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In t roduct ion .  

Consider a hypersurface germ X c C n+1, defined by an equation f = 0, f c C) := 

C{Xo,X I ..... x n) and let Z be a subscheme of the singular locus Sing(X) (with structure 

ring O/(f,Jf ), Jf the Jacobian ideal). In [J-S1] we introduced the functor Def(E,X) of 

admlsslble deformations of the pair (Z,X). An admissible deformation (Zs,X S ) over a 
base S consists of flat deformations E S and X S over S, such that E S is contained in 

the critical locus of the map X S ~S. This notion of deformation was first considered 

by R. Pellikaan ([Pel], [Pe2]) and leads under the condition that the space of first order 

deformations 

TI(Z,X) = Def(E,X)(C[c]/~ 2) 

is f inite dimensional to the exis tence of  a semi-universa l  admissible  deformat ion.  We 
will give a shor t  sketch of  its cons t ruc t ion  ~n §1. ( See also ~I-S1] or [J-S2] for  the 

formal case.) 
An in te res t ing  s i tua t ion  arizes when we consider  a map ~0: ~ ~C n+l, where 

is an n -d imens iona l  Cohen-Macaulay  (mul t i - )  germ with (say) isolated s ingu la r  points .  
As an example one could have in mind the  s i tua t ion where X c "C N and ~0 is induced 
by a generic l inear  project ion L : C N tC n+l . The image X = ~0(X) then is a hyper-  
surface with a s ingular  locus Z of codimension 2 in C n+l , the double locus of  ~o in the 
target .  The map ~: :~ P X can be identif ied with the  normalization map of  X. The 

deformat ion theory of this  s i tua t ion  is re la ted to tha t  of  admiss ib le  deformat ions  in 
the fo l lowing way: 

Theorem: 

Assume tha t  the conduc to r  C:= -~om ( O ~ , ( ~  X) is reduced and let  Z c X be defined 
by C .  Then we have natural  equivalences:  

Def(~ bC n+l) ~" ~ Def(~  ~X) ~ ) DeifY,X) 

Fur thermore,  the  natural  forgetful  t r ans fo rmat ion  

Def(~  ,~ C n+l) ) Def()~) is smooth.  
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Here the f i r s t  two func tors  refer  to  deformat ions  of the diagram (see CBu]). The f i rs t  
map is induced by forming the image of ~0, the second by forming the conductor. The 
f irs t  and the second s t a t emen t  toge ther  imply that  the func to r  Def(X,X) is as compli-  
cated as Def()~). For proofs of these s t a t emen t s  we refer  to ~J -S1] ,  §4 and the for th-  

coming paper CJ-S3]. 

Let ~ ~B be the semi-universa l  deformat ion of ~.  An irreducible componen t  of the 
base space B is cal led a smoothing component if the fibre )~s over a general point  s 

o f  this componen t  is a smooth  space. The cor responding  not ion for  the  func to r  
Def(X,X) is tha t  of  what  we call a disentanglement component. These are componen t s  
of  the base space of  the semi-universa l  admissible deformat ion for  which the fibre X s 
over a general  point  s o f  the componen t  has smooth normal iza t ion ~(s and the  mapping 

from )~s to X s is stable. For the dimension of smooth ing  components  there is a 
formula  conjectured by J. Wahl [Wa]  and proved by C.-M. Greuel and E. Looijenga [ G-L]. 

In §2 we apply their  ideas to find similar  resu l t s  for  the func to r  Def{E,X). In the 

theory of  hypersurface s ingular i t ies  one has to dis t inguish be tween deformat ions  of  the 
hypersurface X and deformat ions  of  a function f tha t  defines X. It is useful  to have 
a s imilar  d is t inc t ion  for  admissible  deformat ions .  This leads to a func to r  Def(E,f)  
(which maps smoothly  onto  Def(E,X)) for which the r e su l t  is more natura l .  In §3 we 
concen t ra te  on the case tha t  X is a weakly normal surface s ingulary in Ca.  We prove 

tha t  the difference in dimension of two d l sen tange lement  componen ts  is even. This 
implies the same s t a t e m e n t  for  smooth ing  componen ts  o f  normal  surface s ingular i t ies ,  
a fact  f i r s t  discovered by J. Wahl ~Wa]. In § 4  we give a proof  of  a conjecture  of  
D.Mond, f i r s t  fo rmula ted  as a ques t ion  in [Mo2],  on the 14 e - codimension of  a map 
germ ~0:C 2 *C a . (Pot  a d i f ferent  proof  see the paper  of D.Mond [Mo3]  in these 
proceedings.  ) 
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§i  The Semi-un iversa l  Admis s ib l e  Deformat ion .  

