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DIMENSIONAL INTERPOLATION AND THE SELBERG INTEGRAL

V. GOLYSHEV, D. VAN STRATEN, AND D. ZAGIER

Abstract. We show that a version of dimensional interpolation for the Riemann–Roch–
Hirzebruch formalism in the case of a grassmannian leads to an expression for the Euler
characteristic of line bundles in terms of a Selberg integral. We propose a way to interpo-
late higher Bessel equations, their wedge powers, and monodromies thereof to non–integer
orders, and link the result with the dimensional interpolation of the RRH formalism in
the spirit of the gamma conjectures.

The dimensions of spaces of sections of certain ample bundles on homogeneous spaces
such as the grassmannian G(k,N + k) of k–spaces in C

N+k can easily be interpolated as
functions of the variable N since they depend on N polynomially. Deligne interpolated
the spaces themselves to objects of a certain tensor category Rep(GLt), where t should
be thought of as N + k. For instance, beginning with the polynomial interpolation of
χPN (O(n)) as

(

N+n
n

)

=
(

t−1+n
n

)

, one can take a step further and interpret H(PN ,O(n)) as

Symn V ∗

t in Deligne’s category. We will leave P
N = G(1, N + 1) = P

t−1 itself undefined,
trying instead to operate with its vestiges in a consistent manner.

Different levels of interpolation appear naturally in this framework. For t a natural
number, the dimensions of actual objects in the usual category of representations Rep(GLt)
are given by the Weyl character formula and interpolate easily as functions of the highest
weight. But how do the individual ingredients of Weyl’s formula interpolate as functions
of the length of the Dynkin diagram? Or, by Hirzebruch, the Euler characteristic of a
vector bundle on a homogeneous space is the result of pairing up the Chern character
with the Todd genus of the space; can both be interpolated naturally in such a way that
the result of the pairing still behaves polynomially?

A level deeper, the Riemann–Roch–Hirzebruch numerology of projective spaces can be
linked to the monodromy (or its version adapted to irregular connections) of the higher
Bessel equations

(DN+1 − zN+1)Ψ(z) = 0, N ∈ N,

where D = z d
dz . Does the interpolated ‘differential equation’

(Dt − zt)Ψ(z) = 0,

have rudiments of monodromy? Is this monodromy related to an interpolation of the RRH
theorem?

Preliminary results show that the answers to these questions are positive. This short
note should be viewed as a mere announcement of a more detailed version: we barely
indicate the direction we are going by explaining a link between dimensional interpolation
of the RRH formalism for line bundles on grassmannians and the Selberg integral (in 3 be-
low) and showing how a version of the gamma conjecture for grassmannians might remain
true (in 4).

We remark that several attempts to interpolate dimension as a continuous variable
have been made in the past. Hausdorff defined fractional dimension d in terms of the
asymptotics of the number N (R) of balls of radius R needed to cover X:

N (R) ∼

(

1

R

)d

.
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J. von Neumann defined fractional dimensions in his Continuous Geometry in terms of
projectors in operator algebras. In quantum field theory, dimensional regularization was
introduced by t’Hooft and Veltman [tHV72] and independently Bollini and Giambiagi
[BG72]. The main observation is that the Feynman integral that belongs to a given
Feynman diagram ‘can be taken in any dimension D’, basically because its integrand only
contains (after Wick rotation) scalar products in euclidean space, [Eti99]. For a review
of various approaches to dimension, and specifically, a link with the theory of modular
forms, we refer the reader to [Man06].

Deligne’s category, which we introduce in the next section, is not explicitly used any-
where in the paper. Nevertheless, its relevance should be clear from the context.

1. Deligne’s category Rep(GLt). From the perspective of the Killing-Cartan-Weyl clas-
sification of simple Lie algebras and their representation theory in terms of highest weights,
root systems, Weyl groups and associated combinatorics it is not so easy to understand the
extreme uniformity in the representation theory that exists among different Lie groups.
With possible application to a universal Chern-Simons type knot invariant in mind, P.
Vogel [Vog99] tried to define a universal Lie algebra, g(α : β : γ) depending on three Vogel
parameters that determine a point (α : β : γ) in the Vogel plane, in which all simple Lie
algebras find their place. The dimension of the Lie algebra g(α : β : γ) is given by a
universal rational expression

dim g(α : β : γ) =
(α− 2t)(β − 2t)(γ − 2t)

αβγ
, t = α+ β + γ,

and similar universal rational formulas can be given for the dimensions of irreducible
constituents of S2

g, S3
g and S4

g. Although the current status of Vogel’s suggestions is
unclear to us, these ideas have led to many interesting developments, such as the discovery
of E7 1

2

by Landsberg and Manivel, [LM02], [LM04], [LM06b], [LM06a], [LM06a].

