Extendability of holomorphic differential forms near isolated hypersurface singularities

By D. v. Straten*) and J. Steenbrink

Introduction

Let $f:\left(\mathbb{C}^{n+1}, 0\right) \rightarrow(\mathbb{C}, 0)$ be a germ of an holomorphic function with an isolated singularity at the origin. Let $X=\left\{z \in \mathbb{C}^{n+1}| | z \mid<\varepsilon\right.$ and $\left.|f(z)|<\eta\right\}$ for $0<\eta \ll \varepsilon, \varepsilon$ sufficiently small, and let V be the set of zeroes of f on X. Then V is a contractible Stein space and $U=V-\{0\}$ is smooth.

A holomorphic form ω on U is called of first kind if there exists a resolution $\pi: \tilde{V} \rightarrow V$ of the singularity ($V, 0$) such that $\pi^{*}(\omega)$ extend holomorphically to \tilde{V}. A result of Greuel ([3], Proposition 2.3) implies that for $p \leqq n-2$ every holomorphic p-form on U is of first kind on V. In fact this result holds for arbitrary isolated singularities (Theorem (1.3)). An application of this is a proof of the following (easy) case of a conjecture of Zariski and Lipman [16]: If $(V, 0)$ is an isolated singularity of dimension at least 3 and $\Theta_{V, 0}:=\operatorname{Hom}_{O_{V, 0}}\left(\Omega_{V, 0}^{1}, \mathcal{O}_{V, 0}\right)$ is a free $\mathcal{O}_{V, 0}$-module, then $(V, 0)$ is in fact smooth. The crucial case of $\operatorname{dim} V=2$ remains open, however.

The remaining cases are n-forms and ($n-1$)-forms. From now on we take $n \geqq 2$. Concerning n-forms one has the invariant

$$
p_{g}=\operatorname{dim}\left\{\begin{array}{l}
\text { holomorphic } \\
n \text {-forms on } U
\end{array}\right\} /\left\{\begin{array}{l}
n \text {-forms of } \\
\text { first kind }
\end{array}\right\}
$$

which is equal to the geometric genus of ($V, 0$). It counts the number of adjunction conditions imposed by the singularity. See [6] for a detailed discussion of this invariant.

Our main attention goes to the invariant

$$
q=\operatorname{dim}\left\{\begin{array}{l}
\text { holomorphic } \\
(n-1) \text {-forms on } U
\end{array}\right\} /\left\{\begin{array}{l}
(n-1) \text {-forms } \\
\text { of first kind. }
\end{array}\right\}
$$

It has been studied by Yau [14] and Wahl [13].
Our main result indicates how to compute q (and p_{g}) for isolated hypersurface singularities. Our formula uses the Gauss-Manin system of f, see [9, 12]. As an application of the formula we give an example of a deformation of a function of three variables with constant Milnor number, depending on two

[^0]parameters s_{1}, s_{2} such that
\[

$$
\begin{array}{lll}
q=1 & \text { if } & s_{1} \neq 0 \\
q=0 & \text { if } & s_{1}=0, \quad s_{2} \neq 0 \\
q=2 & \text { if } & s_{1}=s_{2}=0
\end{array}
$$
\]

As a consequence, the invariant q is not a semicontinuous function on the stratum with constant Milnor number. The example is

$$
f_{s_{1}, s_{2}}(x, y, z)=x^{7} / 7+y^{3} / 3+z^{3} / 3-s_{1} x^{5} y-s_{2} x^{4} y z
$$

We have also obtained a similar formula for an invariant q^{\prime} closely related to q. This enables one to compute the invariants α, β, γ which have been considered by Wahl [13]. It is hoped that their study gives deeper insight to the moduli problem for isolated hypersurface singularities.

§ 1. Extendability of forms of low degree

Let V be an n-dimensional complex space with singular locus $V_{\text {sing }}$ and let $U=V-V_{\text {sing }}$.
(1.1) Proposition. For a holomorphic p-form ω on U the following conditions are equivalent:
(i) for each C^{∞} map $\gamma: \Delta^{p} \rightarrow V$ the integral $\int_{\gamma} \omega$ exists;
(ii) there exists a complex manifold \tilde{V} and a proper holomorphic map $\pi: \tilde{V} \rightarrow V$ such that $\pi: \tilde{V}-\pi^{-1}\left(V_{\text {sing }}\right) \rightarrow U$ is biholomorphic and $\pi^{*}(\omega)$ extends to a holomorphic p-form on the whole of \tilde{V};
(iii) for every pair (\tilde{V}, π) as in (ii) the form $\pi^{*}(\omega)$ extends holomorphically.

Proof. See [6] for the case of n-forms. The general case is similar.
(1.2) Definition. We call a holomorphic p-form on U of first kind on V if it satisfies the equivalent conditions of the preceding proposition.
(1.3) Theorem. Let V be a complex space with isolated singular locus, $U=V-V_{\text {sing }}, n=\operatorname{dim}(V) \geqq 2$. Let $p \leqq n-2$. Then every holomorphic p-form on U is of first kind on V.

Proof. Without loss of generality we may assume that V is a contractible Stein space with only one singular point x. We choose a resolution $\pi: \tilde{V} \rightarrow V$ such that $\pi^{-1}(x)=D_{1} \cup \cdots \cup D_{k}$ is a union of smooth divisors on V with normal crossings. Then we have the vanishing theorem

$$
H^{q}\left(\tilde{V}, I_{D} \Omega_{\tilde{V}}^{p}(\log D)\right)=0 \quad \text { for } p+q>n
$$

([11], Theorem 2b). Here $\Omega_{\dot{\hat{V}}}^{\dot{*}}(\log D)$ is the logarithmic De Rham complex on \tilde{V} and I_{D} is the ideal sheaf of the divisor D. By duality we have

$$
H_{D}^{1}\left(\tilde{V}, Q_{\tilde{V}}^{p}(\log D)\right)=0 \quad \text { for } \quad p<n-1
$$

$\left(H^{i}(\tilde{V}, \mathscr{F})^{\wedge}\right.$ is dual to $H_{D}^{n-i}\left(\tilde{V}, \mathcal{F}^{*} \otimes \omega_{\tilde{V}}\right)$ for F locally free on \tilde{V} and $\left(I_{D} Q_{\tilde{V}}^{p}(\log D)\right)^{*}$区 $\omega_{\tilde{V}} \cong \Omega_{\tilde{V}}^{n-p}(\log D)$.

So if $p<n-1$, every holomorphic p-form on U extends to \tilde{V} as a form with logarithmic poles along D.

