriction of the
trivial inner product on P.

Proof It is clear that P H2(/)) is an isomorphism of inner product spaces.
The statement is a formal consequence of how homology and cohomology are
related, but let us give a geometrical argument. According to Theorem 5.2 a
cycle c cp.p H2(F) P is represented by closed surfaces that consist of
parts of two types: (1) some Ep’s, with discs removed around the intersection
points t c Ep, and (2) some cylinders running inside the boundary t3 of the
tubular neighborhood. Now the self-intersection of a cycle can be computed by
shifting the cycle to one that is transverse to the original one and then counting
the number of intersection points. We can shift the cylinders in and out without
introducing intersection points by varying the radius of the tubular neighbor-
hood, so the self-intersection is as if the cylinders just were not there. So we see
that the self-intersection of a cycle is computed as the self-intersection of

Cp.[Ep]
_
P, as stated in the proposition.

COROLLARY 5.6. The intersection form on the Milnor fibre is negative definite.
Of course, this is well known for any smoothing of a rational surface singu-

larity, but here we see it really happen.

5.3. On the monodromy group. The Milnor fibres form a fibration over
c(p)*, the complement of the discriminant in cg(p). If we fix a base point s, we
get a monodromy representation

7/71 (c(p)*, S) -- Aut(H2(F), (-,-))

whose image we denote by G(P). If we look at what happens to our picture
(Ps, Cs) when we move with s over the whole smoothing component, we see that
when we return, our points Ps undergo some permutation, whereas the curves
are not permuted. But obviously, the incidence structure must remain intact. As
a consequence we see the following.

PROPOSITION 5.7. We have

G(P) G(P):= {M" P -- P permutation matrix I.M I}.

CONJECTURE 5.8. We claim that in fact we have

G(P) G(P).

We think Conjecture 5.8 is true for all the examples we have studied. It is true
for the Artin component, and furthermore it is true for all components of a cyclic
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quotient singularity, by a result of Behnke and Christophersen [4]. M. Hnsen
[15] checked the conjecture for all quotient surface singularities that are sand-
wiched. It is not obvious to us that the group G(P) is independent of the chosen
sandwiched representation. However, in the case of a reduced fundamental cycle,
G can be characterised in terms of the F-representation as the group of permu-
tations of {0, 1 }n that operate trivially on all vectors Vpq.

5.4. Divisors on smoothin#s. One can give a complete description of divisor
classes on X and the total space "= Xs of a smoothing in terms of the inci-
dence matrix.

Recall that on any normal singularity one defines the class group as

Cl(X) := {Weil divisors on X}/{principal divisors}.

For a rational surface singularity one has Cl(X) - HI(X- (0)) Hi (L), where
L is the link of the singularity. In general, for rational singularities one has
Cl() H2(r -{0}) by a theorem of Flenner. By a result of Looijenga and
Wahl one has furthermore that

H2(- (0)) H2(F),
where H2(F)n c H2(F) denotes the part of the cohomology that is invariant
under the monodromy of the family Xs S. Because in our case the mono-
dromy is of finite order, we can always make a finite base change to arrive at the
situation where the monodromy is trivial, so that we have

Cl() - HE(sf- (0}) HE(F).

From now on we always assume we have done this. The link L is isomorphic to
the boundary cOF of the Milnor fibre. The specialisation map

Cl(f) -- Cl(X)

can be identified with a map

H2(F)- HI(dF).

This map is part of the long exact homology sequence of the pair (tF, F) when
we use the isomorphism H2(F) H2(F, cOF). This can now be put in a big exact
diagram, describing in a combinatorial way the specialisation of divisors; see
Diagram 5.9.
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Dia#ram 5.9.

0 0

L* L*

0 Ker(1) p L .; Coker(I) 0

0 H2(F) H2(F) Hi(OF) Hi(F) ., 0

1 1
0 0

The map J" L* L is defined as the composition I.I*. It is easy to see that the
associated quadratic form L* x L* Z is just the same as the quadratic form
belonging to QArtin of Notation 4.11.

So we see that a sandwiched representation gives rise to a particular realisa-
tion of the class group as the discriminant of a quadratic form on a preferred set
of generators.

COROLLARY 5.10 [25]. For any (combinatorial) lu O-smoothing [Hi(L)[ is a
square.

Proof This number is det(J) det(I.I*) det(I)2. [-1

5.5. The canonical class. The relative canonical class of a smoothing restricts
to the canonical class K HE(F) of the Milnor fibre. There is a natural lift of
this class to an element of P* P.

THEOREM 5.11. The canonical class is represented by

pePs

that is, by the vector (1, 1,..., 1) in P*.

Proof The Milnor fibre is just an open part of D, the blow-up of Z in the
points p P. Hence, its canonical class is the restriction of the canonical of/5,
which clearly is as stated. [2]

COROLLARY 5.12. A smoothin9 P" S is a qG-smoothino in the sense of
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[22], if and only if
K e Im(L* (R) P* (R) );

that is, if and only if (1, 1,..., 1) is a rational linear combination of the rows of the
incidence matrix.

The proof of the following theorem illustrates our lack of insight into combi-
natorial matters.

THEOREM 5.13. A qG-smoothing of a sandwiched singularity X(C,I) has no

free points.

