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Extendability of holomorphie differential forms
near isolated hypersurface singularities

By D. v. STrRATEN*) and J. STEENBRINK

Introduction

Let f: (€+1, 0) — (€, 0) be a germ of an holomorphic function with an
isolated singularity at the origin. Let X = {z € €1 | |2] < ¢ and [f(2)] < 7}
for 0 < 5 <€ ¢, ¢ sufficiently small, and let ¥ be the set of zeroes of f on X.
Then ¥V is a contractible Stein space and U = V — {0} is smooth.

A holomorphic form o on U is called of first kind if there exists a resolution
n: ¥ —> V of the singularity (V, 0) such that n*(w) extends holomorphically
to 7. A result of Greuel ([3], Proposition 2.3) implies that for p < n — 2
every holomorphic p-form on U is of first kind on V. In fact this result holds
for arbitrary isolated singularities (Theorem (1.3)). An application of this is
a proof of the following (easy) case of a conjecture of Zariski and Lip-
man [16]: If (V, 0) is an isolated singularity of dimension at least 3 and
Oy o:= Homg, (2}, Oy o) is & free Oy y-module, then (¥, 0) is in fact smooth.
The crucial case of dim ¥ = 2 remains open, however.

The remaining cases are n-forms and (n — 1)-forms. From now on we take
n = 2. Concerning n-forms one has the invariant

. [ holomorphic n-forms of
Py = dim . .
n-forms on U first kind
which is equal to the geometric genus of (V, 0). It counts the number of ad-
junction conditions imposed by the singularity. See [6] for a detailed dis-

cussion of this invariant.
Our main attention goes to the invariant

_ dim holomorphic (n — 1)-forms
7= (n — 1)-forms on U[/ |of first kind. [
It has been studied by Yau [14] and Wahl [13].
Our main result indicates how to compute ¢ (and p,) for isolated hyper-
surface singularities. Our formula uses the Gauss-Manin system of f, see [9, 12].

As an application of the formula we give an example of a deformation of a
function of three variables with constant Milnor number, depending on two
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parameters s,, s, such that
g=1 if & =0,
g=0 if § =0, s F0,
g=2 if s =5 =0.

As a consequence, the invariant ¢ is not a semicontinuous function on the
stratum with constant Milnor number. The example is

fonss@s 4, 2) = 27T + §3/3 + 25/3 — 82’y — satyz.

We have also obtained a similar formula for an invariant ¢’ closely related
to ¢. This enables one to compute the invariants «, 8, ¥ which have been con-
sidered by Wahl [13]. It is hoped that their study gives deeper insight to the
moduli problem for isolated hypersurface singularities.

§ 1. Extendability of forms of low degree

Let ¥V be an n-dimensional complex space with singular locus ¥, and let
U=V -7

sing*

(1.1) Proposition. For a holomorphic p-form w on U the following conditions
are equivalent:

(ii)‘ for each C® map y: A2 — V the integral f w exisls;

(ii) there exists a complex manifold V and ayproper holomorphic map n: V — V
such that m: V — zY( Veing) = U i bikolomorphic and n*(w) extends to a
holomorphic p-form on the whole of V ;

(iii) for every pair (V, ) as in (ii) the form n*(w) extends holomorphically.

Proof. See [6] for the case of n-forms. The general case is similar.

(1.2) Definition. We call a holomorphic p-form on U of first kind on V if it
satisfies the equivalent conditions of the preceding proposition.

(1.3) Theorem. Let V be a complex space with isolated singular locus,
U=V — Vype n=dim (V) = 2. Let p <n — 2. Then every holomorphic

p-form on U is of first kind on V.

Proof. Without loss of generality we may assume that V is a contractible
Stein space with only one singular point . We choose a resolution x: 7224
such that znx) = D, u--- U D} is a union of smooth divisors on ¥ with
normal crossings. Then we have the vanishing theorem

Hi(V, IQ%log D)) =0 for p +q>n
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({11}, Theorem 2b). Here Q3(log D) is the logarithmic De Rham complex on ¥
and Ip is the ideal sheaf of the divisor D. By duality we have

HY(7, @5(log D)) =0 for p<n-—1.