By [10], § 1 the spaces $H^{p}(D)$ and $H^{p}(U)$ carry mixed Hodge structures such that

$$
F^{p} H^{p}(D, \mathbb{C})=H^{0}\left(D, \Omega_{\tilde{v}}^{p} / I_{D} \Omega_{\tilde{V}}^{p}(\log D)\right)
$$

and

$$
F^{p} H^{p}(U, \mathbb{C})=H^{0}\left(D, \Omega_{\tilde{\mathbf{V}}}^{p}(\log D) / I_{D} \Omega_{\tilde{\mathbf{V}}}^{p}(\log D)\right)
$$

The natural map $H^{p}(D) \cong H^{p}(V) \rightarrow H^{p}(U)$ is a morphism of mixed Hodge structures, hence it is strictly compatible with the Hodge filtrations. For $p<n$ this map is surjective (ibid. (1.11)) so we may conclude that the natural map

$$
\varrho: H^{0}\left(D, \Omega_{\tilde{V}}^{p} / I_{D} \Omega_{\tilde{\hat{V}}}^{p}(\log D)\right) \rightarrow H^{0}\left(D, \Omega_{\tilde{\tilde{V}}}^{p}(\log D) / I_{D} \Omega_{\tilde{V}}^{p}(\log D)\right)
$$

is also surjective for $p<n$. From the exact sequence

$$
0 \rightarrow \Omega_{\tilde{V}}^{p} \rightarrow \Omega_{\tilde{V}}^{p}(\log D) \rightarrow \Omega_{\tilde{V}}^{p}(\log D) / \Omega_{\tilde{V}}^{p} \rightarrow 0
$$

we obtain the connecting homomorphism

$$
\delta: H^{0}\left(\tilde{V}, Q_{\tilde{V}}^{p}(\log D) / \Omega_{\tilde{V}}^{p}\right) \rightarrow H^{1}\left(\tilde{V}, \Omega_{\tilde{V}}^{p}\right)
$$

If we compose this map with the natural map

$$
H^{1}\left(\tilde{V}, \Omega_{\tilde{V}}^{p}\right) \rightarrow H^{1}\left(\tilde{V}, \Omega_{\tilde{V}}^{p} / I_{D^{\prime}} \Omega_{\tilde{\tilde{V}}}^{p}(\log D)\right)
$$

we also get a connecting homomorphism for a suitable sequence, which is injective because ϱ is surjective. Hence δ is injective too. We conclude that $H^{0}\left(\tilde{V}, \Omega_{\tilde{V}}^{p}\right) \xrightarrow{\rightarrow} H^{0}\left(V, \Omega_{\tilde{V}}^{p}(\log D)\right)$ for $p<n$. Hence every form on \tilde{V} with only logarithmic poles along D is already holomorphic.
(1.4) Corollary: Let V be a contractible Stein space with one singular point x and $U=V-\{x\}$. Let $\pi: \tilde{V} \rightarrow V$ be a resolution. Then the map $d: H^{0}\left(\Omega_{U}^{n-1}\right)$) $H^{0}\left(\Omega_{\tilde{\mathrm{V}}}^{n-1}\right) \rightarrow H^{0}\left(\Omega_{U}^{n}\right) / H^{0}\left(\Omega_{\tilde{\mathrm{V}}}^{n}(\log D)\right)$ induced by differentiation is injective.

Proof. We have $H^{0}\left(\Omega_{U}^{n-1}\right) / H^{0}\left(\Omega_{\tilde{V}}^{n-1}\right)=H^{0}\left(\Omega_{U}^{n-1}\right) / H^{0}\left(\Omega_{\tilde{V}}^{n-1}(\log D)\right)$ and by [5] the differentiation map

$$
H_{D}^{1}\left(\tilde{V}, \Omega_{\tilde{V}}^{n-1}(\log D)\right) \xrightarrow{\beta} H_{D}^{1}\left(V, \Omega_{\tilde{V}}^{n}(\log D)\right)
$$

is injective. In the commutative diagram

the maps α and β are injective, hence d is injective too. \square
(1.5) Definition. For arbitrary isolated singularities (V, x) we define the irregularity q and the geometric genus p_{g} as in the introduction.

From Corollary (1.4) we obtain the inequality $q \leqq p_{g}-h^{n-1}\left(\mathcal{O}_{D}\right)$. In particular $q=0$ holds for rational singularities.
(1.6) We now prove the special case of the Zariski-Lipman conjecture mentioned in the introduction. Assume that $n>2$ and that Θ_{V} is free. Take a basis $\vartheta_{1}, \ldots, \vartheta_{n}$ of sections. Let $(\tilde{V}, D) \xrightarrow{\boldsymbol{x}}(V, x)$ be a good resolution with $\pi_{*} \Theta_{\tilde{V}}=\Theta_{V}$ (this exists by a result of Hironaka [15]). The vector fields ϑ_{i} lift to vector fields $\tilde{\vartheta}_{i}$ on \widetilde{V} which are tangent to D as V has an isolated singularity at x. Outside D, we have holomorphic 1 -forms $\omega_{j}, j=1, \ldots, n$ with $\left\langle\boldsymbol{\vartheta}_{i}, \omega_{j}\right\rangle=\delta_{i j}$. By Theorem (1.3) the ω_{j} are holomorphic on the whole of V. For $P \in D_{\text {reg }}$ the vectors $\tilde{\vartheta}_{i}(P)$ must be linearly dependent contradicting the fact that $\left\langle\tilde{\boldsymbol{v}}_{i}, \omega_{j}\right\rangle=\delta_{i j}$.

In the surface case this argument shows that the freeness of Θ_{V} implies that $q>0$.

§ 2. The Gauss-Manin system

Let $f: X \rightarrow S$ be a good representative of a holomorphic function germ $\left(\mathbb{C}^{n+1}, 0\right) \rightarrow(\mathbb{C}, 0)$ with an isolated singularity at 0 as in the introduction, with $S=\{z \in \mathbb{C}| | z \mid<\eta\}$. Let D be an indeterminate and let $\Omega_{X}^{p}[D]=\oplus_{k=0}^{\infty} \Omega_{X}^{p} \cdot D^{k}$.
Then $\Omega_{\dot{X}}[D]$ becomes a complex of sheaves by the differentiation

$$
\boldsymbol{d}\left(\omega \cdot D^{k}\right)=d \omega \cdot D^{k}-d f \wedge \omega \cdot D^{k+1}
$$

(2.1) Definition. The Gauss-Manin system of f is the $\mathscr{D}_{S_{S}}$-module

$$
\mathscr{H}_{X}=f_{*} \Omega_{X}^{n+1}[D] / d\left(f_{*} \Omega_{X}^{n}[D]\right)
$$

The operator ∂_{t} acts on \mathscr{H}_{X} via $\omega \cdot D^{k} \mapsto \omega \cdot D^{k+1}$ and t acts as $\omega \cdot D^{k} \mapsto f \omega \cdot D^{k}$ - $k \omega \cdot D^{k-1}$. These formulas become clear if one uses the identification $\omega \cdot D^{k} \rightarrow\left[k!\omega /(f-t)^{k+1}\right]$ of $\Omega_{X}^{\dot{x}}[D]$ with a complex of meromorphic differential forms on $X \times S$ with poles along the graph of f modulo forms without poles; see [9], § 3.