As in [ J - S I ]  and [ J - S 2 ] ,  we cons ide r  a pair  o f  germs  o f  analyt ic  spaces  E c X , 
where  E c Sing(X).  The s ingu la r  locus  is def ined by the  F i t t ing  ideal o f  f~l X , as  usual .  
Our  s t r a t e g y  to  c o n s t r u c t  a s e m i - u n i v e r s a l  de fo rma t ion  fo r  the  func to r  Def(E,X) is 
very near  t o  t he  one used  by H .Hause r  [Ha ]  to  c o n s t r u c t  one f o r  i so l a t ed  s ingular i t i es .  
The idea is to  c o n s t r u c t  f i r s t  a very big  ob jec t  in the  Banach analyt ic  ca t egory  and to  
come down to  a f ini te  d imensional  space  by pu t t i ng  in the  ex t r a  geometr ica l  condi t ions .  
The fo l lowing  five s t e p s  out l ine  th is  procedure .  

Step I: First embed Z and X in C N. Let I E =(gl ..... gr) and Ix=(f I ..... fm) be the 

ideals of Z and X. Consider the map 

F:  C N ~ c r x  C m ; x i ~ (gl(x)  . . . . .  g r ( x ) , f l ( x )  . . . . .  fm(X)) 

and the  p ro jec t ions  Pz : c r  x C m tC r and Px:  c r  x c m  

Note  t h a t  (PxF)  -1 (0)= X and (pxF)  -1 (O)=E. 

C m" 

Step 2 : Construct the semi-universal unfolding of the map F, with groups of coordinate 
transformations at the right which respect the projections p~- and Px' Let the base space 

be "B, a Banach analytic space. 

Step  3: Form the  famil ies  (Px  F ~  )-I ( 0 ) = : X ~  and (Px F ~  )-1 ( 0 ) = : E ~  over  the  space 
9 .  Use a £1atifier to  ge t  the  subspace  ~ c ~ such t h a t  the  induced famil ies  E ~  and 

X ~  over  c-~ are  f la t .  

S tep  4 :  Over ~ we can form the  cr i t ica l  space 1~ o f  Xe-~ - - - - 4 ¢ ~ .  Ana loguous  to  the  
f l a t i f i e r  the re  is a not ion  o f  contatnifier. We use this  to  r e s t r i c t  our  famil ies  to  the  
s u b - s p a c e  B o f  T such t h a t  over  B we have Z B c C B. We now have an admiss ib le  family 

(Z B, X B ) over  B. 

S tep  5.  I f  the  space T1(Z,X) is finite dimensional, then  B is an analyt ic  space,  having 

T1(E,X) as  Zar iski  t a n g e n t  space.  The fami ly  ~B = ((ZB' XB) *B) c Def (Z ,X) (B)  is 
versa l  in t he  fo l lowing  sense:  Given any admiss ib le  de fo rma t ion  ~A ~ Def (E ,X)(A)  over  

A, induced by ~:A ~B, and any admiss ib l e  de fo rma t ion  ~c e Def (EA 'XA )(C) over  
CDA , t h e r e  e x i s t s  a map  ~: C . ~B, ex tend ing  ~ and inducing ~c f rom ~B • Fu r the r  

more,  the  pr incip le  o f  openness  o f  ve r sa l l t y  holds .  

We wan t  to  s t r e s s  however  t h a t  t he  r e s u l t s  in §3  and §4  are  independent of  th is  
cons t ruc t i on  because  in t h o s e  cases  Def(E,X) can be r e l a t e d  to  o t h e r  func to r s  fo r  which 
the  convergence  o f  t he  semi -un ive r sa l  de fo rmat ion  and openness  o f  versa l i ty  is a l ready  

known. 
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§2 The Relative T 1 - sequences. 