Proof. Suppose there is a free point on, say, the first branch. We claim that
then also the singularity X(C, lk), defined by the same curve C, and with lk(i)
l(i) for all 1 and/k(1) l(i) + k, has a qG-smoothing. It suffices to show the
claim for k 1. Having a picture deformation of X(C,I), one gets a picture
deformation of x(C,/1) by plotting some extra point somewhere, not at one of
the points of the picture deformation of X(C, l). So the incidence matrix I of the
picture deformation of X(C, l) is obtained from the incidence matrix I of X(C, l)
by adding the column (1,0,...,0) t. Because we have a qG-smoothing for
X(C, l), we have

K (1,. ,1) oiI*(C)

for some ai e by Theorem 5.11. But then it follows that

hence we have a qG-smoothing for X(C, 11) by Theorem 5.11. This shows the
claim.
We arrive at a contradiction as follows. According to Kollfir [22, (6.3)], we

have the following theorem: Let (M, F) c (’, E), where f( is the minimal resolu-
tion of a rational surface singularity X. Suppose that M is the resolution of a qG-
singularity. Then, contracting F and all (-2)-curves of E not intersecting F, one
gets a P-modification of X, giving rise to a smoothing component of X. Applying
this to X(C, Ik) one deduces that the number of smoothing components of
X(C, lk) is unbounded if k --o . This is in contradiction with the stability result
of Theorem 3.9. [--I

5.6. On the fun.damental group of the Milnor fibre. As the Milnor fibre is the
complement of C in the smooth surface D, its fundamental group can be de-
scribed in a manner similar to the Lefschetz-van Kampen-Zariski method for
the fundamental group of a plane curve complement. It turns out that again in
the case where all branches of the curve C are smooth, that is, where X has
reduced fundamental cycle, there is a really simple presentation for rl (F).

Consider as before a picture deformation P" Xs --* S of X X(C, l). We fix a
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generic projection to a line with coordinate x. We may assume that for all s : 0
the curve Cis has precisely m-r vertical tangents or ramification points
Q1,..., Q,-r. (Here m is the multiplicity of C, and r is the number of branches.)
Also we can assume that each of these points is distinct from each of the points
Ps of the picture, and all the points have distinct projections on the x-axis. We
fix a value for s. We choose a representative of Z of the form U x V, where U is
a disc in the y-axis and V is a disc in the x-axis in such a way that

(1) Ps and Q c Interior(U x V),
(2) O(C)c U x V U x OV.

We choose a base point a OU x OV. Denote by x1,x2,... ,XN the x-coordinates
of all the points of the picture and by xr+l,..., xV+m-r the x-coordinates of the
ramification points. Then for all x e V {x, x2,..., Xr+m-r} the intersection of
U x x consists of a finite number of points, equal to the number r of branches of
C. We choose nonintersecting paths el, cz2,..., ar running from b U to each of
the r intersection points C c U x {c) and back again, in the usual way, such that
the product

is homotopic to the loop consisting of t3U, with positive direction. This implies a
certain ordering of the components Ci. Also we choose a system of noninter-
secting paths 7,... ,)’N,... ,N+m-r running to the points x,x2,... ,XN+m- and
back. See Figure 19.

U o UxV

)’2

FIG. 19. The usual systems of paths
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It is clear that the paths 01,02,...,0 form a system of generators for
Zrl(U- U C,c), which maps surjectively to rl(F,a). By van Kampen’s theo-
rem, all the relations between these generators arise from the identifications
that occur above the points xi. To see what these relations are, we only have to
analyse what happens over the preimage of the paths yi. There are two cases.

(1) For i= 1,2,...,N, we have that above Yi some of the generators "come
together" at a point pePs. If these generators are %,%,...,% with
il < i2 < < ik, then we get a relation

because in the blow-up at p we introduce precisely one ]p1 with holes, the
boundary circles of which correspond to the ’s.

(2) For N + 1,...,N + m- r, something different happens. When we
make a detour around 7, the set of nonintersecting curves j gets conjugated to
some system j. We then get the relation, as usual,

These are usually very difficult to determine. In the case where rn r (i.e., if all
the branches are smooth), we only have relations of type 1 and, therefore, a nice
answer.

THEOREM 5.14. Let X X(C, l) be a sandwiched singularity, with all branches
of C smooth. Let P Xs- S be a picture deformation, with incidence matrix I.
Choose an ordering of the branches of C. A presentation of the fundamental group
7 (F) of the Milnor fibre F is given by

(01,02,..., ,. R),

where R is the set of relations generated by

Oil (Zi2 Oik

for each p Ps, where CiI, Ci2,. Cik are the branches of C that come together at
p and il < i2 ... it.

COROLLARY 5.15. If there are free points on each branch, then zr(F) { 1 }.

Because of this we see that topologically the most interesting things happen if
there are few points; that is, if it is in the unstable range.
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6. Examples and applications. In this section we collect some interesting
examples of smoothings that can be obtained from the picture method as
explained in 4.

6.1. Line configurations. The study of line configurations is a classical field
of research. Most of the literature is concerned with special configurations that
arise from geometrical constructions. Furthermore, there is the book of B.
Griinbaum [12] that is mainly concerned with real line configurations, as well as
configurations involving "bent" lines, which he calls pseudolines. In any case,
it is clear that anything interesting on line configurations has a bearing on
smoothing components of certain rational surface singularities. We discuss this
now in more detail.

6.1.1. One to six lines. We start with curves C that consist of at most six lines
(or smooth branches). Of course, the case of one line is trivial; we just get an
Ak-singularity (see Example 1.5). The case of two lines is hardly more interesting,
as such a curve has no nontrivial fi-constant deformation. The corresponding
singularity is a rational triple point, and it is well known that the base space of
such a singularity is smooth, as it is Cohen-Macaulay of codimnsion 2.

Example 6.1. The first interesting example occurs with three lines; this is
Pinkham’s example (see Example 4.8). All singularities with resolution graph as
indicated in Figure 20 have two smoothing components, corresponding to the
two line configurations of Example 4.8.

O

O" (-2)-curve 0 (-4)-curve

FIG. 20

Example 6.2. Next we come to four lines; see Figure 21. This is already more
interesting. We have a 4-parameter series of singularities, with resolution graph
in the left-hand side of the figure.
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O

[
o" (-2)-curve o" (-5)-curve

FIG. 21
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The stable range (see Theorem 3.9) starts with the graph with five curves at the
right-hand side. This singularity has six smoothing components, corresponding
to the three different line configurations in Figure 22.