(H"(f/, F)* isdual to Hy(V, F* @ wp) for Flocally free on ¥ and (IpQ2%(log D))*
& wp = Q¥ P(log D)).

So if p < n — 1, every holomorphic p-form on U extends to ¥ as a form
with logarithmic poles along D.

By [10], § 1 the spaces HP(D) and H?(U) carry mixed Hodge structures
such that

FrH?(D, C) = H"(D, Q8 1p2%(log D))
and
FeH?(U, €) = H(D, Q%(log D)/I,2%(log D)).
The natural map H?(D) = HP(V) - HP(U) is a morphism of mixed Hodge
structures, hence it is strictly compatible with the Hodge filtrations. For

p < n this map is surjective (ibid. (1.11)) so we may conclude that the natural
map

o: HY(D, Q%/I,Q%(log D)) - H%D, Q%(log D)/Ip2%(log D))
is also surjective for p << n. From the exact sequence
0 — Qf — Q%(log D) — Q%(log D)/Q2% — 0
we obtain the connecting homomorphism
8: H(V, Q%(log D)/QB) — HY(V, 22).
If we compose this map with the natural map
HYV, Q%) - HYV, Q/I,Q%(log D))

we also get a connecting homomorphism for a suitable sequence, which is in-
jective because ¢ is surjective. Hence d is injective too. We conclude that
HYV, Q%)= H°( V, Q%(log D)) for p < n». Hence every form on V with only
logarithmic poles along D is already holomorphic. []

(1.4) Corollary: Let V be a coniractible Stein space with one singular point x
and U=V — {x). Let n:V — V be a resolution. Then the map d: H(Q%™)/
HYQE™Y) — HYQp)/H 0(.Q;‘;,(log D)) tnduced by differentiation is injective.

Proof. We have HYQy™)/HYQE™) = HYQ™)/HQ% (log D)) and by [5]
the differentiation map

HY(V, Q¥ \(log D)) -~ Hi,(V, 2(log D))
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is injective. In the commutative diagram
HYQ ™/ H(Qy™) < H(QY)/H°(@(log D))
H(QzY(log D)) 2+ H(Q2(log D))

the maps « and g are injective, hence d is injective too. []

(1.5) Definition. For arbitrary isolated singularities (V,x) we define the
irregularity q and the geometric genus p, as in the introduction.

From Corollary (1.4) we obtain the inequality ¢ < p, — A*~Y(0p). In parti-
cular ¢ = 0 holds for rational singularities.

(1.6) We now prove the special case of the Zariski-Lipman conjecture men-
tioned in the introduction. Assume that » > 2 and that @, is free. Take a
basis @, ..., 9, of sections. Let (¥, D) 2 (V, z) be a good resolution with
7Oy = Oy (this exists by a result of Hironaka [15]). The vector fields &; lift
to vector fields #; on ¥ which are tangent to D as ¥ has an isolated singu-
larity at z. Outside D, we have holomorphic 1-forms w;, j =1, ..., n with
(8;, w;y = &;;. By Theorem (1.3) the w; are holomorphic on the whole of V.
For P € D,,, the vectors &;(P) must be linearly dependent contradicting the
fact that (§;, w;) = &;;.

In the surface case this argument shows that the freeness of @y implies
that ¢ > 0.

§ 2. The Ganss-Manin system

Let f: X — 8 be a good representative of a holomorphic function germ
(€**1,0) — (€, 0) with an isolated singularity at 0 as in the introduction, with

8 ={z€ €| |2| < n). Let D be an indeterminate and let Q5[D] = @ Q% - D~.
Then 2;[D] becomes a complex of sheaves by the differentiation #=0

d(w - D) = dw - D¥ — df A 0 - D*1,
(2.1) Definition. The Gauss-Manin system of f is the Ds-module
Hx = 1,25 [D)/d(f,,2%[D]).

The operator o; acts on #x via w - D¥ > @ - D¥*1and t acts as - D* +> fo - D¥
~— ko - D¥-t, These formulas become clear if one uses the identification
o D¥ = [k! of(f — )¥*1] of Qx[D] with a complex of meromorphic differ-
ential forms on X X S with poles along the graph of f modulo forms without
poles; see [9], § 3.

