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Extendability of holomorphie differential forms 
near isolated hypersurfaee singularities 

By D. v. STRATEN*) and J.  STEENBRINK 

Introduction 

Let ]: (C n+l, 0) --> (~, 0) be a germ of an holomorphic function with an 
isolated singularity at  the origin. Let  X = {z s C n+l I Iz[ < e and [](z)l < 7} 
for 0 < ~ ~ e, e sufficiently small, and let V be the set of zeroes of ] on X. 
Then V is a contractible Stein space and U = V --  {0} is smooth. 

A holomorphie form ~ on U is called o[ [irst kind if there exists a resolution 
~: V --> V of the singularity (V, 0) such tha t  ~*(~) extends holomorphically 
to V. A result of Greuel ([3], Proposition 2.3) implies tha t  for Io ~ n --  2 
every holomorphic p-form on U is of first kind on V. In  fact this result holds 
for arbi t rary isolated singularities (Theorem (1.3)). An application of this is 
a proof of the following (easy) case of a conjecture of Zariski and lAp- 
man[16] :  If  (V, 0) i s  an isolated singularity of dimension at  least 3 and 
Or.0 : =  Homov.0(12~,0, Or,0) is a free 0v,0-module, then (V, 0) is in fact smooth. 
The crucial ease of dim V = 2 remains open, however. 

The remaining cases are n-forms and (n --  1)-forms. From now on we take 
n ~ 2. Concerning n-forms one has the invariant 

Pa = dim { holomorphic [ / / n - f o r m s  of~ 

n-forms on V J / l f i r s t  kind J 

which is equal to the geometric genus of (V, 0). I t  counts the number of ad- 
junction conditions imposed by the singularity. See [6] for a detailed dis- 
cussion of this invariant.  

Our main at tention goes to the invariant  

  o omor  io -- ,orms  
q = dim L( n __ 1)-forms on U / / L o f  first kind. 1" 

I t  has been studied by  Yau [14] and Wahl [13]. 
Our main result indicates how to compute q (and 79g) for isolated hyper- 

surface singularities. Our formula uses the Gauss-Manin system of ], see [9, 12]. 
As an application of the formula we give an example of a deformation of a 
function of three variables with constant Milnor number, depending on two 

*) Supported by the Netherlands Foundation for Mathematics SMC with financial 
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parameters  Sl, s 2 such tha t  

q : l  

q----0 

q : 2  

if sl 4 O, 

if s l = O ,  s~=~0,  

if Sl --: 82 ~ 0. 

As a consequence, the invar iant  q is not  a semicontinuous function on the 
s t ra tum with constant Milnor number. The example is 

/s,.s,(x, y, z) ~- x7/7 -t- YS/3 �9 zS/3 - -  S l x S y  - -  s2x4Yz. 

We have also obtained a similar formula for an invariant  q' closely related 
to q. This enables one to compute the invariants a, fl, y which have been con- 
sidered by Wahl [13]. I t  is hoped tha t  their s tudy gives deeper insight to the 
modul i  problem for isolated hypersurface singularities. 

w 1.:Extendability of forms of low degree 

Let  V be an n-dimensional complex space with singular locus Vsi,g and let 
U---- V -  VSing. 

(1.1) Proposition. For a holomorphic p./orm co on U the/ollowing conditions 
are equivalent: 

( i ) / o r  each C ~ ~nap ?: An --> V the integral f co exists; 
? 

(ii) there exists a complex mani]old ~z and a proper holomorphic map :~: V --> V 
such that ~: V --  ~-l(Vsin~ ) --> U is biholomorphic and :~*(co) extends to a 
holomorphic p./orm on the whole o /V;  

(iii) /or every pair (~r, :~) as in (ii) the form :~*(co) extends holomorphically. 

Proo/. See [6] for the case of n-forms. The general case is similar. 

(1.2) Definition. We call a holomorphic p-form on U o] first kind on V if it 
satisfies the equivalent conditions of the preceding proposition. 

(1.3) Theorem. Let V be a complex space with isolated singular locus, 
U --- V --  Vsing, n ---- dim (V) ~_ 2. Let p ~ n -- 2. Then every holomorphic 
p-/orm on U is o//irst kind on V. 