1x

FIG. 22

Ix

Note that for the second configuration we had to pick out one of the four lines
and shift it away. So this line configuration gives us four smoothing components.
This is indicated by the 4 in the picture. It is also interesting to see what happens
in the substable range. For example, for (-5) we get only one component. If
there are one, two, or three (-2)’s around the (-5), then we have two, three, or
four components corresponding to the second line configuration. Only if all four
(-2)’s are present, we find all six smoothing components.

Example 6.3. The case of five lines is treated in the same way. In Figures 23
and 24 we indicate the dual resolution graphs and the beginning of the stable
range. As before, the numbers indicate how many smoothing components corre-
spond to the given line configuration.
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O

O" (-2)-curve O (-6)-curve

FIG. 23

lx 5x

15x 1X

lOx

FIG. 24

So in total we have 32 components. We remark that the line configuration with
weight 15 occurs as picture deformation of the singularity with dual resolution
graph consisting of a (-6) surrounded by four (-2)’s. As was shown by Stevens
[33], this singularity has three qG-smoothing components. Here we can also see
how it happens. The line connecting the two triple points in the configuration is
distinguished. The four others have to be paired in two groups. This is possible
in three ways. From Corollary 5.12 we see that these smoothings indeed are qG.

Example 6.4. We have the case of six lines. Again we give the series and
stable range in Figure 25 and the possible line configurations in Figure 26.
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" (-2)-curve O (-7)-curve

FIG. 25

This case leads to a new phenomenon. The curve singularity consisting of six
general lines through one point does not have an adjacency to the last curve
configuration. For such an adjacency to exist, the tangent directions of the six
lines have to satisfy a certain relation. In fact, the six lines correspond to six
points on ]p1, and the condition is that these points are paired in an involution,
that is, are inverse images of three points under a two-to-one map IP IP 1. This
is a divisor in the moduli space of six points on IP 1. As a consequence, we see
that a general singularity with exceptional set a (-7)-curve with 6 (-2)-curves
intersecting this (-7)-curve, does not have a smoothing component correspond-
ing to the last line configuration. But for a divisor in moduli space there is such
an extra component. An example of this type was known to exist by Wahl
(unpublished), but this one has a reduced fundamental cycle.

In principle one can go on with this game with more lines. There arise more
and more special configurations, in an ever increasing complexity. The only
thing one might hope for is that it would be possible to say something about
what happens for generic moduli. This generic number of line configurations
seems to be unknown, and we gave up after listing configurations with nine lines.

6.2. Some special configurations. It is of some interest to look at special con-
figurations and to see if their existence leads to interesting smoothing compo-
nents. We have seen the first special configuration with six lines. But what to say
about the following?

Example 6.5. See the line configuration of Figure 27. This is the well-known
Pappos configuration. This is an incidence theorem in the sense that, due to the
incidence structure of the lines, the constructed points a, b, and c are on the
dashed line. So we have nine lines: the eight we started with and the dashed
nioth line. We can degenerate the configuration to nine lines through one point
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1)<

20x

60x

6x

lOx

FIG. 26

15x

90x

lx

by parallel shifting. The resulting curve singularity has an interesting property. If
we only apply deformations of negative weight, we get several components,
including the one corresponding to the Pappos configuration. But there is some-
thing we do not obtain in this way--the pseudomPappos configuration where
the dashed line is slightly bent as to go through a and b but miss c. To obtain
the adjacency to this curve configuration, and hence a corresponding smoothing
of the singularity, we need to include in our deformation terms of positive
weight.

Example 6.6. Another thing we can look at is the fundamental group. For all
smooth branches, a presentation of this group is described in Theorem 5.14. If
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FIG. 27
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we compute the fundamental groups in the examples we discussed before, we
find that these groups are abelian. In general, however, there is no reason for
these fundamental groups to be abelian. Indeed, Wahl (unpublished) has found
an example of a smoothing of a rational surface singularity whose Milnor fibre
has a nonabelian, but finite, fundamental group. We give an example of a Milnor
fibre whose fundamental group is infinite.

Consider the nine flex points of a smooth cubic curve in p2. It is well known
that the line connecting two flexes intersects the cubic in another flex point. In
all one gets in this way twelve flex lines, each containing three of the flex points.
We take the dual of this configuration. So we get nine lines and twelve points,
and through each of the twelve points there are three of the nine lines, and there
are no further intersection points. If we denote the lines by 1, 2,..., 9, then the
twelve intersecting triples are

123 147 159 168
456 258 267 249
789 369 348 357.

We denote the generators of the fundamental group by the same numbers
1,...,9. The above twelve products are, according to Theorem 5.14, precisely
the defining relations for the fundamental group. We consider the quotient G of
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this group by putting

x:= 1 =2=3, y :=4= 5 6, z :=7= 8 =9.

It is immediate from the relations of the fundamental group that a presentation
for G is

(x, y, z x3 y3 z xyz e).

This is the well-known triangle group (3, 3, 3), corresponding to the tessellation
of the Euclidean plane by equilateral triangles; see [8, p. 25]. In particular it is
an infinite group.
The fundamental group has other interesting quotients. For example, by put-

ting the element 3 equal to the identity, one gets a group with presentation

(x, y x e; x-lyx y-2).

We deduce that y9 e, and hence we get a finite nonabelian group of order 27.
This group itself is the fundamental group of the Milnor fibre of a smoothing of
the sandwiched singularity obtained by forgetting the third line.

6.3. lz O-smoothings. In Example 4.8 we saw that for the small component
of Pinkham’s example, we get a smoothing with/z 0. Equivalently, the inci-
dence matrix is a square matrix; there are as many points as curves in the
configuration. It is interesting to see what other singularities admit such a/t
0-smoothing. An obvious way to generalise the triangle is as in Figure 28.

FIG. 28

These configurations are called near pencils in [12]. These are the only line con-
figurations with as many lines as points.