The Gauss-Manin system \mathscr{H}_{X} is a regular holonomic \mathscr{D}_{S}-module on which the operator ∂_{t} is invertible. It contains the sheaf

$$
H^{\prime \prime}=f_{*} \Omega_{X}^{n+1} / d f \wedge d\left(f_{*} \Omega_{X}^{n-1}\right)
$$

(the lattice of Brieskorn) as a free \mathcal{O}_{s}-submodule.

The Hodge filtration F^{\cdot} on \mathscr{H}_{X} is given by

$$
F^{p} \mathscr{H}_{X}=0 \text { for } p>n, \quad F^{p} \mathscr{H}_{X}=\partial_{t}^{n-p} H^{\prime \prime} \text { for } p \leqq n
$$

The V-filtration on the stalk $\mathscr{H}_{X, 0}$ is defined as follows. Let $C^{a} \subset \mathscr{H}_{X, 0}$, $C^{a}=\bigcup_{k \geqq 1} \operatorname{Ker}\left(t \partial_{t}-a\right)^{k}$. We let $V_{a}\left(\right.$ resp. $\left.V_{>a}\right)$ be the $\mathcal{O}_{s, 0}$-submodule of $\mathscr{H}_{X, 0}$ generated by all C^{b} with $b \in \mathbb{Q}$ and $b \geqq a$ (resp. $b>a$). (Observe that the monodromy is quasi-unipotent so $C^{a}=0$ for $a \notin \mathbb{Q}$). We will use two results which describe the V-filtration in a different way for special cases. The first one is due to A. Varchenko. To formulate this, let $\pi: \tilde{X} \rightarrow X$ be a good embedded resolution of f, i.e. \tilde{X} is a complex manifold, π is a proper holomorphic map such that $(f \pi)^{-1}(0)$ is a divisor with normal crossings on \tilde{X} and π maps $\tilde{X}-\pi^{-1}(0)$ biholomorphically to $X-\{0\}$. Let E_{1}, \ldots, E_{k} be the irreducible components of $\pi^{-1}(0)$. Each divisor E_{i} determines a valuation $v_{E_{i}}$ on the spaces of holomorphic functions and holomorphic $(n+1)$-forms on X. For a holomorphic $(n+1)$-form ω on X we define its geometrical weight (w.r.t. π)

$$
g(\omega)=\min _{i}\left\{\left(v_{E_{i}}(\omega)+1\right) / v_{E_{i}}(f)\right\}
$$

and we let

$$
\alpha(\omega)=\max \left\{a \in \mathbb{Q} \mid[\omega] \in V_{a}\right\}
$$

where $[\omega]$ denotes the image of ω in $H_{0}^{\prime \prime} \subset \mathscr{H}_{X, 0}$.
(2.2) Theorem. For any holomorphic $(n+1)$-form on X

$$
g(\omega) \leqq \alpha(\omega)+1 \text { and if } g(\omega) \leqq 1 \text { then } g(\omega)=\alpha(\omega)+1
$$

Proof. See [12], Theorem 4.3.1.
Corollary: If $-1<a \leqq 0$ then

$$
\begin{aligned}
& H_{0}^{\prime \prime} \cap V_{a}=\left\{[\omega] \in H_{0}^{\prime \prime} \mid \omega \in H^{0}\left(X, \Omega_{X}^{n+1}\right) \text { and } g(\omega) \geqq a+1\right\} \\
& H_{0}^{\prime \prime} \cap V_{>a}=\left\{[\omega] \in H_{0}^{\prime \prime} \mid \omega \in H^{0}\left(X, \Omega_{X}^{n+1}\right) \text { and } g(\omega)>a+1\right\}
\end{aligned}
$$

for any good embedded resolution of f.
The second result we want to mention expresses the V-filtration for "nondegenerate functions" in terms of their Newton diagram. This is due to M. Saito [8]. For $f \in \mathbb{C}\left\{z_{0}, \ldots, z_{n}\right\}$ write $f=\Sigma_{v} a_{v} z^{y}$ where v runs over all $(n+1)$-tuples of non-negative integers. Let $\operatorname{supp}(f)=\left\{\nu \mid a_{v} \neq 0\right\} \subset \mathbb{R}_{+}^{n+1}$ and let $\Gamma(f)$ be the convex hull of $\operatorname{supp}(f)+\mathbb{R}_{+}^{n+1}$. Let $\Gamma_{+}(f)$ be the union of all compact faces of $\Gamma(f)$. For σ a face of $\Gamma_{+}(f)$ we let $f_{\sigma}=\sum_{\nu \in \sigma} a_{\nu} z^{\nu} \in A_{\nu}=$ the subalgebra of $\mathbb{C}\left[z_{0}, \ldots, z_{n}\right]$ generated by all monomials z^{ν} with ν in the closed cone with vertex 0 on σ. We call f nondegenerate if for all such faces the ideal in A_{σ} generated by all $z_{i} \partial f_{\sigma} / \partial z_{i}$ has finite codimension.

Assume that f is nondegenerate and that $\Gamma_{+}(f)$ contains a point of all the coordinate axes in \mathbb{R}^{n+1}. Then the region bounded by the coordinate hyperplanes
and $\Gamma_{+}(f)$ has finite volume. Define for $a>0$

$$
\begin{aligned}
V_{a}^{\prime} H_{0}^{\prime \prime}= & \left\{x \in H_{0}^{\prime \prime} \mid \exists \text { a holomorphic function } h \text { on } X\right. \text { with } \\
& \left.x=\left[h \cdot\left(d z_{0} / z_{0}\right) \wedge \cdots \wedge\left(d z_{n} / z_{n}\right)\right] \text { and } \operatorname{supp}(h) \subset a \Gamma(f)\right\} .
\end{aligned}
$$

(2.3) Theorem. For any nondegenerate function as above we have

$$
V_{a}^{\prime} H_{0}^{\prime \prime}=V_{a+1} \cap H_{0}^{\prime \prime}, \text { for any } a \in \mathbb{Q}, a>0
$$

Let us return to the Hodge filtration. Because $V_{a}=C^{a}+V_{>a}$ for all a, we have $C^{a}=V_{a} / V_{>a}$. We define

$$
F^{p} C^{a}=\text { image of } F^{p} \cap V_{a} \text { in } C^{a}
$$

to be the Hodge filtration on C^{a}. It follows from the results in [9] and [12] that $C=\oplus C^{a}$ carries a mixed Hodge structure with Hodge filtration F

$$
-1<a \leqq 0
$$

given by $F^{p} C \underset{-1<a \leq 0}{\oplus} F^{p} C^{a}$ and such that the nilpotent endomorphism N of C which is $-2 \pi i\left(t \partial_{t}-a\right)$ on C^{a} is a morphism of mixed Hodge structures of type ($-1,-1$). Because such morphisms are always strictly compatible with the Hodge filtration, we have in particular that
(2.4) Lemma. $N(C) \cap F^{p} C=N\left(F^{p+1} C\right)$ for all p.