In order to interpolate within the classical A,B,C,D series of Lie algebras, Deligne has
defined ⊗-categories

Rep(GLt), Rep(Ot),

where t is a parameter that can take on any complex value. (The category Rep(Sp2t) is
usually not discussed as it can be expressed easily in terms of the category Rep(OT ) with
T = −2t.) If n is an integer, there are natural surjective functors

Rep(GLn) → Rep(GLn)

In the tannakian setup one would attempt to reconstruct a group G from its ⊗-category of
representations Rep(G) using a fibre functor to the ⊗-category V ect of vector spaces, but
Deligne’s category has no fibre functor and is not tannakian, or, in general, even abelian.
(However, when t is not an integer, the category is abelian semisimple.)

According to the axioms, in an arbitrary rigid ⊗-category R there exist a unit object 1
and canonical evaluation and coevaluation morphisms

ǫ : V ⊗ V ∗ → 1, δ : 1 → V ⊗ V ∗

so that we can assign to any object a dimension by setting

dimV = ǫ ◦ δ ∈ End(1) ∈ C.

A simple diagrammatic description of Rep(GLt) can be found in [CW12]. One first
constructs a skeletal category Rep 0(GLt), whose objects are words in the alphabet {•, ◦}.
The letter • corresponds to the fundamental representation V of GLt, ◦ to its dual V ∗.
A ⊗-structure is induced by concatenation of words. The space of morphisms between two
such words is the C-span of a set of admissible graphs, with vertices the circles and dots
of the two words. Such an admissible graph consists of edges between the letters of the
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two words. Each letter is contained in one edge. Such an edge connects different letters
of the same word or the same letter if the words are different.

• •

⑦⑦
⑦⑦
⑦⑦
⑦

◦ ◦

•

❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖❖ ◦ • ◦

♦♦
♦♦
♦♦
♦♦
♦♦
♦♦
♦♦

◦ •

= t ·















• •

✵
✵
✵
✵
✵
✵
✵
✵
✵
✵
✵
✵
✵ ◦ ◦

⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤

◦ •















The composition is juxtaposition of the two graphs, followed by the elimination of loops,
which results in a factor t.

Deligne’s category is now obtained by first forming its additive hull by introducing
formally direct sums and then passing to the Karoubian hull, i.e. forming a category of
pairs (W, e), consisting of an object together with an idempotent:

Rep(GLt) = (Rep 0(GLt)
add)Karoubi.

Example. Consider the word •• and the morphisms Id and Swap with the obvious
meaning. One then can put

S2V = (••, s), ∧2V = (••, a),

where

s =
1

2
(Id + Swap), a =

1

2
(Id− Swap)

so that in Rep(Glt) one has:

V ⊗ V = (••, Id) = S2V ⊕ ∧2V,

which upon taking dimensions is the identity

t2 =
t(t+ 1)

2
+

t(t− 1)

2
.

2. ‘Spaces of sections’ as objects in Deligne’s category and the beta integral.

As above, we assume that n is a natural number. Write t = N + 1 and let Vt = V be the
fundamental object of Rep(GLt) so that dimVt = t. We do not define the projective space
P = P

N , but we can pretend that, in the sense of Deligne, the space of global sections is

H(OP(n)) := Symn(V ∗

t ) ∈ Rep(GLt).

Its dimension is then, as expected

(1) χ(OP(n)) := dimH(OP(n)) =

(

N + n

n

)

,

(interpreted in the obvious way as a polynomial in N if N 6∈ Z), so that e.g.

χ(O
P1/2(2)) =

3

8
.

The Poincaré series

P (y) :=
∞
∑

n=0

χ(OP(n))y
n =

1

(1− y)N+1
,

which is consistent with the idea that dimVt = N + 1.

Returning to the question posed at the beginning, ‘is there a way to extend the inter-
polation of χ individually to the Chern and the Todd ingredients?’, we reason as follows.
If X is a smooth projective n-dimensional variety, and E a vector bundle on X, then the
Euler characteristic

χ(X,E) :=

n
∑

i=0

(−1)i dimH i(X,E)
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can be expressed in terms of characteristic numbers

χ(X,E) =

∫

X
ch(E) · td(X).

Here the integral in the right hand side is usually interpreted as resulting from evaluating
the cap product with the fundamental class [X] on the cohomology algebra H∗(X), and
the Chern character and Todd class are defined in terms of the Chern roots xi of E and
yi of TX:

ch(E) =

r
∑

i=1

exi , td(X) =

n
∏

i=1

yi
1− e−yi

.