Figure 29 demonstrates another way to make configurations with as many
points as curves.
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FIG. 29

-(p+ 1) -4 -(q + 1)
r-2 p-2

If we look for a moment, we realise that in fact here we have a 3-parameter
family of such curves. The curve C(p, q, r) roughly has the shape of a triangle,
where the sides consist of bundles of p, q, and r curves, respectively, which are
nearly straight lines.
The dual resolution graph of the corresponding sandwiched singularity is

Figure 30.

-(r + 11

q-2

Fo. 30

This series was discovered by Wahl [35]. These are the simplest examples of
/ 0-smoothings. Note that in the case p q r, there are two distinct/ 0-
smoothings, as we have a choice of rotation to the left or to the right. Are there
any more/ 0-smoothings? The answer is yes, but not many. It is quite hard
to produce such examples. There is a secret list compiled by Wahl, and the sin-
gularities in his list are sandwiched. We did the exercise of writing down the
corresponding incidence matrices, but it is much harder to see that the deforma-
tion of the curve singularity really exists. We could try to construct other exam-
ples with the picture method and sometimes get interesting candidates, but in all
cases there was no new # 0-smoothing for some reason. The question is: Is
Wahl’s list complete?
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To conclude the discussion, we consider the following.

Example 6.7.

FIG. 31

The heavy line in Figure 31 has intersection 1 with all the other lines. But such a
configuration cannot occur in a small deformation of any curve singularity con-
sisting of seven lines. For example, the adjacency is forbidden by the semi-
continuity of the singularity spectrum (see [31]). On the other hand, such a con-
figuration is possible in characteristic 2: the incidence structure is just p2 over the
field of two elements. So it seems that in characteristic 2 the singularity has an extra
smoothing component, which has/t 0. Ofcourse, this is just the tip of the iceberg.

6.4. Cyclic quotient sin#ularities. The deformation theory of cyclic quotient
singularities (CQS) has been investigated by several authors; see [2], [4] [7],
[23], [27], and [32]. One of the beautiful results is the correspondence between
the components of a versal deformation and chains representing zero or, what is
the same, triangulations of the m-gon. (Here m is the multiplicity of the singu-
larity.) This correspondence was discovered by Christophersen [7], who con-
structed smoothings for every chain representing zero. Subsequently Stevens
[32] proved that all smoothings can be constructed this way.
Let us be more precise. The dual graph of the resolution of a CQS is a chain.

We take as the first blown-up curve in the sandwiched representation an end-
point of the resolution graph, and such that the curve C has just smooth
branches; see Example 1.5. For the incidence matrix of a smoothing of a CQS,
we get then a matrix with the following properties, which follow from the fact
that the dual resolution graph is a chain.

Definition 6.8. A matrix M with r > 2 rows,

(0,1),
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is called a CQS matrix if the formula

<vi, vj> <vi, vi>- I for alll<i<j<r

holds. Here <vi, vj > Ek l)ikl)jk"

Let [vl be the number of nonzero entries in v. We define numbers

A cyclic quotient singularity can also be labelled by those numbers, and thus we
may write X(al,..., at) for a cyclic quotient.

Let

Kr ([kl,...,kr]’kl- =o}

be the set of chains representing zero of length r. The central result about defor-
mations of cyclic quotient singularities is the following.

THEOREM 6.9 [71, [321. Let X(a,...,a) be a CQS. Then there is a bijection
between 5(X(al,..., a)) and {[k,... ,k] K with ki < aifor all i}.
The purpose of this subsection is to discuss this theorem with the picture

method. The first thing to do is to discuss the combinatorial components.

LEMMA 6.10. A CQS matrix M has the structure

M (MrCdlMtriv),

where Mtriv consist of columns of the type

(0,..., 0, 1,..., 1)t.

We call M reduced if there are no such columns.

Proof This is completely trivial. [-]

This is a very trivial way to make new CQS matrices out of old ones. But
there is another, more interesting way to produce a larger CQS matrix out of an
old one.

LEMMA 6.11. Let M be a CQS matrix with r rows vl,...,Vr, and let O < k < r
be a number. Then we produce a new CQS matrix with r + 1 rows wl,..., Wr+ by
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putting, for the case k O,

W1 (1,0,..., 0),

Wi (0,/)i-1) fog > 1.

In the case where k > 1, we define

wi (0, vi) for < k- 1,

Wk (1, Vk), Wk+l (0,/)k),

Wi (1, Vi-1) for > k + 2.

Then this gives us a new CQS matrix, and all CQS matrices with r + 1 rows can be
obtainedfor a CQS matrix with r rows by this procedure.

Proof It is trivial that the constructed matrix is a CQS matrix. It is obvious
that it suffices to prove the second statement for reduced matrices. This is the
content of the following proposition. V]

PROr’OSITION 6.12. Let M be a reduced CQS matrix with r rows. Then M is a
matrix of size r by r- 1. Then we have one of the following cases.

(A) There is a column of type (1,0,...,0) t, and the first row is equal to
(1,0,...,0).

(B) There exists a column (which we can and do suppose to be the first one) of
type

0 1 0 1 1 t.
T
k

(The case of a column of type (0,..., O, 1, 0) is also allowed.) Moreover, all
entries of Vk and Vk+l are identical, exceptfor the first entry.

Proof. We proceed by proving, by induction on r, the above statements plus
the fact that adding a row Vr+l to a reduced CQS matrix never leads to a CQS
matrix. If r 2, there is just one reduced CQS matrix

Consider a reduced CQS matrix M with r rows. Deleting the last row Vr we get a
CQS matrix that, by induction, cannot be reduced. Because M is reduced itself,
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we conclude that there exists a column of type

a :-- (0,...,0,1,...,1,0) t.