Proo/. Without  loss of generali ty we m a y  assume tha t  V is a contractible 
Stein space with only one singular point x. We choose a resolution :~: V -~ V 
such tha t  ~-l(x) ~ D 1 u " ' "  U D k is a union of smooth divisors on V with 
normal  crossings. Then we have the vanishing theorem 

Hq(~ r, ID~Q~(Iog D)) : 0 for p §  > n 
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([11], Theorem 2b). Here O~(log D) is the logarithmic De Rham complex on 
and 1D is the ideal sheaf of the divisor D. By duality we have 

H~(V,O~(logD)) = 0  for p < : n - -  1. 

(Hi(V, W)~ is dual to H'D-'(V, J:* @ o~) for F locally free on V and (IDO~(logD))* 

o - (log D)). 
So if p < n -- 1, every holomorphic p-form on U extends to V as a form 

with logarithmic poles along D. 
By [10], w 1 the spaces Hp(D) and HP(U) carry mixed Hodge structures 

such that  

and 

FPHv(D, ~E) = H~ O~/IDO~(Iog D)) 

FpH~'( U, C) -- H~ O~(log D)/IDO~(log D)). 

The natural map HP(D)~--HP(V)-+ HP(U) is a morphism of mixed Hodge 
structures, hence it is strictly compatible with the Hodge filtrations. For 
p < n this map is surjective (ibid. (1.11)) so we may conclude that  the natural 
map 

O: H~ D, O~/IDO~(log D)) ---> H~ O~(log D)/IDO~(log D)) 

is also surjective for p < n. From the exact sequence 

0 --> O~ --> O~(log D) P P --> Of,(log D)/Of, --> 0 

we obtain the connecting homomorphism 

(~: H~ O~(log D)/O~,) ---> Hi(V, O~). 

If we compose this map with the natural map 

HI(V, O~) 1 - -  P P ---> H (V, Of,/IvOf,(log D)) 

we also get a connecting homomorphism for a suitable sequence, which is in- 
jective because Q is surjective. Hence ~ is injective too. We conclude that  
H~ Q~) =-> H~ O~(log D)) for p < n. Hence every form on V with only 
logarithmic poles along D is already holomorphic. []  

(1.4) Corollary: Let V be a contractible Stein space with one singular point x 
and U = V -- {x}. Let ~: V ---> V be a resolution. Then the map d: H~ 
S~ -~) --> S~176 D)) induced by di//erentiation is injective. 

Proo/. We have 0 n - i  0 n - 1  H (O U )/H (Of . )  = H~176 D)) and by [5] 
the differentiation map 

H~(V, O~-l(log D)) -~-~4 HI(V , O~(log D)) 
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is injective. In the commutative diagram 

H~176 d ~ H~176 D)) 

1 n - - I  ~, Ilog D)) Hl(  Ilog D)) 
the maps ~ and fl are injective, hence d is injective too. []  

(1.5) De[ini t ion.  For arbi t rary isolated singularities (V, x) we define the 
i rregulari ty  q and the geometric genus pg as in the introduction. 

From Corollary (1.4) we obtain the inequality q <_ pg --  h"-l(OD). In parti- 
cular q = 0 holds for rational singularities. 

(1.6) We now prove the special case of the Zariski-Lipman conjecture men- 
tioned in the introduction. Assume tha t  n > 2 and tha t  6)v is free. Take a 

basis z91 . . . .  , ~, of sections. Let  (V, D) 2 - 4  (V, x) be a good resolution with 
z ,  Of, = Ov (this exists by a result of Hironaka [15]). The vector fields vqi lift 
to vector fields Oi on V which are tangent  to D as V has an isolated singu- 
lari ty at  x. Outside D, we have holomorphic 1-forms %, ?" = 1 . . . . .  n with 
(~i, %) = Oij. By Theorem (1.3) the w s are holomorphic on the whole of V. 
For  P C Dreg the vectors ~i(P) must be linearly dependent contradicting the 
fact tha t  (~i, coj) ---- ~ij. 