For future use we formulate an application:
(2.5) Corollary. Let ω be a holomorphic $(n+1)$-form on X such that $f \omega$ $=d f \wedge \eta$ for some holomorphic n-form η on X. Then

$$
[\omega] \in V_{0} \text { if and only if }[d \eta-\omega] \in V_{>0}
$$

Proof. We have $\partial_{t} t[\omega]=\partial_{t}[f \omega]=\partial_{t}[d f \wedge \eta]=[d \eta]$ so

$$
t \partial_{t}[\omega]=\partial_{t} t[\omega]-[\omega]=[d \eta-\omega] .
$$

Suppose that $[\omega] \in V_{0}$. Because $t \partial_{t} V_{0} \subset V_{0}$ we have $[d \eta-\omega] \in V_{0}$. Let x and y denote the images of $[\omega]$ and $[d \eta-\omega]$ in C^{0}. Then $y=t \partial_{t} x \in N C^{0} \cap F^{n} C^{0}$ $=N\left(F^{n+1} C^{0}\right)=0$ because $F^{n+1}=0$. Hence $y=0$ so $[d \eta-\omega] \in V_{>0}$.

Conversely, because the map $t \partial_{t}: V_{>0} \rightarrow V_{>0}$ is invertible, if $[d \eta-\omega] \in V_{>0}$ there exists $z \in V_{>0}$ with $t \partial_{t} z=[d \eta-\omega]$. Then $[\omega]-z \in \operatorname{ker}\left(t \partial_{t}\right) \subset C^{0}$ so $[\omega] \in C^{0}+V_{>0}=V_{0} . \square$

§ 3. The geometric genus

In this section we prove a formula for the geometric genus of an isolated hypersurface singularity due to M. Saito [7]. In the next section we will use this proof to derive a formula for the irregularity as well.
(3.1) Theorem. Let $n \geqq 2$ and let $(V, 0) \subset\left(C^{n+1}, 0\right)$ be an isolated hypersurface singularity defined by a holomorphic function germ f. Then

$$
p_{g}(V, 0)=\operatorname{dim} H_{0}^{\prime \prime} / H_{0}^{\prime \prime} \cap V_{>0}
$$

Proof. Let $f: X \rightarrow S$ be a good representative for the germ f as in § 2. Let $\pi: \tilde{X} \rightarrow X$ be a good embedded resolution of f. Write \tilde{V} for the strict transform of the singular fibre V of f and $\pi^{-1}(0)=E_{1} \cup \cdots \cup E_{k}$ so $\tilde{V} \cup E_{1} \cup \cdots \cup E_{k}$ is a divisor with normal crossings on X. Let $W=X-\{0\}=\tilde{X}-E$ and $U=V-\{0\}$. The exact sequence of sheaves

$$
0 \rightarrow \Omega_{\tilde{X}}^{n+1} \rightarrow \Omega_{\tilde{X}}^{n+1}(\log \tilde{V}) \rightarrow \Omega_{\tilde{V}}^{n} \rightarrow 0
$$

where the last morphism is the residue map gives the diagram

$$
\begin{aligned}
& 0 \rightarrow H^{0}\left(\tilde{X}, \Omega_{\tilde{X}}^{n+1}\right) \rightarrow H^{0}\left(\tilde{X}, \Omega_{\tilde{\tilde{X}}}^{n+1}(\log \tilde{V})\right) \xrightarrow{\text { res } \tilde{V}_{\tilde{V}}} H^{0}\left(\tilde{V}, \Omega_{\tilde{V}}^{n}\right) \rightarrow 0
\end{aligned}
$$

in which the vertical mappings are the restrictions of sections to W. It is clear that the diagram is commutative. Because $H^{1}\left(\tilde{X}, \Omega_{\tilde{X}}^{n+1}\right)=0$ (by GrauertRiemenschneider) the map res $\tilde{V}_{\tilde{V}}$ is surjective. The map res ${ }_{U}$ is also surjective because $H^{1}\left(W, \Omega_{W}^{n+1}\right)=0$ (here we use that $n \geqq 2$). The vertical mappings are clearly injective. Surjectivity of the map ϱ follows from the fact that the $\operatorname{map} H^{0}\left(X, \Omega_{X}^{n+1}\right) \rightarrow H^{0}\left(W, \Omega_{W}^{n+1}\right)$ is already surjective. The same argument shows that each element of $H^{0}\left(W, \Omega_{W}^{n+1}(\log U)\right)$ is of the form ω / f for some holomorphic $(n+1)$-form ω on X. It is easy to see that the map $H^{0}\left(X, \Omega_{X}^{n+1}\right)$ $\rightarrow H^{0}\left(U, \Omega_{U}^{n}\right) / H^{0}\left(\tilde{V}, \Omega_{\tilde{V}}^{n}\right), \omega \mapsto$ the class of $\operatorname{res}_{U}(\omega / f)$ modulo forms of first kind, factors via $H_{0}^{\prime \prime}$, so we obtain a surjective mapping

$$
\varphi: H_{0}^{\prime \prime} \rightarrow H^{0}\left(U, \Omega_{U}^{n}\right) / H^{0}\left(\tilde{V}, \Omega_{\tilde{V}}^{n}\right)
$$

Moreover

$$
\begin{aligned}
{[\omega] \in \operatorname{ker}(\varphi) } & \Leftrightarrow \operatorname{res}_{U}(\omega / f) \in H^{0}\left(\tilde{V}, \Omega_{\tilde{V}}^{n}\right) \\
& \Leftrightarrow \pi^{*}(\omega / f) \text { extends to a section of } \Omega_{\tilde{X}}^{n+1}(\log \tilde{V}) \\
& \Leftrightarrow g(\omega)>1 \Leftrightarrow[\omega] \in V_{>0} .
\end{aligned}
$$