By induction we also have a column of type

or of type

b:=( 0 1 0 1 1 * )t
T
k

(1,0,. .,0,*)

in M. Here denotes the entry of vr in that column. The second case is easy.
From (Vl, vr) (Vl, Vl)- 1 one concludes that 0. The last entry in Vl also
has to be zero (all others are by induction) for the same reason. For the first case,
we have either a--b or a # b. If a b, delete the first column to get a CQS
matrix. Some easy arguments show that vr vr-1 up to the entry in the first
column. If a # b, it follows from the assumption <vr,/)r-1 > </)r-l, 1)r-1 > 1 that
entry is equal to 1. (In the case when the entry of column b is 0 for v_, use
v-2 instead.) This shows the existence of the claimed column. But the induction
hypothesis gives us more. It also says that there exist two consecutive rows, say,
the kth and (k + 1)-st row, of type (utpoc)

The first column corresponds to column b, the last column to column a
(0,..., 0, 1,..., 1, 0) t. We claim that "1 0, *2 1 cannot occur. Suppose the
converse. Then the number of nonzero entries in Vk and Vk+l are equal. We
already proved that v has a 1 in the first column and a 0 in the last column.
Then we get a contradiction by using

<Ok,/)r>-’- </)k,/)k>- 1 <Ok+l,/3k+1>- 1 </3k+l,/3r>.

We still have to prove that the matrix M cannot be extended by adding a row
Vr+l to M to get a CQS matrix. Suppose it was possible. By using

<l)k, Vr> -3
t- 1-- <vk, vk> </)k+l,/)k+l>- 1-- <Vk+l,13r>,

we deduce that this Vr+l has a 1 in the first column. Therefore one can delete the
first column and the (k + 1)-st row to get a CQS matrix of smaller size. Now use
induction.
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In order to establish the correspondence with triangulations we introduce the
difference matrix AM of a CQS matrix M.

Definition 6.13. Let M be a CQS matrix with r rows vl,...,vr. Then the
difference matrix AM has r rows 1,... ,fir with entries in {0, 1} defined by

1 vl, 8i vi vi-1 for > 2.

(These calculations are done modulo 2.)

A reduced CQS matrix M gives rise to a reduced difference matrix AM, which
is a matrix without a column that has just one nonzero entry. We can now de-
scribe the correspondence between triangulations of the (r + 1)-gon and reduced
difference matrices AM obtained from CQS matrices.

THEOREM 6.14. Consider a triangulation of the (r + 1)-gon, with distinguished
vertex ,. Number the vertices tl,... ,fir counterclockwise beginning at the vertex
closest to ,. The triangulation consists ofr- 1 triangles P1,. ,Pr-1, which we list
in any order we like. Consider the matrix AM (mij) ofsize r by r- 1 with entries
in {0, 1} by the conditions

mij 1 if i is a vertex of triangle Pj,

otherwise.

Then AM is the difference matrix of a reduced CQS matrix M, and all reduced
difference matrices of CQS matrices can be obtained this way.

Proof It is known that any triangulation of the (r + 2)-gon can be obtained
from that of an (r + 1)-gon by the following procedure. Place a new vertex
between two vertices of the (r + 1)-gon, and, by a line, connect the new vertex to
both vertices, between which it is placed. This construction corresponds exactly
to the difference of the construction of a new reduced CQS matrix out of an old
one; see Lemma 6.11.

LEMMA 6.15 [32]. There is a one-to-one correspondence between chains repre-
senting zero of length r and triangulations of the (r + 1)-gon, by defining

{triangles of which i is a vertex}.

So we see that we can write down a difference matrix (and hence an incidence
matrix) for the cyclic quotient singularity X(al,..., at) exactly when ki < ai for
all i. So we prove the following theorem.

THEOREM 6.16. Let X(al,... ,ar) be a CQS. Then there is a one-to one corre-
spondence between the combinatorial components of a semiuniversal deformation
ofX(a,..., at) and the [kl,... ,kr] Kr with ki < aifor all i.
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Example 6.17. Consider the triangulation of the 6-gon in Figure 32.

82 84

83

Fxo. 32

The k-chain is [3, 1, 3, 1, 3]. Moreover the difference matrix AM and the CQS
matrix M belonging to the triangulation are

1 1 1 0 1 1 1 0
0 0 1 0 1 1 0 0
0 1 1 1 1 0 1 1
0 0 0 1 1 0 1 0
1 1 0 1 0 1 1 1

TI-mOREM 6.18. For a CQS X X(C,I) with C havin9 smooth branches, the
map k 5t’(X) --, (C, l) is bijective.

Proof. Because one knows already the number of smoothing components of
a CQS by Theorem 6.9, it suffices to show that by the previous theorem every
combinatorial smoothing can in fact be realised. This is done by induction on
the number of branches, the case of two branches being trivial. According to
Lemma 6.14 we know how combinatorially the smoothings are realised induc-
tively. We consider the second case only, the first one being even easier. So in the
first case we have a distinguished row, the (k + 1)st. One knows by induction
that there is a delta constant deformation of the curve C’, obtained from C by
throwing away branch Ck+l, with incidence matrix obtained from the CQS
matrix by throwing away column k / 1. It is similarly true for the curve C",
obtained from C by throwing away branch Ck. We may even assume by induc-
tion that those deformations are compatible in the sense that they induce the
same deformation of the curve obtained from C by throwing away both
branches Ck and Ck+l. So we can glue these two deformations, as to realise a
-constant deformation of the curve C. It is not so difficult to show that this
-constant deformation of C has the desired incidence matrix.
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The curves belonging to smoothing components of cyclic quotients look
rather strange. For example, the curve of Example 6.17 is shown in Figure 33.

FxG. 33

This discussion on smoothings of cyclic quotient singularities gives evidence
for the conjecture on the monodromy group (see Conjecture 5.8), because
Behnke and Christophersen [4] proved that for a CQS X(al,..., at) the mono-
dromy group on the component corresponding to the chain representing zero

[kl,..., kr] is precisely 1-Ii
COROLLARY 6.19. The Milnor fibre of a smoothin# of a cyclic quotient sinou-

larity has a cyclic fundamental 9roup.