In the surface case this argument shows tha t  the freeness of Ov implies 
tha t  q > O. 

w 2. The Gauss.Manin system 

Let  [: X - +  S be a good representative of a holomorphie function germ 
(C n+l, 0) -+ (r  0) with an isolated singularity at 0 as in the introduction, with 

S ---- {z s C ] [z[ < ~/}. Let  D be an indeterminate and let ~ [ D ]  ---- ~) ~9~. D k. 
Then g2k[D ] becomes a complex of sheaves by the differentiation k=o 

d ( t o  . D k) = d o ) .  D I: - -  d f  A t o .  D k+l .  

(2.1) De/ in i t ion .  The Gauss-Mania system of / is the 50s-module 

~ x  = / , O y ' [ D ] / d ( / , Q " x [ D ] ) .  

The operator St acts on ~ x  via ~o �9 D k ~ to �9 D k+l and t acts as to �9 D k e-~ /to �9 D k 

- - k t o .  D k-1. These formulas become clear i f  one uses the identification 
to. D k -> [k! to / ( / - -  t) ~+1] of /2x[D ] with a complex of meromorphic differ- 
ential forms on X X S with poles along the graph of ] modulo forms without 
poles; see [9], w 3. 

The Gauss-Martin system 9~ x is a regular holonomic 50s-module on which 
the operator 0t is invertible. I t  contains the sheaf 

H "  : f,Q"x+l/df ^ d(/,~2~c - i )  

(the lattice of Bricskorn) as a free Os-submodule. 
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The Hodge filtration F" on ~ x  is given by 

F~3fx = 0 for p ~ n, FP~7~ x ~- ~ - ~ H "  for p g n. 

The V-filtration on the stalk ~x,0  is defined as follows. Let  C a ~  Jex.o, 
C a ---- U Ker  (t ~t -- a) k. We let V~ (resp. V>~) be the Os.0-submodule of 3~x.0 

k~l 
generated by all C ~ with b ~ Q and b ~ a (resp. b ~ a). (Observe tha t  the 
monodromy is quasi-unipotent so C a = 0 for a r Q). We will use two results 
which describe the V-filtration in a different way for special cases. The first 
one is due to A. Varchenko. To formulate this, let z :  1~--> X be a good 
embedded resolution of f, i.e. X is a complex manifold, ~ is a proper holo- 
morphie map such tha t  (f~)-~(0) is a divisor with normal crossings on X and 

maps X --  ~-1(0) biholomorphically to X --  {0}. Let  E1 . . . .  , Ek be the irre- 
ducible components of g-l(0). Each divisor E~ determines a valuation v~, on 
the spaces of holomorphic functions and holomorphie (n ~- 1)-forms on X. 
~'or a holomorphic in ~-1)-form co on X we define its geometrical weight 
(w.r.t. ~) 

g(w) -~ min, {(v~,(co) -t- 1)/VE,(/)} 

and we let 

a(~) = max  {a e Q I [~] e V.} 

where [~o] denotes the image of oJ in H' o' ~ ~x.o.  

(2.2) Theorem. For any holomorphic (n + 1)-form on X 

g(~o) ~ o~(co) + 1 and if g(w) ~ 1 then g(eo) = ~(o~) + 1. 

Proof. See [12], Theorem 4.3.1. 

Corollary: I f  - -1  < a ~ 0 then 

H~ t N V a = {[(D] ~ /~t  1 (D ~ H~ ~+1)  and g(o)) ~ a + 1}; 

H~' n V>~ = fro] ~ H~' I ~o ~ H ~  ~e~l )  and g(co) > a + 1} 

for any good embedded resolution of f. 
The second result we want to mention expresses the V-filtration for "non- 

degenerate functions" in terms of their Newton diagram. This is due to M. Saito 
[8]. For  f E ~{z 0 . . . . .  z~} write ] ---- X,a,z" where ~ runs over all (n ~ 1)-tuples 
of non-negative integers. Let  supp (f) = {v I a, =~ 0} ~ ~ + 1  and let F(f) be 
the convex hull of supp (f) ~- ]l(~ +1. Let  /~+(f) be the union of all compact 
faces of F(f). For a a face of F+(/) we le t /~  = ~ a,z" ~ A,  : the subalgebra 

yea 
of C[z0 . . . . .  z,] generated by all monomials z' with v in the closed cone with 
vertex 0 on a. We call f nondegenerate if for all such faces the ideal in A~ gen- 
erated by all zi~fo/~z ~ has finite codimension. 