The Gauss-Manin system H#y is a regular holonomic Dg-module on which
the operator 9, is invertible. It contains the sheaf

H'" = {27 df A d(f, 2%

(the lattice of Brieskorn) as a free Os-submodule.
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The Hodge filtration F~ on Ky is given by
Fry =0 for p>n, FrHy=0}PH" for p <n.

The V-filtration on the stalk Hyx q is defined as follows. Let (¢ = Hy,,,
0% = {J Ker (t 3; — a)*. We let V, (resp. V.,) be the 05 o-submodule of Hx ,

kz1

generated by all C® with b€ @ and b = a (resp. b > a). (Observe that the
monodromy is quasi-unipotent so C¢ = 0 for a ¢ Q). We will use two results
which describe the V-filtration in a different way for special cases. The first
one is due to A.Varchenko. To formulate this, let #: X — X be a good
embedded resolution of f, i.e. X is a complex manifold, = is a proper holo-
morphic map such that (fz)~1(0) is a divisor with normal crossings on X and
7 maps X — #~1(0) biholomorphically to X — {0}. Let By, ..., B be the irre-
ducible components of z~1(0). Each divisor E; determines a valuation vz on
the spaces of holomorphic functions and holomorphic (n + 1)-forms on X.
For a holomorphic (n + 1)-form o on X we define its geometrical weight
(w.r.t. x)

g(w) = min; {(”E((w) + 1)/”&0)}
and we let
oalw) = max {a € Q| [w] € V,)

where [w] denotes the image of w in Hf — Hy q.

(2.2) Theorem. For any holomorphic (n + 1)-form on X
g(0) < o(w) + 1 and if glo) =1 then g(o) = x(w) + 1.
Proof. See [12], Theorem 4.3.1.
Corollary: If —1 << a < 0 then
HY 0V, = {{0] € By | o € HYX, Q%) and g(w) Za + 1);
HinV.,,={lo] € Hy |w € HYX, Q%) and g(w) >a + 1}

for any good embedded resolution of f.

The second result we want to mention expresses the V-filtration for “non-
degenerate functions” in terms of their Newton diagram. This is due to M. Saito
[8). For f € Tz, ..., 2,) write f = 2,a,2” where » runs over all (n + 1)-tuples
of non-negative integers. Let supp (f) = {v | @, &= 0} = R%** and let I'(f) be
the convex hull of supp (f) + R%4'. Let I'(f) be the union of all compact
faces of I'(f). For ¢ a face of I'.(f) we let f, = }  a,2” € A, = the subalgebra

v€o
of €[z, ..., 2,] generated by all monomials z* with » in the closed cone with

vertex 0 on 6. We call f nondegenerate if for all such faces the ideal in 4, gen-
erated by all z;8f,/8z; has finite codimension.

Assume that f is nondegenerate and that I', (f) contains a point of all the co-
ordinate axes in IR**1. Then the region bounded by the coordinate hyperplanes
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and I',(f) has finite volume. Define for @ > 0
V. H] = {x € H] | 3 a holomorphic function & on X with
x = [h - (dzy/2g) A -+ A (d2,/2,)] and supp (B) < al'(f)}.
(2.3) Theorem. For any nondegenerate function as above we have
VIH] =V, nHY, forany a €@, a > 0.

Let us return to the Hodge filtration. Because V, = C¢ 4 V_, for all a, we
have 0% = V,/V.,. We define

FrC¢® = image of F? n V, in C®

to be the Hodge filtration on C¢. It follows from the results in [9] and [12]
that ¢ = @ C¢ carries a mixed Hodge structure with Hodge filtration F

—1<az0
given by F*C = @ Fr(C¢ and such that the nilpotent endomorphism N of C
—1<a=0
which is —2ni(¢ 8, — @) on (¢ is a morphism of mixed Hodge structures of

type (—1, —1). Because such morphisms are always strictly compatible with
the Hodge filtration, we have in particular that

(2.4) Lemma. N(C) n FrC = N(Fr1C) for all p.
For future use we formulate an application:

(2.5) Corollary. Let w be a holomorphic (n -+ 1)-form on X such that fo

= df a5 for some holomorphic n-form v on X. Then
[w] € Vo if and only if [dy — 0} € V..
Proof. We have dd[w] = 9;[fw] = &,[df A ] = [dn] so
t Ofw] = 4flo] — [0] = [dy — o].