Proof. Theorem 5.14 gives a presentation of the fundamental group of the
Milnor fibre in terms of the incidence matrix, in the case when the curve C has
smooth branches. It suffices to show that the group, constructed in a way analo-
gous to Theorem 5.14 for a reduced CQS matrix, is isomorphic to Z. But this
group is in fact equal to the group constructed in this way by using the difference
matrix AM. The proof is now easy using induction. V]

6.5. On a conjecture ofKollfir. It might be obvious to the reader by now that
if for a sandwiched singularity X(C,I), the function is big, there are a lot of
components. If, on the contrary, is small, we have difficulties occupying the
inverse images of the singular points on the normalisation. This is related to the
following conjecture of Kollir.

CONJECTURE 6.20. Let X be a rational surface singularity. Suppose that all
exceptional curves on the minimal resolution have self-intersection at most -5.
Then the base space of a semiuniversal deformation of X has just one component,
the Artin component.
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The conjecture is sharp in the sense that if there is an exceptional (-4)-curve,
then there are at least two components, as proved by Kollir in [22]. Not all
singularities, as in Conjecture 6.20, are sandwiched, but the simplest counter-
example we could find has more than 100 exceptional curves on the minimal
resolution.

Proving Conjecture 6.20 for sandwiched singularities in general turned out to
be too difficult for us. As usual, however, the case of a reduced fundamental cycle
is easier.

THEOREM 6.21. Conjecture 6.20 is true ifX has a reducedfundamental cycle.

Proof
Figure 34.

We put the dual resolution graph F in the schematic form given in

Rk

E1 E2 E3 Ek
Fit. 34

The Ej’s and Rj’s have the property that l(E, F) < j for all curves F from R. This
can always be done. One chooses E1 to be an endpoint of the longest chain in a
resolution graph, and so on.
We suppose that the self-intersections of all curves are at most -5, except

maybe Ek, which might have self-intersection -4. We take a sandwiched repre-
sentation as in Example 1.5 and choose E1 as the first blown-up curve. The
branches of C are all smooth and correspond to the chains running from the
chosen hyperplane branch at E1 to the other hyperplane branches.
The proof goes by (double) induction over k and the number of exceptional

curves in the resolution. The induction hypothesis is that if the self-intersection
of Ek is less than -4, there is one combinatorial smoothing, and that if the self-
intersection of Ek is --4, there are two combinatorial smoothings, together with
statements about the structure of the incidence matrices. The case k 1 is easy;
the case k 2 is left as a (boring) exercise for the reader. The induction hypoth-
esis about the structure of the incidence matrix is that there is a submatrix of one
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1
1
1
1 1
1 1
1 1

1 1
1 1
1 1
1 1
1 1
1 1

1

1
1
1
1 1
1 1
1 1

1 1
1 1
1 1
1 1
1 1
1 1

1

1 1 0
1 0 1
0 1 1

Moreover, we have just l’s in the first column of the incidence matrix. The
vectors in the first three rows of the matrix are part of vectors v[, which belong
to chains at E. Those of the second three rows are part of vectors v, 1, 2, 3,
belonging to chains running to hyperplane branches at E2 or in R2, and so on.
The vectors vj correspond to chains running to a hyperplane branch at Eg or an
exceptional curve of Rg. They are chosen in such a way that <v’, v*) rain(i, j).
(Here denotes any index.) The fact that there are at least three vectors vj for
fixed j follows from the assumption that the self-intersections of the exceptional
curve are at most -5, or -4 for E. Consider a resolution graph as above with
k + 1 curves E in the chain. In the incidence matrix of a smoothing we have
vectors +1, corresponding to chains running to a hyperplane branch at Ek+l or
an exceptional curve belonging to R/+I. The number of nonzero entries in such a

b+ is at most 2k + 2, because the length of a chain with endpoint Ek+l in Rk+l
is at most k / 1. Hence the length of a chain with endpoint E1 is at most 2k / 1.
Deleting all rows belonging to +1 we get an incidence matrix of another singu-
larity, which has (by induction) a submatrix as described above. Let us now take
a vector v out of these v+. We claim that it must have a 1 in the first row. Sup-
pose it does not. Consider the case where the submatrix is of the first type. The
way to get at least (v, vj) j- 1 with the least number of l’s used by v is by
putting l’s in the second through kth row (in the case of the first submatrix). But
then the intersection is still not good. Because of the condition (v,vf)=
min(i, j), we have to use at least 3k extra l’s in the vector v to get the desired
intersections. So in total we need k / 3k l’s in the vector v, but we have at most
2k / 2 l’s at our disposal. So the claim follows if k > 2. The case of a submatrix
of the second type is similar, only somewhat more complicated.
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At this moment we conclude that in the incidence matrix there is a column of
l’s. Deleting this column and all rows where the number of nonzero entries is
2, we have the solution of the combinatorial smoothing problem for the sin-
gularity obtained from the original singularity by deleting the exceptional curve
El. We now have the possibility of taking another sandwiched representation
with an endpoint of the resolution graph as the first blown-up curve. Because the
combinatorial solutions to the deformation problem are independent of the
sandwiched representation if the curves have smooth branches only (see Theo-
rem 4.16), we can deduce (by double induction on k and the number of excep-
tional curves) that there is only one solution to the combinatorial smoothing
problem. This solution must be the Artin component combinatorial solution, as
this solution always exists, and any smoothing with this incidence matrix can
indeed simultaneously be resolved after base change; see Cases 4.13. This com-
pletes the proof.

APPENDIX

R.C. deformations. We review some facts on R.C. deformations from [16]
and [17].

Consider a (multi-) germ X of a Cohen-Macaulay space and a map X Y,
which is finite, surjective, and generically one-to-one. Consider the conductor

I ": )f’omy(cox, COy),

and let Z be the space defined by I. Suppose Y is Gorenstein. Then the conduc-
tor I satisfies the ring condition

#taom.y(I, I) omy(I, COy).