We cons ide r  a hypersur face  X, wi th  an equat ion f = O, f~ ~ . Let Z be def ined  by 
an ideal I c {O. The condi t ion  t ha t  5  ̀ c Sing(X) is t ha t  we have (f, J f  ) c I. (Or, f c f l ) .  
Here  J f  = (Of /0x  o . . . . .  c)f/Ox n ) is the  Jacoblan ideal o f  f. For  reasons  o f  s impl ic i ty  and 
because  o f  t h e  app l i ca t ions  we have In mind we assume:  

1) 5  ̀ is a r educed  Cohen-Macau lay  germ. 

2) d i m ( s u p p ( I / ( f ,  Jf)))  < dim(Sing(X)) .  

3) d i m T l ( E , X )  < co. 

t i nde r  these  c i r cums tances  5` = S ing (X) re  d , so 5" is c o m p l e t e l y  de t e rmined  by X a lone  
(and Def(X,X) becomes  a s u b - f u n c t o r  o f  Def (X) ,  see [ J - S l ]  and [J -S2]  ) .Transverse  
to  a gener ic  po in t  o f  57 the  hyper su r face  X has an A 1 - s ingula r i ty  (cf. [Pe 1]). 

There is an exac t  sequence compu t ing  the space T i lE ,X)  of  f i r s t  o r d e r  admiss ib le  

de fo rma t ions :  

0 ---40 x ~ Ocn+l ® OX ~ PX(,,4) ~ T1(Z,X) ~ 0 (1) 

Here PX(/[)  is ca l l ed  the  ideal o f  admissible functions. A precise  def ini t ion o f  PX(/[ )  
can be found  In [ J - S I ]  and [ J -S2J .  The impor t an t  p rope r t i e s  t ha t  we will use here are 
t ha t  PX(f l )  is an ideal and t h a t  i t  occurs  in the  exac t  sequense  (1). 

As In [G-L] ,  we  s tudy  nex t  wha t  happens  in a one p a r a m e t e r  family.  
Let ~A = ((ZA' XA) lA)c Def(5`,X)(5) be an admiss ib le  de fo rma t ion  over  a smal l  disc 
A. Then ana logous  to  (1) we have a relative sequence:  

0 ~ OXA/A ~ Ocn+l  x A /A t PXA(/~A) (2) 

The cokernel  o f  the  l a s t  map we denote  by T 1 (Eh,XA)re 1 . I t  is na tu ra l ly  an (~h-module .  

Proposition (2.1) : 

The e l e m e n t s  o f  Tt(EA, XA)re I are  in 1-1 co r re spondence  with  i somorph i sm c l a s se s  o f  
admiss ib le  de fo rma t ions  o f  (Z,X) over  A×Spec(C[E]/~ 2 ) which r e s t r i c t  to  the  given 

~A c Def(Z,X)(A)  

proof  : This is a m a t t e r  o f  def ini t ion reading  and is s imi la r  to  the  p r o o f  o f  (1) in EJ-S1J. 
(A more  s y s t e m a t i c  approach  to  re la t ive  groups  will  appea r  in [ J - S 2 ] . )  t~ 

Now, as  in CG-LJ, the re  is a commuta t ive  diagram: 

t 
0 "-'¢' Ocn+1xA/A ® ~XA P O c n + l x A / A  ® ~ A  ) ®cn-t-1(~OX --¢ '0 

1 I 1 
t 
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with  exac t  rows ,  induced by mul t ip l i ca t ion  by t,  a local  p a r a m e t e r  on A. Hence ,  by the  

snake  lemma,  we deduce  a s i x - t e r m  exac t  sequence:  

t 
0 ~ OXA/A ~ OXAI A ~ Ox 1 

Tl(XA,XA)rel t p TI(EA, XA)rel 

(In fact, one can define higher T i's to prolong the sequence to the right.) 