Assume tha t  / is nondegenerate and tha t  F+(f) contains a point of all the co- 
ordinate axes in ~ + 1 .  Then the region bounded by  the coordinate hyperplanes 
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and F+(/) has finite volume. Define for a > 0 

VaHo" " = {x E Ho" J 3 a holomorphic function h on X with 

x = [h.  (dzo/Zo) ^ . . .  ^ (dzn/zn)] and supp (h) ~ aF(/)}.  

(2.3) Theorem. For any nondegenerate /unction as above we have 

I II If VaHo = V a + l n H  0, for any  a E ~ ,  a ~ 0 .  

Let  us return to the Hodge filtration. Because Va ~ C a + V>a for all a, we 
have C a = Va/V>a. We define 

FPC a = image of Fp n Va in C a 

to be the Hodge fil tration on C a. I t  follows from the results in [9] and [12] 
tha t  C--~ O Ca carries a mixed Hodge structure with Hodge fil tration F 

- - l < a < : 0  

given by  FPC ---- G FPCa and such tha t  the nilpotent endomorphism N of C 
- - l<a_~0 

which is --2ui( t  S t --  a) on C a is a morphism of mixed Hodge structures of 
type  (--1,  --1). Because such morphisms are always strictly compatible with 
the Hodge filtration, we have in particular that  

(2.4) Lemma.  N(C)  n FpC = N(Fp+IC) /or all p. 

For  future use we formulate an application: 

(2.5) Corollary. Let ~o be a holomorphic (n + 1)-/orm on X such that /co 
d / ^  ~ /or some holomorphic n-/orm ~ on X .  Then 

[w] E Vo i/  and only i /  [d~ -- w /E  V>0. 

Proo/. We have ~tt[w] ---- ~t[/eo] ----- S t[d/^  ~]] : Ida] so 

t ~ t [ ~ ]  = ~ t [ ~ ]  - [~o] = [ d ~  - -  ~]. 
Suppose tha t  [co] E V0. Because t~tV o ~ Vo we have [d~ - -  w] E V0. Let  x and y 
denote the images of [co] and [d~ - -  w] in C ~ Then y = t ~tx E N C  ~ n FnC ~ 
= N(F~+IC ~ -~ 0 because F n+l --~ 0. Hence y = 0 so [d~ - -  w] E V>o. 

Conversely, because the m a p t  St: V>o --> V>o is invertible, if [d~ - -  w] E V>o 
there exists z E V>0 with t ~tz = [d~] - -  w]. Then [w] - -  z E ker (t ~ t ) ~ C  ~ so 

[ ~ ] c C  ~  []  

w 3. The geometric genus 

In  this section we prove a formula for the geometric genus of an isolated 
hypersnrface singularity due to M. Saito [7]. In  the next  section we will use 
this proof  to derive a formula for the irregularity as well. 

(3.1) Theorem. Let n ~ 2 and let (V, O) ~ (C "+1, O) be an isolated hyper. 
sur/ace singularity defined by a holomorphic /unction germ/.  Then 

�9 f! II Po( V, O) = dlm H o/H~ n V>o. 
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Proo]. Let ]: X --> S be a good representative for the germ / as in w 2. Let 
: ~7 --> X be a good embedded resolution of ]. Write V for the strict transform 

of the singular fibre V of ] and ~-1(0) ----E1 u . . .  u Ek so V uE1 u . . .  u Ek 
is a divisor with normal crossings on X. Let W = X -- {0} = J~ -- E and 
U ----- V -- {0}. The exact sequence of sheaves 