The cohomology ring of an n-dimensional projective space is a truncated polynomial ring:

H∗(PN ) = Z[ξ]/(ξN+1) , ξ = c1(O(1)),

and it is not directly clear how to make sense of this if N is not an integer. Our tactic
will be to drop the relation

ξN+1 = 0

altogether, thinking instead of Z[ξ] as a Verma module over the sl2 of the Lefschetz
theory, and replacing taking the cap product with integration. As we will be integrating
meromorphic functions in ξ, the polynomial ring is too small, and we put

Ĥ(P) := Z[[s]] ⊃ Z[s].

One has

χ(O(n)) = enξ , td(P) =

(

ξ

1− e−ξ

)N+1

,

so Hirzebruch-Riemann-Roch reads

χ(O(n)) =

[

enξ
(

ξ

1− e−ξ

)N+1
]

N

where [...]N is the coefficient at ξN in a series. This can be expressed analytically as a
residue integral along a small circle around the origin:

χ(O(n)) =
1

2πi

∮

enξ
(

ξ

1− e−ξ

)N+1 dξ

ξN+1
.

As it stands, it cannot be extended to non-integer N since the factor (1− e−ξ)−N−1 is not
univalued on the circle. The usual way to adapt it is to consider, for n ≥ 0, the integral
along the path going from −∞− iε to −iε, making a half–turn round the origin and going
back, and choosing the standard branch of the logarithm. Because of the change in the
argument this integral is equal to

J(N,n) =
e2πi(N+1) − 1

2πi

∫ 0

−∞

enξ

(1− e−ξ)N+1
dξ,

or, after the substitution s = eξ,

J(N,n) =
e2πi(N+1) − 1

2πi

∫ 1

0
sn−1(1− 1/s)−N−1ds =

sinπ(N + 1)

π

∫ 1

0
sn+N (1− s)−N−1ds.

Using Euler’s formulas

(2) Γ(x)Γ(1 − x) =
π

sinπx
,

(3)

∫ 1

0
sα−1(1− s)β−1ds =

Γ(α)Γ(β)

Γ(α+ β)
,

and
Γ(N + n+ 1)

Γ(n+ 1)Γ(N + 1)
=

(

N + n

n

)

,
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we arrive at a version of RRH ‘with integrals’:

Proposition 1. Let n ∈ N. Assume ReN < 0, N /∈ Z. Interpret the Euler characteristic
of PN via formula (1). Then

χP(Ø(n)) =
e2πi(N+1) − 1

2πi

∫ 0

−∞

enξ

(1− e−ξ)N+1
dξ.

�

3. The grassmannian and the Selberg integral. For P
N , we ended up with the

beta function, a one-dimensional integral, as the cohomology ring is generated by a single
class ξ. In the cases where the cohomology ring is generated by k elements, for example
the grassmannian G(k,N + k), we would like to see a k-dimensional integral appear in a
natural way. For N ∈ N the cohomology ring of the grassmannian G := G(k,N + k) is
given by

H∗(G(k,N + k)) = C[s1, s2, . . . , sk]/(qN+1, qN+2, . . . , qN+k),

where the si are the Chern classes of the universal rank k sub-bundle and qi = ci(Q)
are formally the Chern classes of the universal quotient bundle Q (so that the generating
series of q’s is inverse to that of s’s). In the same vein as before, we set:

(4) Ĥ∗(G) := C[[s1, s2, . . . , sk]] = C[[x1, x2, . . . , xk]]
Sk

by dropping the relations. A C-basis of this ring given by the Schur polynomials

σλ :=
det(x

λj+k−j
i )

det(xk−j
i )

where λ = (λ1, λ2, . . . , λk) is an arbitrary Young diagram with at most k rows. There is a
Satake–type map for the extended cohomology:

Sat : Ĥ(G) → ∧kĤ(P)

obtained from the Young diagram by ‘wedging its rows’:

σλ 7→ sλ1+k−1 ∧ sλ2+k−2 ∧ . . . ∧ sλk−1.

We are therefore seeking an expression for the values of the Hilbert polynomial of G(k,N)
in terms of a k–dimensional integral of the beta type involving k–wedging.

Euler’s beta integral (3) has several generalizations. Selberg introduced [Sel44] an inte-
gral [FW08] over the k-dimensional cube

S(α, β, γ, k) :=

∫ 1

0
. . .

∫ 1

0
(s1s2 . . . sk)

α−1((1−s1)(1−s2) . . . (1−sk))
β−1∆(s)2γds1ds2 . . . dsk

where
∆(s) = ∆(s1, s2, . . . , sk) =

∏

i<j

(si − sj),

and showed that it admits meromorphic continuation, which we will also denote by S.

Proposition 2. For k ∈ N, n ∈ Z+, let χ(OG(n)) denote the result of interpolating the
polynomial function χ(OG(k,k+N)(n)) of the argument N ∈ N to C. One has

χ(OG(n)) =
(−1)k(k−1)/2

k!

(

sinπ(N + 1)

π

)k

S(n+N + 1,−N − k + 1; 1, k).