Suppose that {w] € V. Because t9,Vy = ¥V, we have [dy — w] € V,. Letxand y
denote the images of [w] and [dy — ] in C°. Then y = ¢ dx € NC° n F*C°
= N(F"1(0% = 0 because F'#*1 = 0. Hence y = 050 [dy — w] € V.,.

Conversely, because the mapi? &,: V.o — V. isinvertible, if [dy — w] € V.,
there exists z € V., with ¢ 8,z = [dy — »]. Then [w] — 2z € ker (¢ §;)—(C’s0
[w]eC®+V o=V, O

§ 3. The geometric genus

In this section we prove a formula for the geometric genus of an isolated
hypersurface singularity due to M. Saito [7]. In the next section we will use
this proof to derive a formula for the irregularity as well.

(3.1) Theorem. Let n =2 and let (V,0) = (C**, 0) be an isolated hyper-
surface singularity defined by a holomorphic function germ f. Then

Py(V,0) = dim H{/H n V_,.
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Proof. Let f: X — 8 be a good representative for the germ f as in § 2. Let
a: X — X be a good embedded resolution of f. Write ¥ for the strict transform
of the singular fibre V of f and 2~ 0) = By u--- UE, s0 VuEB, u--- UE,
is a divisor with normal crossings on X. Let W =X — {0} = X — E and
U =V — {0}. The exact sequence of sheaves

0 —Qut > 0% (log 7) — Q% — 0

where the last morphism is the residue map gives the diagram

0 > HYE, Q) — HY(X, 2% (log 7)) —+ HYT, 2%) 0

ol =
! [ [
0 — HYW, Q") — HYW, 2% (log U)) = =y HOU, Q%) —0

in which the vertical mappings are the restrictions of sections to W. It is clear
that the diagram is commutative. Because H\(X, Q%) =0 (by Grauert-
Riemenschneider) the map resy is surjective. The map resy is also surjective
because HYW,Q4'!) = 0 (here we use that n = 2). The vertical mappings
are clearly injective. Surjectivity of the map g follows from the fact that the
map HYX, Q%) — HY(W, Q%) is already surjective. The same argument
shows that each element of HOW, Q23 (log U)) is of the form w/f for some
holomorphic (» 4 1)-form w on X. It is easy to see that the map HY(X, Q%)
— HYU, Qu)/HO(V, Q%), o > the class of resy (o/f) modulo forms of first

kind, factors via H{/, so we obtain a surjective mapping
¢: Hy — H(U, Qp)/HT, 23).
Moreover
[w] € ker () & resy (w/f) € HAV, 23)
& m*(w/f) extends to a section of 2% !(log ¥)
Sgw)>1a 0l eV, O

§ 4. The irregularity

We keep the notations of the preceding section.

(4.1) Theorem. Letn = 2 andlet (V,0) = (C**2, 0) be an tsolated hypersurface
singularity, defined by a holomorphic function germ f. Let K = {[w] € H} | fo
= df A for some holomorphic n-form n on X}. Then the irregularity of (V, 0)
18 given by

g(V,0) =dim (K/K n V).