Indeed, by duality for finite maps, we have that COx ,omy(I, COy), and the ring
condition says exactly that the coy-module COx in fact has a ring structure. Con-
versely, starting with Y and any R.C. ideal I, we can construct an X mapping to
Y whose conductor is exactly I.

A.1. Equations for X. In the case where Y is a hypersurface in CO, one can
obtain equations for X as follows. The con-module I is Cohen-Macaulay, as it is
the dual of COx. As such, I is isomorphic to the cokernel of a (t + 1) x (t) matrix
M* with entries in COn. Furthermore, the maximal minors of M* give generators
of the ideal I, so that I (A0,A1,... ,At). Consider the transposed matrix M.
Because f I, we can, by adding an (upper) row to M, make a matrix M, such
that f -det(//). This matrix defines a map if/" COW-1 CO-I, whose cokernel is
isomorphic to ,omy(I,I)- ,omy(I, COy)-COx. Therefore, the ith row of
corresponds to a certain element ui COx, 0, 1,..., t. Note that u0 1.
One can embed X in tx n with coordinates u,...,ut, xl,...,Xn. If we

write AT/- (Mij), then each column gives us an equation.
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Linear equations A.1. We call

the linear equations.

y Mijui 0
i=0

Because /gom,(I, I) is a ring we have that UkUl is in omg(I, I). As such there
must exist gl in 60y such that we have the following.

Quadratic equations A.2. We call

UkUl llui for k, > 1
i=0

the quadratic equations.

Take lifts of #t to (.9,,. The quadratic equations are now uniquely determined
up to the linear equations. These linear and quadratic equations give an embed-
ding of X in Cn+t. In fact, starting from the matrix M, one can construct a pro-
jective resolution; see [21].

A.2. R.C. deformations. The ring condition makes sense in a relative situa-
tion over any ring. Therefore, one can talk about R.C. deformations.

Definition A.3. An R.C. deformation of (E, Y) over a germ of an analytic
space S is given by a fiat deformation Es Ys of E Y over S, such that the
ideal Is c (gys of Es satisfies the ring condition

fOmrs (Is, Is) d/fOmrs (Is, (grs).

We denote by Def(]2, Y) the functor of R.C. deformations of (12, Y).
The main theorems to be applied in this paper follow.

THEOREM A.4 [17, (1.1)]. In the above situation, there is a natural equivalence
offunctors

Def(E, Y) Def(X - Y).

This theorem is particularly useful for Y a hypersurface singularity, because of
the following theorem.

THEOREM A.5 [17, (1.16)]. Suppose moreover that Y is a hypersurface singu-
larity. Then the forgetfulfunctor

Def(X - Y) Def(X)

is smooth.
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In the case where Y is a hypersurface singularity in Cn, given by f 0, then
the R.C. condition can be expressed in terms of the evaluation map. For this,
consider the normal module Nr‘ g/fomr(I, (gr.). Over a base S we just add
everywhere a suffix S; so, for example, Nr‘ gZfomr.s(Is (Pr.s), and so on. Sup-
pose Zs Ys is a deformation of E --. Y. Then one has the following lemma.

LEMMA A.6 [17, (1.12)]. We have (Xs - Ys) Def(E, Y)(S) if and only if

evfs :Nr‘s (9r‘

 (fs)

is the zero-map. Here fs 0 is an equation of Ys.
A.3. Infinitesimal considerations. It follows from the above lemma that first-

order R.C. deformations are represented by admissible pairs.

Definition A.7. In the above situation, we define R.C.-admissible pairs by
(I,f) {(n,9) Nr‘ g0 if + e0 e (A1 + 8n(A1),... ,Ap + en(Ap)) such that
evf+g 0}. Furthermore, for an ideal I we denote by Iev (0 I eva 0}.

There is an obvious map 1 Nr, whose kernel is seen to be exactly icy. The
image of the map can be computed as the kernel of Hesse map

hf Nr, - N*/I,

as defined in [16, (3.7)]. The latter module is the cokernel of the double duality
map

1/12 N g/fom(Nr‘, (fir,).

So we have an exact sequence of the form

he N*/I0 Iev /(I,f) Nr‘ N*/(I + hf(Nr‘))--* O.

The module written at the right plays the role of obstruction space. The obstruc-
tion to extend a given deformation over S to one over a small extension
0 V S’ S 0 turns out to be exactly the class of

[vfs, Ns, -- (-9r‘s, (N*/(I + hf(Nr‘))) (R) V,

where we have chosen arbitrary lifts for fs and Es to S’; see [16].
First-order R.C. deformations are obtained from these admissible pairs by

dividing out the action of the coordinate transformations and by multiplication
of the equation by a unit.
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PROPOSITION A.8 (See [16]).
exact sequence

Let Jr_(f) {O(f) O(I) c I}. Then there is an

0-- IV/(f, Jr,(f))--, rl(E, Y) Ker(rl(E)-- N*/I)-- O.

Here, of course, TI(]], Y) describes the infinitesimal R.C. deformations of (E, Y).
A.4. The map TI(E, Y) TI(x). As we have a smooth map Def(E, Y)

Def(X) there is an induced surjection on the level of tangent spaces. To describe
this, one has to recall the embedding of X as described in Linear equations 7.1
and Quadratic equations 7.2 and see which admissible pairs arise from coordi-
nate transformations in this bigger space.
An R.C.-admissible pair (n, O) can be given by a perturbation of the matrix

Indeed n gives a deformation of E that, by well-known facts on deformations of
Cohen-Macaulay codimension-2 spaces, can be given by a deformation, say,
M + eN, of the matrix M. The upper row of 57/is also deformed, to give a matrix
//+e such that f + eg det(]lT/+ e). Consider a vector field of the form ukO
on tEn+t, where 0 is a vector field on tEn. We can let it act on the linear equations
defining the embedding of omr(I, I) in Cn+t-1. Of course, in general, quadratic
terms appear, but they can be and are removed by using the quadratic equations.
In this way, one gets a perturbation of the matrix M, which gives an R.C.-
admissible pair. This procedure gives us a map (gx (R) (R), .
THEOREM A.9 (see [17]). We have

TI(x) Coker((gx (R) 19, az/).