(3) 

p TI(E,X) 

Defini t ion (2.2):  (With  the  no t a t i on  as  above) 

An admissible deformation o f  (X,f) over  a base  S is a pa i r  (Z S, f s  ) where  E S is a f l a t  
de fo rma t ion  o f  X over  S, f s  a de fo rma t ion  o f  f over  S (i.e. a func t ion  pa r a me t r i z e d  by 
S) such t h a t  (E S, X S :=fS -x (0)) e Def(Z,X)(S) .  The f u n c t o r  S t  ~ [ I s o m o r p h i s m  

de fo rma t ions  o f  X,f  over  S ] is deno ted  by Def(E,f) .  classes of admis s i sb l e  Here 

i somorph i sm is def ined  in the  obvious  way. (See a lso  [J-S2].)  

The f u n c t o r  Def(E,f) is c lose ly  r e l a t ed  to  Def(X,X) and one has: 

P ropos i t ion  ( 2 . 3 )  : 

1) The fo rge t fu l  t r a n s f o r m a t i o n  Def(Z,f)  ~Def(E,X) is smooth. 
2) If  X is quas i -homogeneous ,  then  one has an i somorph i sm o f  vec to r  spaces  

T1 (E,f)  ~ T1 (X,X). 

Analoguous to the exact sequence (I) one has an exact sequence 

0 I Of ~ Ocn+l ~ P(14) ~ Tl (X,f )  tO (4) 

Here Of :--{b e OCn+1 [ ,~(f)= 0 } is the module of vector fields killing f and P(14) is again 

the Ideal of admlssible functions (but now it is an ideal in C) instead of O X ). In the 

same way as we derived the exact sequence (3) from (I), we can derive from (4) a 

six-term exact sequence associated with an element (ZA, f A) of Def(E,f)(A): 

t 
0 P Of  A/A P Of A/A P Of 

iS) 

Tl(XA, fA)rel t P T l (EA, fA)re l  } Ti (X, f )  

Here  the  re la t ive  group T 1 (EA,f A )rel has an i n t e rp re t a t i on  s imi la r  to  the  one in 
p ropos i t ion  (2.1). We leave i t  to  the  reader  to  spel l  i t  out .  

Now let  ~B = ( (EB,XB) ~ B ) ( D e f ( E , X ) ( B )  be t he  semi-un iversa l  admiss ib l e  
de fo rma t ion  o f  (E,X).  (See a l so  §I . )  By versa l i ty ,  ou r  given family  (EA,X A ) ~A is 
Induced via a map  a :A • ~B f rom ~B and as In [ G - L ]  we see t h a t  t he  d imension o f  
the  image o f  TI(EA ,XA)rel in TI(E,X) is equal to  the  d imens ion  o f  the  Zariski  t a n g e n t  
space  to  B a t  a general  poin t  o f  t he  image o f  ~. Of  course ,  s imi la r  s t a t e m e n t s  hold  fo r  
Def(E,f)  and hence by the  exac tnes s  o f  sequences  (3) and  (S) we get:  
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Proposi t ion (2 .4)  : 

The d imension  o f  the  Zariski  t a n g e n t  space  to  the  base  space o f  the  semi -un ive r sa l  
admiss ib le  de fo rma t ion  a t  a general  poin t  o f  the  image o f  ~ is equal to:  

A. For  Def(E,X) :  rankc)A(TI(EA,XA)re 1) + d i m c  (Coker(OxA / A ---=-) ®X ) ) 

B. For  Def (E , f )  : rank~A (TI(EA,fA)rel) + d i m c ( C o k e r ( O f A / A  ------+Of)) 

Coro l l a ry  (2.S) : 

A. Suppose  we have a de fo rma t ion  (EA,X A) over  A such t h a t  a t  a generic  po in t  o f  A the  
f ibre has on ly  r igid s ingular i t i es  ( fo r  the  func to r  Def(E,X) o f  course  ). Then the  
d imension o f  t h e  c o m p o n e n t  to  which ~ maps  is equal to  d im(Coker(OXA/h - - t O  X )). 