Proof. Take the notations of the proof of Theorem (3.1). Let K = {w €
HYX, Q%Y | [w] € K}. For w € K choose  with fo = df A 5. Then

d(n/f) = dnlf — df A7/f* = (dn — w)/f
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so 7/f and d(n/f) both have a first order pole along U. In particular /f is a
section of Q% (log U) and resy (y/f) is a well-defined section of Q%7!. If an
n-form 7’ also satisfies fo =df An/ thendfA(n —9') =0son —n' =dfAl
for some (n — 1)-form { on X. Then resy (1/f) == resy (%'/f) + {|y so the class
of resy (/f) modulo forms of first kind on ¥ depends only on w. We denote it
by §(w). If w is itself devisible by df then §(w) = 0 so we obtain a mapping
p: K — HYU, Q%Y /HYT, Q). We first show that p is surjective. As
n = 2 we have H{W,2},) =0 so for all x € HY(U, Q%) there exist y ¢
HYW, Qp(log U)) such that @ = resy(y). Then the (n + 1)-form o =dfry
is holomorphic on W and hence on X. Moreover w € K because fo = df A g
where 7 = fy is holomorphic on X. Then z = yp([w]).
To determine Ker (y) we observe that Ker (y) = Ker (d o y) where

d: HY(U, Q3™ Y)/HYV, Q&) — HYU, Q%)/HYV, Q%)

is the differentiation map which is injective by Corollary (1.4). For w € K,
fo = df A 5, we have

dp(w) = dresy (n/f) = resy (d(n/f)) = resy ((dn — w)/f)
hence, if ¢ is the mapping of the proof of Theorem (3.1), then for {w] € K one
gets [w] € Ker (p) & [dn — w] € Ker(p) © [dn—w]€ V., & [w] € Voby
Corollary (2.5). So Ker (y) = K n ¥, and the theorem follows. []

§ b. Example

Let f(z, y, 2) = 2"/7 + 4%/3 + 23/3 — 8,25 — s,x%yz. Here s4, 8, € €. Then
f is semi-quasihomogeneous with weights (1/7, 1/3, 1/3). We will compute ¢
for all values of the parameters s,, 8,.

First observe that the space K — Hy contains & Hy = Hj=df A Q%
df A d(2% ) (see [9], § 3). Hence it is convenient to pass to the quotient
@/ = HJ//H; which is a C-vectorspace of dimension u, the Milnor number
of f. The space K/H/ is just the kernel of multiplication by fin Q. We let V
also denote the induced filtration on /. We can actually compute the V-filtra-
tion on our @' by the result (2.3) of M. Saito. Let wy = dx A dy A dz. Then a
basis for @/ is given by the forms x'yiz*w, with ¢ € {0, 1, 2, 3,4, 5}, j € {0, 1)
and k € {0, 1}. We have «(zty/z¥wy) = (3¢ + 7j + Tk — 4)/21 for these forms.
For every o € Q, V@ is generated by those basis elements for which this
number is at least «.

Multiplication by 21f in @ is easily seen to be the same as multiplication
by s,2% + bs,xtyz (use the Euler relation). It is clear that this maps ¥, to
Voita for every a. As @ = V_y,@/, the image is contained in Vy4,,Q’ and
because Vg52,@’ = 0, its kernel contains ¥ Q’. So if

4= Qf/Vqu], B = Vlo/lef

and P: A — B is the operator induced by multiplication with s;z% -+ bs,ztyz,
then ¢ = dim (Ker P/Ker P n V44) where V4 is the image of V@’ in 4.
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A basis for 4 is wg, Zwy, *2wy, Ywg, 2wy and for B: x¥yw,, 25z2w¢, x3yzmy,
2hyzwy, *3yzw,. With respect to these bases, the operator P is given by the
matrix

& 0 0 0 O
0 0 00O
0 0 0 00O
B, 0 0 0 O

0 5s, 0 0 ¢

Hence Ker (P) = 4 for 8, = s, = 0 and else it is generated by (8,2 — 58y2) w,,
22w, and yw, Moreover VyA4 is generated by x%w,, yw, and zw,. We conclude
that

g=01if =0, s +0,
g=1if s F0,
g=2 if s =8, =0.

§ 6. Related invariants

We take the notations of § 3. If » is a holomorphic (» — 1)-form on U
which is of first kind on V, then #*(w) is a section of Q™. Welet D; = E; n V
fori =1, ..., k and define

holomorphic } / { forms of first kind Which}

"(V,0) =di
7(v.0) o { (n — 1)-forms on U

restrict to 0 on each D;
= dim HYU, Q}™)/H °( V, IpQ%(log D))

where D = D, u--- u Dy.