-+ s2? + (log -+ o 0 - + _ ~  

where the last morphism is the residue map gives the diagram 

res~ 
0 -> H~ Q~+x) _+ H0(~:, D~+~(log V)) , H~ ~ )  -~ 0 

0 ---> H~ ~Q~I) .__> He(w,  sQ~l(log V)) resv ~, Ho(u ' ~ 1  --> 0 

in which the vertical mappings are the restrictions of sections to W. I t  is clear 
tha t  the diagram is commutative. Because Hi(X, ,+a ~ ) =  0 (by Grauert- 
Riemenschneider) the map resr is surjeetive. The map resv is also surjective 
because H I ( W , ~ ,  +1) = 0 (here we use tha t  n >--2). The vertical mappings 
are clearly injective. Surjectivity of the map Q follows from the fact that  the 
map H 0 ( X , ~ + l )  _+He(W, ~+1) is already surjective. The same argument 
shows tha t  each element of H~ Q~+X(log U)) is of the form o~/] for some 
holomorphic (n + 1)-form co on X. I t  is easy to see that  the map H~ D~x +1) 
--+H~176 D~), o ) ~  the class of resv (co]I) modulo forms of first 
kind, factors via Hi', so we obtain a surjective mapping 

v:  Hi '  -*  H0(U, 

Moreover 

[w] E ker (~) r resu (w/l) E H~ ~ )  

r u*(~o/]) extends to a section of ~ +  X(log V) 

g(,o) > 1 E V>o. []  

w 4. The irregularity 

We keep the notations of the preceding section. 

(4.1} Theorem. Let n >= 2 and let (V, 0) ~ ( C n+ l, O) be an isolated hypersur/ace 
.singularity, de/ined by a holomorphic ]unction germ ]. Let K = {[w] E Hi' l fio 
--~ d /A ~ ]or some holomorphie n-form 7 on X}. Then the irregularity o / ( V ,  0) 
is given by 

q(V, 0) = dim (K /K  n Vo). 

Proof. Take the notations of the proof of Theorem (3.1). Let ~----{w E 
H~ Q~x +1) [ [~o] E K}. For o~ E g choose ~ wi th/w = d / ^  7. Then 

d(7/]) -~ dT/] - -  d] ^ 7/] 2 ~-- (d 7 -- o~)/] 
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so ~/[ and d(~/[) both have a first order pole along U. In particular ~/[ is a 
section of ~ ( l o g  U) and resv (~/]) is a well-defined section of Q~-I. If  an 
n-form ~' also satisfies/co = d / h  ~' then d / ^  (~ --  ~') = 0 so V --  V' ---- df ^ 
for some (n --  1)-form ~ on X. Then resv (~/[) = resv (~'/[) + ~1~ so the class 
of res~ (~//) modulo forms of first kind on V depends only on o~. We denote i t  
by ~(~). If o is itself devisible by d / t h e n  ~(o) = 0 so we obtain a mapping 
~): K ~ H ~  ~ - - 1 ) / ~ 0 ( ~ ,  n--1 ~ ). We first show that  ~ is surjective. As 
n ~ 2 we have HI( W, ~2~,) ---- 0 so for all x ~ H ~  T2~ -~) there exist y 
H~ ~ ( l o g  U)) such tha t  x --~ resv(y). Then the (n + 1)-form o) = d / ^  y 
is holomorphic on W and hence on X. Moreover o ~ K because fo  = d / h  ~] 
where ~ ----/y is holomorphic on X. Then x ---- ~0([o]). 

To determine Ker  (~) we observe tha t  Ker  (~) ---- Ker  (d o ~) where 

d : 0 n--1 0 ~ n--1 H (U, T2 v )/H (V,Dr ) -->H~176 

is the differentiation map which is injective by Corollary (1.4). For  o~ ~ /{ ,  
/o  ~- d/A ~7, we have 

d~(o)) ---- d resv (~//) ---- resv (d(~//)) : resv ((d~ --  o)//) 

hence, if ~ is the mapping of the proof of Theorem (3.1), then for [~o] ~ K one 
gets [o] s Ker  (~) r [d~ -- ~] ~ Ker  (~) (=) [dv --  w/~ V>o r [o] ~ V0 b y  
Corollary (2.5). So Ker  (~) ----- K ~ V0 and the theorem follows. []  

w 5. Example 

L e t / ( x ,  y, z) ---- x7/7 ~ ya/3 ~ zS/3 - -  s:xSy --  s2x4yz. Here sl, s~ E C. Then 
/ is semi-quasihomogeneous with weights (1/7, 1/3, 1/3). We will compute q 
for all values of the parameters 81, 83. 