B. Suppose  we have an admiss ib le  de fo rma t ion  (ZA,fli) over  A such t ha t  fo r  a generic  
po in t  o f  A f& has only  r igid s ingu la r i t i e s  in the  zero f ibre  and some A 1 - po in t s  ou t s ide  
the  zero f ibre .  Then the  d imension  o f  the  componen t  to  which ~ maps  is equal  to  

# A  1 + d im(Coker (e fA/A --*Of)) .  

The co ro l l a ry  fo l l ows ,  because  t he  rank t e rms  o f  p ropos i t i on  (2.4) are  zero in case  A. 
and # A  1 in case  B. By openness  o f  ve rsa l i ty  i t  f o l l ows  t ha t  the  componen t s  in ques t ion  
are  gener ica l ly  reduced,  so  the  d imens ion  to  the  Zar iski  t a n g e n t  space  a t  a gener ic  po in t  
is equal to  i t s  d imension.  

Lemma (2.6) : 

With  the  no t a t i ons  as above one has : 

Coker(OfA/A - - - 4  Of) = Coker(Hl(C)A,{SfA/Sxi})  ~Hl((~,{Sf/Sxl}) 

Here H. (R,{f i})  deno tes  Koszui homology o f  the  e l e m e n t s  fi on R. 

proof :  An e l e m e n t  o f  O is a vec to r  f i e ld  ~ = E i=no a i b / b x  i such t h a t  a(f) = Ein0 al bf / r )x  1 

= 0. This means  exac t l y  t ha t  (a 0 . . . . .  a n) is in the  kernel  o f  the  f i r s t  Koszul  d i f fe ren t i a t  
The image o f  the  s econd  Koszul  d i f fe ren t ia l  then  c o r r e s p o n d s  to  the  span o f  the  ' t r ivial  
vec to r  f i e l d s '  c~f/Oxj .cVc~x i - d f / O x  i .O/0xj  . These  can be  l i f t ed  fo r  t r ivial  r easons .  

Proposi t ion (2.7) : 

Let J = (fo ' f I  . . . . .  fn ) c C) be an ideal def ining a var ie ty  o f  cod imens ion  m. Then one 

has:  Hn+l_m(O,{f  i }) ~ E x t { ~ ( O / J ,  ~ ) .  

This shou ld  be 'we l l -known ' .  For  a d i scuss ion  and p roo f  see [Pe 3].  

Someth ing  very in t e re s t ing  happens  in case  dlmO'-) = I : 
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Corollary (2.8) : 

Let (ZA, f A) be an admissible deformation of (Z,f) over a disc A. If dim(Z) = I , then 

Coker(OfA/A ----*Of)  = 0 . 

proof: Of course, we apply (2.7) with f i = ¢)f/cbx i and m = n. Because by assumption 

dim C (I/(fJf)) < co it follows that H 1 (O,{c)flbxi}) = Ext(~ ((~/Jf ,O) = Ext,(O/I, O) 

(D E , the dualizing module of Z. But in a flat family one has : 69 EA/A® (D E = £0 E, 

as one easily checks. The assertion then follows from (2.6). [] 

Corollary (2.9) : 

If dlm(E) = I, then the dimension of the component of the base space of Def(E,f) to 

which ~ maps is equal to the number of A - points that split off. [] 

This is very similar to the case of an isolated hypersurface singularity. 

Q u e s t i o n  ( 2 . 1 0 )  : 

Is is t rue  in general (under  the s ta ted  condi t ions)  for an admissible  deformat ion tha t  

Coker(®f /A - - - t ® f  ) = 0 ? This sounds  ra ther  implausible,  bu t  it would be extremely 
h 

in te res t ing  to know the answer,  especial ly for  E of  codimension 2. 

§3 Applicat ions  to  Surface Singulari t ies .  

From now on we will res t r ic t  fu r the r  to the case X is a hypersurface germ in C 3. 
Then the condi t ions  of  §2  are equivalent  to X being weakly normal, i.e. X having a 
s ingular  locus ~:, which is an ordinary double curve away from the point  O. The normal -  
ization X will be a (mul t i - )  germ of  a normal  surface singulari ty.  As was ment ioned 
in the in t roduct ion ,  one has an equivalence of func to r s  be tween Def(~  ~ X) and 
Def(E,X), whereas Def(~ J X) ~Def()~) is smooth.  So there is in this  case a 1-1 
correspondence  between componen t s  of the base space of  ~ and componen ts  of  the 
base space of  (E,X). We now spell ou t  the not ions  cor responding  to smoothing and  
smoothing component. 