The fact that ¢’ does not depend on the choice of the resolution z: ¥ — V'
follows from its relation with the filtered De Rham complex of V (see [1, 11]).
One has

7, [pQF (log D) = H*1GrF 'Ky ([11], Cor. (3.4)).
(6.1) Theorem. With notations as vn Theorem (4.1) we have
¢'(V,0) =dim (K/K n V).
Proof. Let W = X — {0}. We have the commutative diagram
0 — HYX, I;Q%(log E)) ~ HYX, I;Q%(log V + E)) - HY(V, 1% (log D)) 0
)
0 — H(W, Q) —— HYW, Q’,‘V(log U)) ——— HY(U, Q’,}£) — 0.

The bottom row is exact because HY(W, 2},) = 0 (we take n = 2 again) and
exactness of the top row follows from HI(X, Ip2%(log E)) = 0. To explain
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this, observe that for any singularity (Y, Z) and any resolution p: ¥ — ¥
with exceptional divisor 4 the sheaves Rip,I AQ;;(log A) = HHGriKy 5)
([11], Cor. (3.4)) are invariants of (Y, X) which do not depend on the resolu-
tion. Because X is smooth they vanish for ¢ #= 0 so R'=,[p0Q%(log E) = 0.
Finally the left vertical map is again an isomorphism because H(X, I;Q0%(log £))
=~ AYX, Q%) as X is smooth.

We conclude from this diagram that we have

¢ = dim HY(W, 2} (log U))[HY(X, I;Q%(log V + E)).

Let w € HY(X, Q%) such that fow = df A pie. [w] € K. _

Claim: «([w]) > 0 if and only if #*(#/f) is a section of IzQ%(log V + E). It
is clear that the theorem follows from this.

So suppose that z*(n/f) € H"(X, I,Q%(log v+ E)). Then a*(w/f) = df/f
A a¥(ylf) € HY(X, I;Q% ™ log 7 + E)) = HY(X, 2% (log 7)) hence a(w) >0
by (2.2). ’

Conversely, let a(w) > 0. Then by Theorem (4.1) Resy (%/f) is of first kind.
Now recall that HY(V, Q%) = HV, 2% (log D)) (see the proof of Theorem
(1.3)). We have a commutative diagram

0 — HYX, Q%(log E)) —~ HYX, Qi(log V + E)) - H(V, Q% (log D)) — 0

5 ) [

0 — HY(W,2y) — H(W, 2p(log U)) + HYU, Q%) — 0.

This time the top row is exact because H 1(X , I;Q%(log E)) = 0 as before and
Hl(E’, Q%(log B) ® OE) = GrpH{i{(X, €) = 0 again because X is smooth (see
[5)). So the fact that Resy (5/f) is of first kind implies that »/f is a section of
Q%(log V + E). To prove that it is in fact a section of I £82%(log V + E) we
first show that it has zero residue along each E; and then that its restriction
to each E; is zero. We will use the fact that global logarithmic forms on E;
are zero if their cohomology class is zero (see [2], Cor. (3.2.13) (ii)). Let E,
be a component of E and let C; be the intersection of E; with the remaining
components of B u V. Let y be an (n — 1)-cycle on E; — C;. We show that
fR(n/f) = 0 where R = Resg, o n*.

’ Let T(y) be the e-tube over y in X — 7, which is an (n + 1)-chain with
boundary t.(y) = ¢7.(y). Because the map H,(X,) - H,(X — V) is surjective
(where X, = f~1(¢)), there exists an (n + 1)-chain I, on X — V with oI,
= 7,(y) — &, with &, an n-cycle on X,. Because the inclusion £ — D < X — ¥
is a homotopy equivalence, we have H(X — 7, E — D) = 0 for all 4. This
means that, when Z; and B; denote ¢-cycles and ¢-boundaries respectively:

Z{E — D)+ B(X —V)=2Z(X — V) (1);
Z(E — D) n B{X — V) = By(E — D). (2);
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So there exist f. € Z,(F — D) and 4, € Copy)(X — V) with a, = f. + 04,
y (1), Let Z=7T(y) — I, — A.. Then 0Z = p.. By (2), there exists
H € Cpsy(E — D) with 6H = ﬂe Thus Z — H € Z,,H(X VysoZ—-H=¢@
+ 0K for some G € Z,,(E — D), K € C,,+2(X V) So, putting F = Q@ + H
we see that Z is homologous to F € C,,,(E — D).
By the residue formula ({4], Prop. 8.16(b)) we have

f ol =i [ (/) = o lim [ f (i) + f (n/f)]-
e—0 LT T >0
g or,

¥ Tely)

Now it follows from a(w) > O that

lim [ (p/fy =lim [ (w/df) =

=0 o, e—>0  ag

(see [12], § 1.2). Moreover

[ ity = f dnlfy = [ dnipy — [ dnip) + [ dnif)
4, z

or, Te(y)
and
lim [ dn/fy =lim [ d/f) =
e>0 Tcly) e—>0 4,
because the form d(y/f) is regular on the whole of X — V and we are inte-
grating over smaller and smaller chains. Finally

[aify = [ dwify =
zZ F

because d(5/f) is closed and its restriction to E has to be zero, as E is an
n-dimensional complex space and d(%/f) is a holomorphic (» + 1)-form. We
conclude that R(x/f) = 0. Hence 7/f is a section of Q%(log V). Its restriction
to E; is then a section of 2% '(log D;) so to prove that this restriction is zero
we check that f n/f = 0 for all n-cycles y on E; — C;.

So let y be an n-cycle on B; — C; and let e; be the multiplicity of E; in the
fibre of f o = over 0. Then there exists an open neighborhood Y of the support
of y in X such that for £ > 0 small enough, the intersection X, n Y is an
¢;-fold unramified covering of (E; — D;)n Y. If y; € H,(X,) is the inverse
image of y then e;p is the limit of the cycles y, for £ — 0. As a consequence

fn/f=—l—lim [n/f=0
€ ¢>0

¥ Ve

again because a(w) > 0. This completes the proof. []
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Let us consider the case # = 2. In [13] the following invariants are con-
sidered:

o = dim H"(V [0:1 YaHYV, Ip0% %(log D));
p = dim Coker [HY(V, Q%) -~ HY(D, 29
y = rank [HY(¥, QL) — HY( v, Q1)] — k where k is the number of irre-
ducible components of D.
Let ¢ = dim HO(D, .Ql Z g; where g; is the genus of D; and let b denote
the number of cycles in the dual graph of D. Finally let v+ = dim 7'%,. Then

one has the formulas

#—7="b+ 2« + B) +y ([13], Theorem (2.7));
gq=p,—9—b—a—f—y (ibid. Theorem (1.9)).
(6.2) Proposition. We have ¢’ =g + g — f.
Proof. Use that Q} = Q%/IpQ%(log D) to obtain the sequence
0 — HYV, L)/HOV, 1yQ4(log D)) — HYD, 2%) —~ C* — 0

in which the first term has dimension ¢’ — ¢ and the second has dimen-
sion g. O

If K = K/H,— @' then 7 = dim K. The invariants P, 9 and b are constant
under deformations with constant Milnor number whereas «, §, 7, T may jump.
To obtain certain semicontinuous linear combinations of these invariants
(restricted to the stratum with constant Milnor number) observe that dim K
is upper semicontinuous and hence dim (K n V,) and dim (K n V) are upper
semicontinuous too.

(6.3) Corollary. The snvariants t — q and v — ¢’ are upper semicontinuous
and the invariants « and « -+ § are lower semicontinuous on the u-constant
stratum of a 2-dimensional isolated hypersurface singularity (see also [13],
(1.13.2)).

Proof. It follows from the preceding formulas that
p—t+qg=p,—g+a+pf=dim@/K nVy;

p—7+q =p +oa=dim@/K nV,,.

Remark. The invariants above admit obvious generalizations to arbitrary
dimension in such a way that [13] Theorem (1.9) and Proposition (6.2) above
remain valid. For the corresponding formula for g — 7, valid for complete
intersections, see [5].
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