§ 4. The irregularity

We keep the notations of the preceding section.
(4.1) Theorem. Let $n \geqq 2$ and let $(V, 0) \subset\left(C^{n+1}, 0\right)$ be an isolated hypersurface singularity, defined by a holomorphic function germ f. Let $K=\left\{[\omega] \in H_{0}^{\prime \prime} \mid f \omega\right.$ $=d f \wedge \eta$ for some holomorphic n-form η on $X\}$. Then the irregularity of ($V, 0$) is given by

$$
q(V, 0)=\operatorname{dim}\left(K / K \cap V_{0}\right)
$$

Proof. Take the notations of the proof of Theorem (3.1). Let $\tilde{K}=\{\omega \in$ $\left.H^{0}\left(X, \Omega_{X}^{n+1}\right) \mid[\omega] \in K\right\}$. For $\omega \in \tilde{K}$ choose η with $f \omega=d f \wedge \eta$. Then

$$
d(\eta / f)=d \eta / f-d f \wedge \eta / f^{2}=(d \eta-\omega) / f
$$

so η / f and $d(\eta / f)$ both have a first order pole along U. In particular η / f is a section of $\Omega_{W}^{n}(\log U)$ and $\operatorname{res}_{U}(\eta / f)$ is a well-defined section of Ω_{U}^{n-1}. If an n-form η^{\prime} also satisfies $f \omega=d f \wedge \eta^{\prime}$ then $d f \wedge\left(\eta-\eta^{\prime}\right)=0$ so $\eta-\eta^{\prime}=d f \wedge \zeta$ for some $(n-1)$-form ζ on X. Then $\operatorname{res}_{U}(\eta / f)=\operatorname{res}_{U}\left(\eta^{\prime} / f\right)+\left.\zeta\right|_{U}$ so the class of $\operatorname{res}_{U}(\eta / f)$ modulo forms of first kind on V depends only on ω. We denote it by $\tilde{\psi}(\omega)$. If ω is itself devisible by $d f$ then $\tilde{\psi}(\omega)=0$ so we obtain a mapping $\psi: K \rightarrow H^{0}\left(U, \Omega_{V}^{n-1}\right) / H^{0}\left(\tilde{V}, \Omega_{\tilde{V}}^{n-1}\right)$. We first show that ψ is surjective. As $n \geqq 2$ we have $H^{1}\left(W, \Omega_{W}^{n}\right)=0$ so for all $x \in H^{0}\left(U, \Omega_{U}^{n-1}\right)$ there exist $y \in$ $H^{0}\left(W, Q_{W}^{n}(\log U)\right)$ such that $x=\operatorname{res}_{U}(y)$. Then the $(n+1)$-form $\omega=d f \wedge y$ is holomorphic on W and hence on X. Moreover $\omega \in K$ because $f \omega=d f \wedge \eta$ where $\eta=f y$ is holomorphic on X. Then $x=\psi([\omega])$.

To determine $\operatorname{Ker}(\psi)$ we observe that $\operatorname{Ker}(\psi)=\operatorname{Ker}(d \circ \psi)$ where

$$
d: H^{0}\left(U, \Omega_{U}^{n-1}\right) / H^{0}\left(\tilde{V}, \Omega_{\tilde{V}}^{n-1}\right) \rightarrow H^{0}\left(U, \Omega_{U}^{n}\right) / H^{0}\left(\tilde{V}, \Omega_{\tilde{V}}^{n}\right)
$$

is the differentiation map which is injective by Corollary (1.4). For $\omega \in \tilde{K}$, $f \omega=d f \wedge \eta$, we have

$$
d \tilde{\psi}(\omega)=d \operatorname{res}_{U}(\eta / f)=\operatorname{res}_{U}(d(\eta / f))=\operatorname{res}_{U}((d \eta-\omega) / f)
$$

hence, if φ is the mapping of the proof of Theorem (3.1), then for $[\omega] \in K$ one gets $[\omega] \in \operatorname{Ker}(\psi) \Leftrightarrow[d \eta-\omega] \in \operatorname{Ker}(\varphi) \Leftrightarrow[d \eta-\omega] \in V_{>0} \Leftrightarrow[\omega] \in V_{0}$ by Corollary (2.5). So $\operatorname{Ker}(\psi)=K \cap \nabla_{0}$ and the theorem follows.

§ 5. Example

Let $f(x, y, z)=x^{7} / 7+y^{3} / 3+z^{3} / 3-s_{1} x^{5} y-s_{2} x^{4} y z$. Here $s_{1}, s_{2} \in \mathbb{C}$. Then f is semi-quasihomogeneous with weights ($1 / 7,1 / 3,1 / 3$). We will compute q for all values of the parameters s_{1}, s_{2}.

First observe that the space $K \subset H_{0}^{\prime \prime}$ contains $\partial_{i}^{-1} H_{0}^{\prime \prime}=H_{0}^{\prime}=d f \wedge \Omega_{X, 0}^{n}$ $d f \wedge d\left(\Omega_{X, 0}^{n-1}\right)$ (see [9], §3). Hence it is convenient to pass to the quotient $Q^{f}=H_{0}^{\prime \prime} / H_{0}^{\prime}$ which is a \mathbb{C}-vectorspace of dimension μ, the Milnor number of f. The space K / H_{0}^{\prime} is just the kernel of multiplication by f in Q^{f}. We let V also denote the induced filtration on Q^{f}. We can actually compute the V-filtration on our Q^{f} by the result (2.3) of M. Saito. Let $\omega_{0}=d x \wedge d y \wedge d z$. Then a basis for Q^{f} is given by the forms $x^{i} y^{i} z^{k} \omega_{0}$ with $i \in\{0,1,2,3,4,5\}, j \in\{0,1\}$ and $k \in\{0,1\}$. We have $\alpha\left(x^{i} y^{j} z^{k} \omega_{0}\right)=(3 i+7 j+7 k-4) / 21$ for these forms. For every $\alpha \in \mathbb{Q}, V_{\alpha} Q^{f}$ is generated by those basis elements for which this number is at least α.

Multiplication by $21 f$ in Q^{f} is easily seen to be the same as multiplication by $s_{1} x^{5} y+5 s_{2} x^{4} y z$ (use the Euler relation). It is clear that this maps V_{α} to $V_{>1+\alpha}$ for every α. As $Q^{f}=V_{-4 / 21} Q^{f}$, the image is contained in $V_{19 / 21} Q^{f}$ and because $V_{>25 / 21} Q^{f}=0$, its kernel contains $V_{4 / 21} Q^{f}$. So if

$$
A=Q^{f} / V_{4 / 21} Q^{f}, \quad B=V_{19 / 21} Q^{f}
$$

and $P: A \rightarrow B$ is the operator induced by multiplication with $s_{1} x^{5} y+5 s_{2} x^{4} y z$, then $q=\operatorname{dim}\left(\operatorname{Ker} P / \operatorname{Ker} P \cap V_{0} A\right)$ where $V_{0} A$ is the image of $V_{0} Q^{f}$ in A.