D e f i n i t i o n  ( 3 . 1 )  : 

A. Let X c C 3 be a weakly normal  surface s ingular i ty ,  with Z -- Sing(X) . 

A disentanglement of (Y-,X) over A is an admissible  deformat ion  (E ,X ) over A such 

tha t  for  a general t c A the disentanglement fibre X t has only the  fol lowing types of  

s ingular i t ies:  ordinary double curve (type Aco ), ordinary pinch point  (type Dco ), ordinary 

tr iple point  (type Tco,co,co ). 
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B. Let f~ O = C{x,y,z} such tha t  X := f -1 (0) is a weakly normal  surface 

s ingular i ty  with s ingular  locus E. A disentanglement of (Z,f) over h is an admissible  

deformat ion (XA,f A) over h sach that  (X ,X : = f -1(0)) is a d i sen tang lement  in the 
above sense and such tha t  for a general t ~ h the disentanglement function f t  has at  
mos t  A 1 - poin ts  away from the zero fibre. 

C. An irreducible componen t  of the base space of  the semi-universal  admiss ible  
deformat ion is cal led a disentanglement component when over it d i sen tang lement  occurs. 
On each such componen t  the number  of pinch points  and t r iple  points  of  the 
d i sen tang lemen t  fibre (and the number  of  A~ - points of the d i sen tang lement  funct ion)  
is cons t an t  and will be denoted by #Dco , # T  (and # A  1) respectively. Note tha t  corol lary 

(23) and (2.9) can be applied to these  components .  

R e m a r k  (3 .2 )  : 

There exist  weakly normal surfaces X that:  

* have no d i sen tang lemen t  at  all. 

* have several d i sen tang lement  components .  

* have componen t s  in their  base space which are not  d i sen tang lement  components .  

This fo l lows from the equivalence of  func tors  and the fact tha t  there exis t  normal  
surface s ingular i t ies  ~ with the corresponding propert ies .  

However, in the case tha t  the func t ion  f is an e lement  of  I2  c f I  there is a spectal 
d i sen tang lemen t  componen t  in the base space of Def(E,X) and Def(E,f). This componen t  

r 
can be described as fol lows:  (see also [Pe2], Ex.2.3) Write  f = Z i,j=l hij Ai Aj , where 

I={hd .. . . .  hr). Choose representa t ives  gl ' g2  .. . . .  g -  for  a basis  of the  vector  space 

I 2 / I  ~ / ~ J f  and wri te  these  as gk = 7:i,j=I @kij "hi'~ 7 • Let S be the {smooth) base space 
of  the  semi-universa l  deformat ion  of  the curve E and let  A i (s) be generators  for the 

ideal of  the curve Z s , sES. Consider  the funct ion 

F: C 3 × c P × s  ~ C 

F(x ,y ,z , t l , t  2 .. . . .  tp, s) = Y.i,jrl (hij + Y.kPl tk.~0klj)Ai(s).aj(s) 

Then F is a d i sen tang lemen t  func t ion  o v e r  C p ×S. For general  soS the curve E s is 

smooth,  so in this  d i sen tang lemen t  no t r ip le  points  occur. It  is not  obvious at all tha t  

this really is a component of the base space of Def(E,f) .  For  this one has to prove that  

no e l emen t  of f I / I  can be l if ted over this  deformation,  a fact  tha t  u l t imate ly  depends 

on T 2(E) = T2(E) = 0 for  a space curve. For detai ls  we refer  to [J -S2] .  
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Example (3.3): The Plnkham - Pell lkaan example.  

Let l : (x ,y , z ; a ,b , c ,p )  := X2 +Y2 + Z 2 + 2 . X ( X Y + Y Z + Z X )  + 2 ~ x y z ,  where 

X := (y -b) (z+c)  +4bc ; Y := ( z - c ) (x+a )  +4ac ; Z := (x -a ) (y+b)  +4ab 

and where k is a fixed complex number,  ) ,2.I  . 