Proof. The shortest (but not the most transparent) way to see this is to use the ex-
pressions for the LHS and the RHS in terms of the product of gamma factors found by
Littlewood and Selberg respectively. By Selberg,

(5) S(α, β, γ, k) =

k−1
∏

i=0

Γ(α+ iγ)Γ(β + iγ)Γ(1 + (i+ 1)γ)

Γ(α+ β + (k + i− 1)γ)Γ(1 + γ)
.
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By Littlewood [Lit42], for N ∈ Z>0 one has

χ(OG(k,k+N)(n)) =

(

N+n
n

)(

N+n+1
n+1

)

. . .
(N+n+(k−1)

n+(k−1)

)

(N
0

)(N+1
1

)

. . .
(N+(k−1)

(k−1)

)
,

where there are k factors at the top and the bottom. Rearranging the terms in the RHS
of (5) and using (2), we bring the Γ-factors that involve β to the denominator in order to
form the binomial coefficients at the expense of the sine factor. �

As an example, for k = 2 and N = −1/2, we get the Hilbert series

∞
∑

k=0

χ(OG(2,3/2)(n)) y
n = 1 + 6

t

16
+ 60

(

t

16

)2

+ 700

(

t

16

)3

+ 8820

(

t

16

)4

+ . . .

which is no longer algebraic, but can be expressed in terms of elliptic functions.
More generally, one can consider a Selberg–type integral with an arbitrary symmetric

function rather than the discriminant in the numerator and use separation of variables
together with the Jacobi–Trudi formula in order to obtain similar expressions in terms of
the gamma function in order to interpolate between the Euler characteristics of more gen-
eral vector bundle on grassmannians (or the dimensions of highest weight representations
of GLN+k).

4. Towards a gamma conjecture in non–integral dimensions. The by now stan-
dard predictions of mirror symmetry relate the RRH formalism on a Fano variety F to the
monodromy of its regularized quantum differential equation. It is expected that this differ-
ential equation arises from the Gauss–Manin connection in the middle cohomology of level
hypersurfaces of a regular function f defined on some quasiprojective variety (typically a
Laurent polynomial on G

d
m), called in this case a Landau–Ginzburg model of F . By station-

ary phase, the monodromy of the Gauss–Manin connection in a pencil translates into the
asymptotic behavior of oscillatory integrals of the generic form I(z) =

∫

exp(izf) dµ(G d
m),

which satisfy the quantum differential equation of F , this time without the word ‘regu-
larized’. The asymptotics are given by Laplace integrals computed at the critical points,
and the critical values of f are the exponents occurring in the oscillatory integrals Ii(z)
that have ‘pure’ asymptotic behavior in sectors. One wants to express these pure asymp-
totics in terms of the Frobenius basis of solutions {Ψi(z)} around z = 0. The gamma
conjecture [GGI16] predicts that such an expression for the highest–growth asymptotic
(arising from the critical value next to infinity) will give the ‘gamma–half’ of the Todd
genus and therefore effectively encode the Hilbert polynomial of F with respect to the
anticanonical bundle. At first sight, none of this seems capable of surviving in non–integer
dimensions. Yet, to return to the example of G(2, N + 2), define the numbers cj and dj
by the expansions

Γ
(0)
P

(ε) = Γ(1 + ε)N+2 =

∞
∑

j=0

djε
j ,

Γ
(1)
P

(ε) = Γ(1 + ε)N+2e2πiε =
∞
∑

j=0

cjε
j .

Put

F (ε, z) =
∞
∑

k=0

zl+ε

Γ(1 + l + ε)N+2

and

Ψ(ε, z) = ΓP(ε)F (ε, z) =
∞
∑

k=0

Ψk(z)ε
k.
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Claim (rudimentary gamma conjecture). For fixed N > 2 and i, j in a box of at least
some moderate size, one should have

lim
z→−∞

Ψi(z)Ψ
′

j(z)−Ψj(z)Ψ
′

i(z)

Ψ1(z)Ψ
′

0(z)−Ψ0(z)Ψ
′

1(z)
=

cidj − cjdi
c1d0 − c0d1

.

The LHS and RHS mimic, in the setup of formula (4), the σ[j−1,i]-coefficients in the expan-
sion of the ‘principal asymptotic class’ and the gamma class of the usual grassmannian: in
the case when N ∈ N and 0 ≤ i, j ≤ N one would use the identification of 2–Wronskians
of a fundamental matrix of solutions to a higher Bessel equation with homology classes
of G(2, N +2). Preliminary considerations together with numerical evidence suggest that
the claim has a good chance to be true, as well as its versions for G(k,N + k) with k > 2.

The first–named author is grateful to Yuri Manin and Vasily Pestun for stimulating
discussions. We thank Hartmut Monien for pointing us to [FW08].
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