A basis for A is $\omega_{0}, x \omega_{0}, x^{2} \omega_{0}, y \omega_{0}, z \omega_{0}$ and for $B: x^{5} y \omega_{0}, x^{5} z \omega_{0}, x^{3} y z \omega_{0}$, $x^{4} y z \omega_{0}, x^{5} y z \omega_{0}$. With respect to these bases, the operator P is given by the matrix

$$
\left(\begin{array}{lllll}
s_{1} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
5 s_{2} & 0 & 0 & 0 & 0 \\
0 & 5 s_{2} & 0 & 0 & s_{1}
\end{array}\right)
$$

Hence $\operatorname{Ker}(P)=A$ for $s_{1}=s_{2}=0$ and else it is generated by $\left(s_{1} x-5 s_{2} z\right) \omega_{0}$, $x^{2} \omega_{0}$ and $y \omega_{0}$. Moreover $V_{0} A$ is generated by $x^{2} \omega_{0}, y \omega_{0}$ and $z \omega_{0}$. We conclude that

$$
\left\{\begin{array}{l}
q=0 \text { if } s_{1}=0, \quad s_{2} \neq 0 \\
q=1 \text { if } s_{1} \neq 0 \\
q=2 \text { if } s_{1}=s_{2}=0
\end{array}\right.
$$

§ 6. Related invariants

We take the notations of §3. If ω is a holomorphic ($n-1$)-form on U which is of first kind on V, then $\pi^{*}(\omega)$ is a section of $\Omega_{\tilde{V}}^{n-1}$. We let $D_{i}=E_{i} \cap V$ for $i=1, \ldots, k$ and define

$$
\begin{aligned}
q^{\prime}(V, 0) & =\operatorname{dim}\left\{\begin{array}{l}
\text { holomorphic } \\
(n-1) \text {-forms on } U
\end{array}\right\} /\left\{\begin{array}{l}
\text { forms of first kind which } \\
\text { restrict to } 0 \text { on each } D_{i}
\end{array}\right\} \\
& =\operatorname{dim} H^{0}\left(U, \Omega_{U}^{n-1}\right) / H^{0}\left(V, I_{D} \Omega_{\bar{V}}^{n-1}(\log D)\right)
\end{aligned}
$$

where $D=D_{1} \cup \cdots \cup D_{k}$.
The fact that q^{\prime} does not depend on the choice of the resolution $\pi: \tilde{V} \rightarrow V$ follows from its relation with the filtered De Rham complex of V (see [1, 11]). One has

$$
\pi_{*} I_{D} \Omega_{\tilde{V}}^{n-1}(\log D)=\mathscr{H}^{n-1} \mathrm{Gr}_{F}^{n-1} \mathscr{K}_{V . o} \quad([11], \text { Cor. (3.4)) }
$$

(6.1) Theorem. With notations as in Theorem (4.1) we have

$$
q^{\prime}(V, 0)=\operatorname{dim}\left(K / K \cap V_{>0}\right)
$$

Proof. Let $W=X-\{0\}$. We have the commutative diagram $0 \rightarrow H^{0}\left(\tilde{X}, I_{E} S_{\tilde{X}}^{n}(\log E)\right) \rightarrow H^{0}\left(\tilde{X}, I_{E} S_{\tilde{X}}^{n}(\log \tilde{V}+E)\right) \rightarrow H^{0}\left(\tilde{V}, I_{D} Q_{\tilde{V}}^{n-1}(\log D)\right) \rightarrow 0$

The bottom row is exact because $H^{1}\left(W, \Omega_{W}^{n}\right)=0$ (we take $n \geqq 2$ again) and exactness of the top row follows from $H^{1}\left(\tilde{X}, I_{E^{\prime}} \Omega_{\tilde{\tilde{x}}}^{n}(\log E)\right)=0$. To explain
this, observe that for any singularity (Y, Σ) and any resolution $p: \tilde{Y} \rightarrow Y$ with exceptional divisor A the sheaves $R^{i} p_{*} I_{A} Q_{\tilde{Y}}^{j}(\log A)=\mathscr{H}^{i+j}\left(\mathrm{Gr}_{F}^{j} \mathcal{K}_{Y, \Sigma}\right)$ ([11], Cor. (3.4)) are invariants of (Y, Σ) which do not depend on the resolution. Because X is smooth they vanish for $i \neq 0$ so $R^{1} \pi_{*} I_{E} Q_{\tilde{\tilde{X}}}^{n}(\log E)=0$. Finally the left vertical map is again an isomorphism because $H^{0}\left(\tilde{X}, I_{E} \Omega_{\tilde{X}}^{n}(\log E)\right)$ $\cong H^{0}\left(X, \Omega_{X}^{n}\right)$ as X is smooth.

We conclude from this diagram that we have

$$
q^{\prime}=\operatorname{dim} H^{0}\left(W, \Omega_{W}^{n}(\log U)\right) / H^{0}\left(\tilde{X}, I_{E} Q_{\tilde{X}}^{n}(\log V+E)\right)
$$

Let $\omega \in H^{0}\left(X, \Omega_{X}^{n+1}\right)$ such that $f \omega=d f \wedge \eta$ i.e. $[\omega] \in K$.
Claim: $\alpha([\omega])>0$ if and only if $\pi^{*}(\eta / f)$ is a section of $I_{E} Q_{\tilde{X}}^{n}(\log \tilde{V}+E)$. It is clear that the theorem follows from this.

So suppose that $\pi^{*}(\eta / f) \in H^{0}\left(\tilde{X}, I_{E} Q_{\tilde{X}}^{n}(\log \tilde{V}+E)\right)$. Then $\pi^{*}(\omega / f)=d f / f$ $\wedge \pi^{*}(\eta / f) \in H^{0}\left(\tilde{X}, I_{B} \Omega_{\tilde{X}}^{n+1}(\log \tilde{V}+E)\right)=H^{0}\left(\tilde{X}, \Omega_{\tilde{X}}^{n+1}(\log \tilde{V})\right)$ hence $\alpha(\omega)>0$ by (2.2).