Let X(a,b,c,lx) := {(x,y,z)I F(x,y,z;a.b,c,~) = 0}. 

The surface .X := X(O,O,O,0) is jus t  the  cone over a th ree -noda l  quart ic in ~p2 , with 
s ingular  locus defined by the  ideal I = (yz,zx,  xy).  Hence its normal iza t ion ~ is the 
cone over the rat ional  normal  curve of  degree 4 in /p4 This s ingular i ty  has two 

dif ferent  smooth ing  components ,  as H. Pinkham discovered [Pi]. The surface X has two 
dif ferent  d i sen tang lemen t  components ,  a fact  discovered by R. Pell ikaan [ P e l ] ,  
[Pe2] ,Ex.2.4.  The surfaces  X(a,b,c,0) are fibres over the big component ,  X(O,0,O,~) 
over the smal l  component .  Below a graphical impression of  the real par t  o f  these 

surfaces is given. () ,  < - 1. ) 

a , b , c >  0 , ~ = 0  

(b,c small  ) 

#Do~ = 4 

# T  = 0  

# A  1 = 6  

a=b=c=t~=O a=b=c=O, t~ > 0 

#Dee= 6 

# T  =1 

# A  1 = 4  

Probably these  pictures should be considered as an a r t i s t s  impression; we chal lenge 
compute r  graphicians to provide b e t t e r  ones!  We remark tha t  the A 1 - po in ts  canno t  

be real all at  the same t ime. 
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Theorem (3.4) : 

Let X be a germ of  a weakly normal  surface s ingular i ty  in C 3, with s ingular  locus E, 

defined by a func t ion  f e C{x,y,z}. Then dimensions of  d i sen tang lement  componen t s  differ  

by even numbers .  

p r o o f : A s  Def(E,f) *Def(E,X) is smooth,  it suffices to consider  d i sen tang lemen t  

componen ts  of  f. For those of D e f ( Z , f ) w e  have by (2.9) tha t  the  dimension is equal 

to #A 1 , the  n u m b e r  of A 1 - poin ts  tha t  spl i t  oft'. We have the fol lowing formulae:  

* j(f) (:= dim(I / (Jf) )  = # A  1 + #Dco (see [Pe2]) 

* VDco(f) = #Dco - 2 . # T  (see [Jo])  

Here VDco(f) is the  so -ca l l ed  'vir tual  number  of D~ -  points  of f as in t roduced in [Jo]. 
The lef t  hand sides are invarlants  o f  f and do not  refer  to any deformat ion of  f. 

Hence: #A 1 = (J(f)-VDcotf))  - 2 . #T ,  and so #A 1 is a mod 2 lnvariant  of  f. 

Remark (3.S) : 

Theorem (3.4) gives a new and local proof  of  the fact  tha t  the dimension of  smooth ing  
componen ts  of  normal  surface s ingular i t ies  always differ  by an even number ,  a fact  f i rs t  

proved by J .Wahl [Wa]. We see this  as fol lows:  Def(~ ) ~ Def(~  pX) ~ Def(Z,X) 
Def(Z,f) (where ~- means :"base  spaces differ  by a smooth  factor") and smoothing  

componen t s  cor respond to d i sen t ang lemen t  components .  Our projection approach to  
the  deformat ion  theory  of  normal  surface s ingular i t ies  thus  gives a geometrical  origin 
to the difference in dimension:  every extra  tr iple point  in the d i sen tang lement  eats  two 
dimensions  of the component .  

In [J-S1]  we applied the project ion Idea to determine the  s t ruc tu re  of  the  base 
space of  the semi-universa l  unfolding of all rat ional  quadruple  points  in a uniform way. 
( In  [ J -S4]  we will give a more s t reaml ined  exposi t ion of  this  result .)  