A.5. d-constant deformations of plane curves. Let Y C c (I2 be an isolated
plane curve singularity, and let X t C be the normalisation. It is well
known that deforming C in a d-constant way is the "same" as studying deforma-
tions of C that admit simultaneous normalisation. So the tangent space of a
semiuniversal d-constant deformation is

zl(( I2) zl(d C).

If the map t tE2 is given by (x(t), y(t)), then an arbitrary perturbation to
(x(t) + e(t), y(t) + eq(t)) gives rise to a d-constant deformation. The coordinate
changes in source and target divide out J := (gd(Ox/Ot By/cOt) (resp., ((Pc (9c)),
so that

T(d --, C) ((9d1(9c (9

In this paper, we use what we call the R.C. description of 0-constant deforma-
tions of plane curves. Let I be, as usual, the conductor, and let E be the fat point
defined by it. Because the deformation functors are equivalent, we have an



DEFORMATION THEORY OF SANDWICHED SINGULARITIES 519

isomorphism

T(t) -- C) T(E, C).

On the level of representatives, this map is given by

(, r/) (n, /) (tx(A) + r/0y(A), t3x(f) + rlC3y(f))

for A an element of I, as an explicit computation teaches. Remark that, in gen-
eral, the forgetful functor Def(Z, C) De_f(C) is not injective. Indeed, for plane
curve singularities C, with normalisation C, R.-O. Buchweitz [6] proved that the
kernel of the map

T(t -- C) TI(c)

has dimension m- r, where m is the multiplicity and r is the number of branches
of C. For example, the deformation y2_ x3 + ex2 gives a trivial deformation of
the cusp C but is not a trivial deformation of the diagram --, C. This is in
contrast with the theory of admissible deformations. In [16, (1.11)] it is proved
that under reasonable circumstances the corresponding forgetful functor for
admissible deformations is injective.

Example A.IO. We consider Y, the E6-singularity given by y3_ x4 0, and
we consider E the space defined by the conductor of the normalisation. The con-
ductor is given by the ideal I--(x2,xy, y2). We first determine equations
describing ( in 1124. For the matrix /, we can take

y 0 --g2 /X y 0
0 X y

Calling I11 I1 and 1/2 1), we therefore have as linear equations

y + ux O, uy + vx 0, -x2 + vy O.

From these one can compute the quadratic equations

I,/2 1) 111) --X I)
2 y.

Note that 1) can be eliminated to give the parametrisation x -u3, y u4 of the
E6-singularity.
We describe the vector space T1(2, C). It is tedious to check that

Ker(hf" TI(Y) N*/I) is represented by the normal module element
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(x2, xy, y2) (y, 0, 0). Furthermore, Iev (x, y)3 and J.(f) (y3, y2x, x3y, X4).
One concludes that TI(E, Y) is 3-dimensional.
To see the vector space Tl(t), we still have to divide out the vector fields

ut3x, vtx, Ut3y, and vdy. We just divide out vt3y, leaving the others to the reader.
The action is

(y + ux) v, (uy + vx) uv, (xz + vy) v2.

Because uv -x and 32 y, we see that this is the same as

(y + ux) --, v, (uy + vx) -x, (X2 +/)y) y.

Therefore, the deformation of the matrix is

y -ex -x2 + ey )x y 0
e x y

Hence we see that the R.C.-admissible pair maps to the unique element in
Ker(hf TI(E) N*/I). After dividing out all elements, one sees that T(t) 0,
as it should be, because t is the normalisation of the E6-singularity, which is a
smooth space.

The following theorem is of crucial importance in this paper.

THEOREM A.11. We have

iev {g C{x, y}: ord(gi) > ci + m(i)).

Here m(i) is the sum of multiplicities as in Definition 1.2.

Proof. The theorem is easy for a curve consisting of rn smooth branches
intersecting mutually transverse. In that case, the conductor is I mm-l, where
m is the maximal ideal. Every n om(I, (9/I) has values in mm-2, and con-
versely, every assignment of values in mm-2 to a minimal set of generators of I
defines an element in om(I, (9/1). (This is easy to check and is left to the
reader.) Hence for g I to satisfy evg 0, it is necessary and sufficient that
/ mm. This gives the lemma for this case.

In the general case we use the 1-parameter deformation of Scott (see Corollary
1.11) and induction. So we have the deformed curve Cs, defined by f 0. It has
branches Cis that have (possibly) two singular points A and B. Point A consists
of mi branches passing through the m-fold point. (Here mi is the multiplicity of
branch Ci.) Point B consists of the singularity of the first blow-up of C, which

be the conductor of this singularity describedis on the branch C. We let c
under B.
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Every g iev defines an infinitesimal 8-constant deformation of C by the for-
mula f + eg 0. As the functor of 8-constant deformations of a plane curve sin-
gularity is smooth, we can find a lift g to a gs such that f / egs 0 defines a
relative 8-constant deformation for any g e icy. It is necessary that the following
two conditions hold for restriction gis of gi to Cis, in order for g to be in iev.

(1) It must vanish with order m at any of the mi points of C,s mapping to A.
’atB.(2) By induction it must also vanish with order re(i) mi + c

Because the conductor I is fiat over the parameter space, we have

(m 1)Ci C mi

If we now let s go to zero, we see that gi has to vanish with order

re(i) + c + mi(m 1) m(i) + ci.re(i) mi + c + mim

On the other hand, if the vanishing order of 9i is greater than or equal to
m(i) + c, we can lift g to gs, and so on.
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