First  observe tha t  the space K ~ H~ ~ contains i~'tlHO ' • H~ -~ d[ A T2~, o 
d / ^  d/~ (see [9], w 3). Hence it  is convenient to pass to the quotient  
QI _~ H~)t/H~ which is a C-vectorspace of dimension p, the Milnor number  
of ]. The space K/Hg is just the kernel of multiplication by / in QI. We let V 
also denote the induced filtration on QI. We can actually compute the V-filtra- 
t ion on our QI by the result (2.3) of M. Saito. Let  oJ 0 ---- dx n dy Adz. Then a 
basis for Q! is given by the forms x~y~zka)o with i C {0, 1, 2, 3, 4, 5}, j C {0, 1} 
and k C {0, 1}. We have oc(xiytz~oo) = (3i + 7] + 7k --  4)/21 for these forms. 
For  every ~ C Q, V~Q! is generated by those basis elements for which this 
number is at least ~. 

Multiplication by 21 / in  QI is easily seen to be the same as multiplication 
by slxay + 5s2x4yz (use the Euler relation). I t  is clear tha t  this maps V~ to 
V>I+~ for every ~. As Q! -~ V_~/21Q I, the image is contained in VIg/21Q I and 
because V>25/alQ I ---- 0, its kernel contains V4/2~Q I. So if 

A --~ QI/VH21QI , B --~ V19/~1Q ! 

and P :  A -> B is the operator induced by  multiplication with s~xSy -]- 5s~x4yz, 
then q ---- dim (Ker P /Ker  P n VoA) where V0A is the image of VoQ ! in A. 
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A basis for A is oJ0, xw0, X~Wo, ycoo, ZeOo and for B: xSyeoo, xSzc%, x3yzeoo, 
#yzwo, x5yzoJo . With respect to these bases, the operator P is given by the 
matrix o ooi) 

0 0 0 

0 0 0 

~50s2 0 0 0 

582 0 0 811 

Hence Ker (P) = A for 81 ----- 8 2 = 0 and else it is generated by (six --  5s~z) COo, 
x2o~o and yo~o. Moreover VoA is generated by x~mo, Y~o and zo~o. We conclude 
tha t  

q----O if s ~ = O ,  s 2 # O ,  

q = l  if sl=4 =0, 

q = 2  ff s ~ = s 2 = O .  

w 6. Related invariants 

We take the notations of w 3. If ~o is a holomorphic ( n -  1)-form on U 
which is of first kind on V, then ~r*(o)) is a section of Q~-I. We let D~ = Ei n V 
for i ---- 1 . . . . .  k and define 

q'(V, 0) = dim (rb -- 1)-forms on U restrict to 0 on each D~ l 

= dim H~ D~r-~)/H~ IDQ~-~(log D)) 

where D = D1 u -.. u Dk. 
The fact tha t  q' does not depend on the choice of the resolution ~: V -+ V 

follows from its relation with the filtered De Rham complex of V (see [1, 11]). 
One has 

~.IDD~-l(log D) = ~"-lGr~.-13~'i~.o ([11], Cor. (3.4)). 

(6.1) Theorem. With notation8 as in Theorem (4.1) we have 

q'(V, O) -~ dim (K /K  n V>o). 

Proo/. Let W = X -- {0}. We have the commutative diagram 

0 --> H~ IE/2~(log E)) -> H~ IsQ~(log V + E)) --> H~ IDQ~,-S(log D)) -> 0 

~ f 
0 -~ H0(W, ~9~v) * H~ D~v(log U)) ~ H~ f2~ -~) ~ O. 

The bottom row is exact because Hi(W, Q~v) = 0 (we take n => 2 again) and 
exactness of the top row follows from H~(~:, IE~gx(log E ) ) =  0. To explain 
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this, observe that  for any singularity (Y,  X) and any resolution p : ~ - - >  Y 
with exceptional divisor A the sheaves Rip.IaY2~(log A) = ~t+t(Gr~/~?r.z) 

([11], Cor. (3.4)) are invariants of ( Y, Z) which do not depend on the resolu- 
tion. Because X is smooth they vanish for i ~ 0 so R~z.I~2x(log E) ---- 0. 
Finally the left vertical map is again anisomorphism because H~ I~2x(logE)) 
~- H~ as X is smooth. 