Mappings  f rom C 2 to  C 3 

In this  paragraph we will give a proof  of  a conjecture  of  D. Mond. (For  a di f ferent  

p roof  we refer  to his paper in these  proceedings.)  Before even fo rmula t ing  the  theorem, 
we note  t ha t  the  n u m b e r  #A I of A I - poin ts  tha t  branch off  in a d i sen tang lement  of  
a funct ion  f has a clear topologlca] meaning : 
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Lemma (4.1) : 

Consider a disentanglement (Zh,f A) ~A of function f c C{x,y,z} defining a weakly 

normal surface X with double locus Z, over a disc a. Let X t = f t -I(0)' t * 0, be the 

disentanglement fibre, Z t its singular locus and )~t its normalization. Then we have: 

1)  X ( X t  ) - 1 = # A  t 

2 )  X ( E  t) - 1 = 2 . # T -  t~(E) 

3 ) • (~[t) = X ( x t  ) + X ( E t  ) - #Doe + # T  

where X denotes  the topological  Euler  characterist ic .  

(Of course,  for  these  s t a t emen t s  to make sense,  one needs to  take appropriate  
representa t ives .  For  simplici ty of s t a t emen t ,  we simply ignore this.)  

Sketch of  p roo f  : l)  and 2) are "jump formulae"  comput ing  the jump in topology in 

te rms  of  local data. 1) is jus t  a very special case of  a general resul t  fo r  funct ions .  

(We refer to the paper of D. Slersma in these proceedings [SI], In fact, X t has the 

homotopy type of a wedge of #At 2-spheres, see also [Mo3].) We only have to remark 

that during the disentanglement the fibration at the boundary of the Milnor sphere does 

not change, essentially because outside 0 the surface X has only Ace - singularities, 

which are rigid for admissible deformations. Formula 2) is just the Jump property of 

the milnor number Iz(Z) of a curve singularity (see [B-G]). Formula 3) is an easy 

exercise in topology. [] 

Now consider a map-germ ~0 : (C 2 ,0) ~ (C 3 , O) . The space of first order 

deformations of this diagram, TI(c 2 ~0 tC 3 ) , is the same as the space of first order 

deformations of ~0 , modulo left-right equivalence: 

T l ( d  , c  a) -- , 'OCa/ (d , .OC2 + ,- OCa) 

The dimension of  this  vec tor  space is cal led the 74 e - codimension of  ~o, cod(~),  and 

if this n u m b e r  is finite, ~0 has a semi-universa l  unfolding with of  course a smooth base 
space of this dimension.  In [Mol] ,  D.Mond s ta r t ed  to classify such ~0 with small  14e- 
codlmens ion .  In [Mo2], he posed a ques t ion,  which is equivalent  to the  fol lowing:  

Conjecture o f  D. Mond (4.2) : 

Let ~0 : (C2,0) *(C3,0)  a map-ge rm with cod(~0)( co . Let X be an appropriate  
9 -1 

representa t ive  of the  image-germ ~(C ' ,0 ) ,  and put  )~ = ~ (X). ( S o ) ~  is jus t  a small  
ne ighbourhood of  0 in C 2 .) Let ~ t  be a generic pe r tu rba t ion  of  ~, with t E A, a small  

d i sc .  Then one has: 

cod(v)  ~ X(~t( )~))  - 1 

with equal i ty  in case tha t  ~0 is quasi-homogeneous. 



210 

proof  : Because cod(~0) <~ ,  the surface X is weakly normal ,  with double locus E. Let 

f=O be an equat ion for  X. The map p : :~ *X can be ident if ied with the normal iza t ion  
map of  X. We have: Def(Z,f) ~ Def(E,X) = Def(~  *X), so Def(E,f) and Def(Z,X) have 

s m o o t h  base spaces.  On the o ther  hand, X t = pt()~) can be seen as a d i s en t ang lemen t  
fibre, so by (4.1) , (2.9} and (2.3): 

X ( X t  ) - 1 = #A 1 = d imTl (E , f )  ~ d imTl(E,X)  = cod(p) 

Equali ty holds when f or, what  is easily seen to be equivalent ,  ~0 is quas i -homogeneous .  

R e m a r k  ( 4 . 3 )  : 

In the mean t ime D. Mond general ized his ques t ion  or conjecture.  It  is the same as (4.2), 
only now for  map-ge rms  ~0 : C n ~C n+l . We remark tha t  our  proof  would generalize 

to  this s i tua t ion  I f  we  had a pos i t i ve  answer  to  ques t ion  (2.I0). 
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