Conversely, let $\alpha(\omega)>0$. Then by Theorem (4.1) $\operatorname{Res}_{U}(\eta / f)$ is of first kind. Now recall that $H^{0}\left(\widetilde{V}, \Omega_{\tilde{V}}^{n-1}\right)=H^{0}\left(\widetilde{V}, \Omega_{\tilde{V}}^{n-1}(\log D)\right.$) (see the proof of Theorem (1.3)). We have a commutative diagram

This time the top row is exact because $H^{1}\left(\tilde{X}, I_{E} \Omega_{\tilde{X}}^{n}(\log E)\right)=0$ as before and $H^{1}\left(E, \Omega_{\tilde{X}}^{n}(\log E) \otimes O_{E}\right)=\operatorname{Gr}_{F}^{n} H_{\{0\}}^{n+1}(X, \mathbb{C})=0$ again because X is smooth (see [5]). So the fact that $\operatorname{Res}_{U}(\eta / f)$ is of first kind implies that η / f is a section of $\Omega_{\tilde{X}}^{n}(\log \tilde{V}+E)$. To prove that it is in fact a section of $I_{E} \Omega_{\tilde{X}}^{n}(\log \tilde{V}+E)$ we first show that it has zero residue along each E_{i} and then that its restriction to each E_{i} is zero. We will use the fact that global logarithmic forms on E_{i} are zero if their cohomology class is zero (see [2], Cor. (3.2.13) (ii)). Let E_{i} be a component of E and let C_{i} be the intersection of E_{i} with the remaining components of $E \cup \tilde{V}$. Let γ be an $(n-1)$-cycle on $E_{i}-C_{i}$. We show that $\int_{\gamma} R(\eta / f)=0$ where $R=\operatorname{Res}_{E_{i}} \circ \pi^{*}$.

Let $T_{\varepsilon}(\gamma)$ be the ε-tube over γ in $\tilde{X}-\tilde{V}$, which is an $(n+1)$-chain with boundary $\tau_{\varepsilon}(\gamma)=\hat{\partial} T_{\varepsilon}(\gamma)$. Because the map $H_{n}\left(X_{\varepsilon}\right) \rightarrow H_{n}(X-V)$ is surjective (where $X_{\varepsilon}=f^{-1}(\varepsilon)$), there exists an $(n+1)$-chain Γ_{ε} on $X-V$ with $\partial \Gamma_{\varepsilon}$ $=\tau_{\varepsilon}(\gamma)-\alpha_{\varepsilon}$ with α_{ε} an n-cycle on X_{ε}. Because the inclusion $E-D \hookrightarrow \tilde{X}-\tilde{V}$ is a homotopy equivalence, we have $H_{i}(\tilde{X}-\tilde{V}, E-D)=0$ for all i. This means that, when Z_{i} and B_{i} denote i-cycles and i-boundaries respectively:

$$
\begin{align*}
Z_{i}(E-D)+B_{i}(\tilde{X}-\tilde{V}) & =Z_{i}(X-V) \tag{1}\\
Z_{i}(E-D) \cap B_{i}(\tilde{X}-\tilde{V}) & =B_{i}(E-D) \tag{2}
\end{align*}
$$

So there exist $\beta_{\varepsilon} \in Z_{n}(E-D)$ and $\Delta_{\varepsilon} \in C_{n+1}(X-V)$ with $\alpha_{\varepsilon}=\beta_{\varepsilon}+\partial \Delta_{\varepsilon}$ by $(1)_{n}$. Let $Z=T_{\varepsilon}(\gamma)-\Gamma_{\varepsilon}-\Delta_{\varepsilon}$. Then $\partial Z=\beta_{\varepsilon}$. By (2) $)_{n}$ there exists $H \in C_{n+1}(E-D)$ with $\partial H=\beta_{\varepsilon}$. Thus $Z-H \in Z_{n+1}(\tilde{X}-\tilde{V})$ so $Z-H=G$ $+\partial K$ for some $G \in Z_{n+1}(E-D), K \in C_{n+2}(\tilde{X}-\tilde{V})$. So, putting $F=G+H$ we see that Z is homologous to $F \in C_{n+1}(E-D)$.

By the residue formula ([4], Prop. 8.16(b)) we have

$$
\int_{\gamma} R(\eta / f)=\lim _{\varepsilon \rightarrow 0} \frac{1}{2 \pi i} \int_{\mathrm{T}_{\varepsilon}(\gamma)}(\eta / f)=\frac{1}{2 \pi i} \lim _{\varepsilon \rightarrow 0}\left[\int_{\alpha_{\varepsilon}}(\eta / f)+\int_{\partial \Gamma_{\varepsilon}}(\eta / f)\right] .
$$

Now it follows from $\alpha(\omega)>0$ that

$$
\lim _{\varepsilon \rightarrow 0} \int_{\alpha_{\varepsilon}}(\eta / f)=\lim _{\varepsilon \rightarrow 0} \int_{\alpha_{\varepsilon}}(\omega / d f)=0
$$

(see [12], § 1.2). Moreover

$$
\int_{\partial \Gamma_{\varepsilon}}(\eta / f)=\int_{\Gamma_{\varepsilon}} d(\eta / f)=\int_{T_{\varepsilon}(\gamma)} d(\eta / f)-\int_{A_{\varepsilon}} d(\eta / f)+\int_{Z} d(\eta / f)
$$

and

$$
\lim _{\varepsilon \rightarrow 0} \int_{T_{\varepsilon}(\gamma)} d(\eta / f)=\lim _{\varepsilon \rightarrow 0} \int_{\Delta_{\varepsilon}} d(\eta / f)=0
$$

because the form $d(\eta / f)$ is regular on the whole of $X-V$ and we are integrating over smaller and smaller chains. Finally

$$
\int_{Z} d(\eta / f)=\int_{F} d(\eta / f)=0
$$

because $d(\eta / f)$ is closed and its restriction to E has to be zero, as E is an n-dimensional complex space and $d(\eta / f)$ is a holomorphic $(n+1)$-form. We conclude that $R(\eta / f)=0$. Hence η / f is a section of $\Omega_{\tilde{X}}^{n}(\log V)$. Its restriction to E_{i} is then a section of $\Omega_{E_{i}}^{n-1}\left(\log D_{i}\right)$ so to prove that this restriction is zero we check that $\int_{\gamma} \eta / f=0$ for all n-cycles γ on $E_{i}-C_{i}$.

So let γ be an n-cycle on $E_{i}-C_{i}$ and let e_{i} be the multiplicity of E_{i} in the fibre of $f \circ \pi$ over 0 . Then there exists an open neighborhood Y of the support of γ in \tilde{X} such that for $\varepsilon>0$ small enough, the intersection $X_{\varepsilon} \cap Y$ is an e_{i}-fold unramified covering of $\left(E_{i}-D_{i}\right) \cap Y$. If $\gamma_{i} \in H_{n}\left(X_{\varepsilon}\right)$ is the inverse image of γ then $e_{i} \gamma$ is the limit of the cycles γ_{ε} for $\varepsilon \rightarrow 0$. As a consequence

$$
\int_{\gamma} \eta / f=\frac{1}{e_{i}} \lim _{\varepsilon \rightarrow 0} \int_{\gamma_{\varepsilon}} \eta / f=0
$$

again because $\alpha(\omega)>0$. This completes the proof.