We conclude from this diagram tha t  we have 

q' ----- dim H~ ~ ( l o g  U))/H~ 

Let  ~ C H~ Q~+I) such that/~o = d / ^  ~ i.e. 
Claim: a([~o]) > 0 if and only if :~*(~///) is a 

is clear tha t  the theorem follows from this. 

IEt2x(log V + E)). 

[w] E K. 
section of IE~2x(log V + E). I t  

So suppose that  ~*(~//)C H~ I~t2~(log V + E)). Then :~*(o~/]) = d//] 
^ ~*(~/[) C H~ IEt2x+'(log V + E)) ---- H~ V)) hence a(o)) > 0 
by (2.2). 

Conversely, let ~((o) > 0. Then by Theorem (4.1) Resv (7//) is of first kind. 
Now recall tha t  0 ~ n-1 H (V, f2q ) = H~ •vl ( log  D)) (see the proof of Theorem 
(1.3)). We have a commutative diagram 

0 -> H~ ~2~(log E)) --> H~ V + E)) -> H~ t2~-l(log D)) --> 0 

0 --> H~ D~,) } H~ T2'~v(log U)) + H~ -1) + O. 

This time the top row is exact  because Hi(X, I ~ x ( l o g  E)) ----- 0 as before and 
HX(E, ~2~(log E) | Os) = , ,+1 GrFH{0 } (X, C) ---- 0 again because X is smooth (see 
[5]). So the fact tha t  Resv (B//) is of first kind implies tha t  B/f is a section of 
f2x(log P + E). To prove tha t  it is in fact a section of I E ~ ( l o g  P + E) we 
first show that  it has zero residue along each Ei and then that  its restriction 
to each Ei is zero. We will use the fact tha t  global logarithmic forms on Ei 
are zero if their cohomology class is zero (see [2], Cor. (3.2.13)(ii)). Let  E, 
be a component of E and let Ci be the intersection of El with the remaining 
components of E u V. Let  y be an (n -- 1)-cycle on Ei -- Ci. We show tha t  
f R(~1/[) ---- 0 where R = ResE, o ~*. 

Let  T~(y) be the s-tube over y in 2~ -- V, which is an (n + 1)-chain with 
boundary v~(7 ) = ~T~(7). Because the map H~(X~) ----> H , ( X  -- V) is surjective 
(where X~ ---- [-l(s)), there exists an (n + 1)-chain F~ on X -- V with ~F~ 
---- v~(7 ) -- a~ with a~ an n-cycle on X~. Because the inclusion E -- D r ~: -- 
is a homotopy equivalence, we have H i (~  -- V, E -- D) = 0 for all i. This 
means that,  when Zi and Bi denote/-cycles and/-boundaries  respectively: 

Zi(E -- D) + Bi(X -- V) = Zi (X -- V) 

Zi(E -- D) n B~(X -- V) = Bi(E -- D). 

(1)~ 

(2)~ 
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So there exist f i t E Z , ( E - - D )  and A~E C.+I(X-- V) with a ~ = f i t + a A e  
by (1).. Let  Z--- -T~(?)- -F~--A~.  Then ~Z=fl~.  By (2), there exists 
H E G.+I (E  - -  D )  with aH ---- fit. Thus Z -- H E Z.+~(I[ -- ~z) so Z -- H = G 
+ ~K for some G E Z.+x(E -- D), K E C,+~(.X -- ~z). So, putting F -~ G + H 
we see tha t  Z is homologous to F E C.+I(E -- D). 