Let us consider the case $n=2$. In [13] the following invariants are considered:

$$
\begin{aligned}
\alpha= & \operatorname{dim} H^{0}\left(\tilde{V}, \Omega_{\tilde{V}}^{2}\right) / d H^{0}\left(\tilde{V}, I_{D} \Omega_{\tilde{V}}^{1}(\log D)\right) ; \\
\beta= & \operatorname{dim} \operatorname{Coker}\left[H^{0}\left(\tilde{V}, \Omega_{\tilde{V}}^{1}\right) \rightarrow H^{0}\left(\tilde{D}, \Omega_{\tilde{D}}^{1}\right)\right] ; \\
\gamma= & \left.\operatorname{rank}\left[H_{D}^{1} \tilde{V}, \Omega_{\hat{V}}^{1}\right) \rightarrow H^{1}\left(\tilde{V}, \Omega_{\tilde{V}}^{1}\right)\right]-k \text { where } k \text { is the number of irre- } \\
& \text { ducible components of } D .
\end{aligned}
$$

Let $g=\operatorname{dim} H^{0}\left(\tilde{D}, \Omega_{\tilde{D}}^{1}\right)=\sum_{i=1}^{k} g_{i}$ where g_{i} is the genus of D_{i} and let b denote the number of cycles in the dual graph of D. Finally let $\tau=\operatorname{dim} T_{V, 0}^{1}$. Then one has the formulas

$$
\begin{gathered}
\mu-\tau=b+2(\alpha+\beta)+\gamma([13], \text { Theorem (2.7)); } \\
q=p_{g}-g-b-\alpha-\beta-\gamma \text { (ibid. Theorem (1.9)). }
\end{gathered}
$$

(6.2) Proposition. We have $q^{\prime}=q+g-\beta$.

Proof. Use that $\Omega_{\bar{D}}^{1}=\Omega_{\tilde{V}}^{1} / I_{D} \Omega_{\tilde{V}}^{1}(\log D)$ to obtain the sequence

$$
0 \rightarrow H^{0}\left(\tilde{V}, \Omega_{\tilde{V}}^{1}\right) / H^{0}\left(\tilde{V}, I_{D} \Omega_{\tilde{\bar{V}}}^{1}(\log D)\right) \rightarrow H^{0}\left(\tilde{D}, \Omega_{\tilde{D}}^{1}\right) \rightarrow \mathbb{C}^{\beta} \rightarrow 0
$$

in which the first term has dimension $q^{\prime}-q$ and the second has dimen. sion g.
If $\bar{K}=K / H_{0}^{\prime} \subset Q^{\prime}$ then $\tau=\operatorname{dim} \bar{K}$. The invariants p_{g}, g and b are constant under deformations with constant Milnor number whereas $\alpha, \beta, \gamma, \tau$ may jump. To obtain certain semicontinuous linear combinations of these invariants (restricted to the stratum with constant Milnor number) observe that dim \bar{K} is upper semicontinuous and hence $\operatorname{dim}\left(\bar{K} \cap V_{0}\right)$ and $\operatorname{dim}\left(\bar{K} \cap V_{>0}\right)$ are upper semicontinuous too.
(6.3) Corollary. The invariants $\tau-q$ and $\tau-q^{\prime}$ are upper semicontinuous and the invariants α and $\alpha+\beta$ are lower semicontinuous on the μ-constant stratum of a 2-dimensional isolated hypersurface singularity (see also [13], (1.13.2)).

Proof. It follows from the preceding formulas that

$$
\begin{gathered}
\mu-\tau+q=p_{g}-g+\alpha+\beta=\operatorname{dim} Q^{f} / \bar{K} \cap V_{0} ; \\
\mu-\tau+q^{\prime}=p_{g}+\alpha=\operatorname{dim} Q^{f} / \bar{K} \cap V_{>0} .
\end{gathered}
$$

Remark. The invariants above admit obvious generalizations to arbitrary dimension in such a way that [13] Theorem (1.9) and Proposition (6.2) above remain valid. For the corresponding formula for $\mu-\tau$, valid for complete intersections, see [5].

References

[1] Ph. du Bots, Complexe de de Rham filtré d'une variété singulière. Bull. Soc. Math. France 109, 41-81 (1981).
[2] P. Delugne, Théorie de Hodge II. Publ. Math. IHES 40, 5-58 (1971).
[3] G.-M. Grevel, Dualität in der lokalen Kohomologie isolierter Singularitäten. Math. Ann. 250, 157-173 (1980).
[4] Ph. A. Griffiths, On the periods of certain rational integrals I. Annals of Math. 90, 460-495 (1969).
[5] E. J. N. Looijenga and J. H. M. Steenbrink, Milnor number and Tjurina number of complete intersections. Math. Ann. 271, 121-124 (1985).
[6] M. Merle and B. Teissier, Conditions d'adjonction, d'après Du Val. Séminaire sur les singularités des surfaces. Lecture Notes in Math. vol. 777, pp. 230-245. Springer Verlag, Berlin etc. 1980.
[7] M. Saito, On the exponents and the geometric genus of an isolated hypersurface singularity. Proc. Symp. Pure Math. vol. 40 Part 2 (1983), 653-662.
[8] M. Sarto, Exponents and Newton polyhedra of isolated hypersurface singularities. Preprint Grenoble 1983.
[9] J. Scherk and J. H. M. Steenbrink, On the mixed Hodge structure on the cohomology of the Milnor fibre. Math. Ann. 271, 641-665 (1985).
[10] J. H. M. Steenbrink, Mixed Hodge structures associated with isolated singularities. Proc. Symp. Pure Math. vol. 40 Part 2 (1983), 513-536.
[11] J. H. M. Steenbrink, Vanishing theorems on singular spaces. In Proceedings of the Luminy Conference on Differential Systems and Singularities, Astérisque 130, 330-341 (1985).
[12] A. N. Vardeenko, Asymptotic Hodge structure in the vanishing cohomology. Math. USSR Izvestija 18, $469-512$ (1982).
[13] J. Wafl, A characterization of quasi-homogeneous Gorenstein surface singularities. Compos. Math. 55, 269-288 (1985).
[14] S. S.-T. Yau, On irregularity and geometric genus of isolated singularities. Proc. Symp. Pure Math. vol. 40 Part 2 (1983), 653-662.
[15] H. Hironaka, Introduction to the theory of infinitely near singular points. Memorias de Matematica del Instituto "Jorge Juan", No. 28. Consejo Superior de Investigaciones Cientificas. Madrid 1974.
[16] J. Lipman, Free derivation modules on algebraic varieties. Amer. J. Math. 87 (1965), 874-898.

Eingegangen am 29. 10. 1984

Anschrift der Autoren: Duco van Straten, Joseph Steenbrink, Department of Mathematics, University of Leiden, Wassenaarseweg 80, 2333 AL Leiden - The Netherlands.

[^0]: *) Supported by the Netherlands Foundation for Mathematics SMC with financial aid from the Netherlands Organization for the Advancement of Pure Research ZWO.