By the residue formula ([4], Prop. 8.16(b)) we have 

f R ( ~ / / ) - ~ l i m  1 ; (  1 l i m [ ~ f ( ~ / / ) + f ( ~ / f ) ]  - -  o 
~--~o 2 ~ i  V/f) = 2~i ~-~0 

r r e ( r )  OF~ 

Now it follows from a(eo) > 0 that  

lim f (V//)----lim f (old/)--~O 
~ - - ~  % ~--~-0 % 

(see [12], w 1.2). Moreover 

and 

f (7//)= f d(v/l)= f d(v//)- f d(v//)§ f d(v//) 
~F~ F,~ T~ (~,) A t Z 

lim f lim f d(~]/[)= 0 
e-.-~.O Te(7) e-->O A~ 

because the form d(~/]) is regular on the whole of X -  V and we are inte- 
grating over smaller and smaller chains. Finally 

f d(~//) = f d(v/l) = 0 
Z F 

because d(~//) is closed and its restriction to E has to be zero, as E is an 
n-dimensional complex space and d(~/]) is a holomorphic (n + 1)-form. We 
conclude that  R(~/]) = 0. Hence ~/ / i s  a section of ~2~(log V). Its restriction 
to Ei is then a section of ~2~-l(log D 0 so to prove that  this restriction is zero 
we check that  f ~ / / =  0 for all n-cycles 7 on Ei -- Ci. 

v 
So let 7 be an n-cycle on Ei -- Ci and let ei be the multiplicity of Ei in the 

fibre of / o z~ over 0. Then there exists an open neighborhood Y of the support 
of 7 in 2~ such tha t  for e > 0 small enough, the intersection X~ n Y is an 
ei-fold unramified covering of (Ei -- DO n Y. If yi E H,(X~) is the inverse 
image of 7 then ei7 is the limit of the cycles Y~ for e --~ 0. As a consequence 

f ------1 lim f B / / - - - - 0  7 / 1  e~ . 

again because a(w) > 0. This completes the proof. []  
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Let  us consider the case n = 2. In [13] the following invariants are con- 
sidered: 

= dim H~ ~ ) / d H ~  IgQ~(log D)); 

/7 = dim Coker [H0(V, Q~) -+ H0(~, D~)]; 

rank [H~(V,/2~) -+ Hi(V, Q~)] --  k where k is the number of irre- 
ducible components of D. 

k 

Let  g = dim H~ Q~) ---- Z gi where g~ is the genus of D~ and let b denote 
i=1  

the number of cycles in the dual graph of D. Finally let ~ ---- dim T~.0. Then 
one has the formulas 

/~ --  r = b + 2(a +/7) + 7 ([13], Theorem (2.7)); 

q = Pa - -  g - -  b - -  o~ - - / 7  - -  ~ (ibid. Theorem (1.9)). 

(6.2) Proposition. We have q' = q + 9 - - /7 .  

Proo[. Use that  ~21 = 1 t ~2r162 D) to obtain the sequence 

0 -+ HO(p z, XT~)/HO(~, IDQ~(log D)) -+ H~ Q~) -+ I~ a --> 0 

in which the first term has dimension q ' - - q  and the second has dimen- 
sion g. []  

If ~7 ---- K / H  i ~ Q! then z ----- dim K. The invariants Pa, g and b are constant 
under deformations with constant Milnor number whereas c~,/7, 7, v may  jump. 
To obtain certain semicontinuous linear combinations of these invariants 
(restricted to the s tratum with constant Milnor number) observe tha t  dim ~7 
is upper semicontinuous and hence dim (/~ n V0) and dim (K7 n V>0) are upper 
semicontinuous too. 

(6.3) Corollary. The invar ian t s  ~ - -  q and  ~ - -  q' are upper  semicont inuous  

and the invar iants  o~ and  o~ + fl are lower semicont inuous on the ti-constant 

s t ra tum of a 2-dimensional  isolated hypersurface s ingulari ty  (see also [13], 
(1.13.2)). 

Proof.  I t  follows from the preceding formulas tha t  

/ ~ - - ~ + q - - - - p g - - g + ~ + / 7 : d i m Q S / ~ n V 0 ;  

l* - -  ~ + q' ---- Pa + ~ ---- dim Q/ /K  n V>0. 

Remark .  The invariants above admit obvious generalizations to arbitrary 
dimension in such a way tha t  [13] Theorem (1.9) and Proposition (6.2) above 
remain valid. For  the corresponding formula for /x -- z, valid for complete 
intersections, see [5]. 
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