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Abstract We show that the coefficients of the power series expansion of the principal period
of a Laurent polynomial satisfy strong congruence properties. These congruences play key
role in the explicit p-adic analytic continuation of the unit-root. The methods we use are
completely elementary.

Résumé Nous montrons que les coefficients du développement en série de puissances de la
période principale d’un polynôme de Laurent satisfont à de fortes propriétés de congruence.
Ces congruences jouent un rôle clé pour le prolongement analytique p-adique explicite sur
le disque unité.
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1 Introduction

The sequence of numbers
a(0), a(1), a(2), a(3), . . . = 1, 3, 19, 147, . . .

with general term

a(n) =
∞∑

k=0

(
n

k

)2(n + k

k

)

played a crucial role in Apéry’s irrationality proof [2] of ζ(2). These numbers satisfy various
remarkable congruence properties [3,4], like
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186 K. Samol, D. van Straten

a(mpr − 1) ≡ a(mpr−1 − 1) mod p3r

for a prime p and m a number prime to p.
Another simple property is the following: when we write the number n in base p as

n = n0 + n1 p + n2 p
2 + · · · + nr p

r

with 0 ≤ ni ≤ p − 1, then

a(n0 + n1 p + n2 p
2 + · · · + nr p

r ) ≡ a(n0)a(n1)a(n2) · · · a(nr ) mod p.

This is a consequence of more general congruences that we call Dwork congruences and
which were used by Dwork for the p-adic analytic continuation of the associated period
function

�(t) =
∞∑

n=0

a(n)tn

that satisfies the Picard–Fuchs equation

(θ2 − t (11θ2 + 11θ + 3) − t2(θ + 1)2)�(t) = 0

where θ = t∂/∂t .
In this paper, we show that these Dwork congruences result from the fact that the coefficient

a(n) is the constant term of the nth power of a Laurent polynomial, whose Newton-polytope
has a unique interior point. The sequence of Apéry numbers can be generated in that way,
as one can take for example

f (x, y) = 3 + x + y + 2

(
1

x
+ 1

y

)
+ x

y
+ y

x
+ 1

xy

and one has

a(n) = constant term of f n

2 Dwork congruences

Definition 2.1 Let {a(n)}n∈N0 be a sequence of integers with a(0) = 1 and let p be a prime
number. We say that {a(n)}n satisfies the Dwork congruences if for all s,m, n ∈ N0 one has

(D1)
a(n)

a(�n/p�) ∈ Zp ,

(D2)
a(n + mps+1)

a(�n/p� + mps)
≡ a(n)

a(�n/p�) mod ps+1.

In fact, the validity of these congruences is implied by those for which n < ps+1, as one
sees by writing n = n′ + mps+1 with n′ < ps+1. By cross-multiplication, (D2) becomes

(D3) a(n + mps+1)a(� n
p �) ≡ a(n)a(� n

p � + mps) mod ps+1.

The congruences for s = 0 say that for 0 ≤ n0 ≤ p − 1 one has

a(n0 + mp) ≡ a(n0)a(m) mod p.

So if we write n in base p as

n = n0 + pn1 + · · · + nr p
r , 0 ≤ ni ≤ p − 1,
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Dwork congruences and reflexive polytopes 187

we find by repeated application that

a(n) ≡ a(n0)a(n1) · · · a(nr ) mod p.

In fact, this is easily seen to be equivalent to D3 for s = 0.
Similarly, for higher s the congruences D3 are equivalent to

a(n0 + · · · + ns+1 p
s+1)a(n1 + · · · + ns p

s−1)

≡ a(n0 + · · · + ns p
s)a(n1 + · · · + ns+1 p

s) mod ps+1. (2.1)

The congruences express a strong p-adic analyticity property of the function

n 	−→ a(n)

a(�n/p�)
and play a key role in the p-adic analytic continuation of the series

F(t) =
∞∑

n=0

a(n)tn

to points on the closed p-adic unit disc. More precisely, one has the following theorem (see
[8, Theorem 3]).

Theorem 2.2 Let {a(n)}n be a Zp-valued sequence satisfying the Dwork congruences D1
and D2. Let

F(t) =
∞∑

n=0

a(n)tn and Fs(t) =
ps−1∑

n=0

a(n)tn .

Let D be the region in Zp defined by

D := {x ∈ Zp : |F1(x)| = 1}.
Then F(t)

F(t p) is the restriction to pZp of an analytic element f of support D:

f (x) = lim
s→∞

Fs+1(x)

Fs(x p)
·

The congruences were used in [10] to determine Frobenius polynomials associated to
Calabi–Yau motives coming from fourth order operators of Calabi–Yau type from the list
[1]. Although there are many examples of sequences that satisfy these congruences, the
true cohomological meaning remains obscure at present. For a recent interpretation in terms
of formal groups, see [11]. In this paper we will give a completely elementary proof of
the congruences D3 for sequences {a(n)}n that arise as constant term of the powers of a
fixed Laurent polynomial with integral coefficients and whose Newton polyhedron contains
a unique interior point. These include the series that come from reflexive polytopes.

3 Laurent polynomials

We will use the familiar multi-index notation for monomials and exponents

Xa = Xa1
1 Xa2

2 · · · Xan
n , a = (a1, a2, . . . , an) ∈ Z

n,
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188 K. Samol, D. van Straten

to write a general Laurent polynomial as

f =
∑

a

caX
a ∈ Z

[
X1, X

−1
1 , X2, X

−1
2 , . . . , Xn, X

−1
n

]
.

The support of f is the set of exponents a occuring in f , i.e.,

supp( f ) := {a ∈ Z
n | ca �= 0}.

The Newton polyhedron�( f ) ⊂ R
n of f is defined as the convex hull of its support, namely

�( f ) := convex(supp( f )).

When the support of f consists of m monomials, we can put the information of the
polyhedron � := �( f ) in an n × m matrix A ∈ Mat (m × n, Z), whose columns a j ,
j = 1, 2, . . . ,m, are the exponents of f ,

A = (a1, a2, . . . , am) =

⎛

⎜⎜⎜⎝

a1,1 a1,2 . . . a1,m

a2,1 a2,2 . . . a2,m
...

...
...

an,1 an,2 . . . an,m

⎞

⎟⎟⎟⎠ ,

so that we can write

f =
m∑

j=1

c j X
a j =

m∑

j=1

c j

n∏

i=1

Xai, j .

The polyhedron � is the image of the standard simplex �m under the map

R
m A−→ R

n .

The following theorem will play a key role in the sequel.

Theorem 3.1 Let � be an integral polyhedron with 0 as unique interior point. Then for all
non-negative integral vectors (�1, �2, . . . , �m) ∈ Z

m such that
∑m

i=1 ai, j� j �= 0 for some
1 ≤ i ≤ n, one has

gcd
i=1,...,n

⎛

⎝
m∑

j=1

ai, j� j

⎞

⎠ ≤
m∑

j=1

� j .

Proof Assume that there exists a non-negative integral vector � = (�1, . . . , �m) ∈ Z
m such

that
∑m

i=1 ai, j� j �= 0 for some 1 ≤ i ≤ n and

gcd
i=1,...,n

⎛

⎝
m∑

j=1

ai, j� j

⎞

⎠ >

m∑

j=1

� j .

We have

a1�1 + · · · + am�m = A

⎛

⎜⎝
�1
...

�m

⎞

⎟⎠ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

m∑

j=1

a1, j� j

...
m∑

j=1

an, j� j

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Dwork congruences and reflexive polytopes 189

The components of the vector at the right-hand side are all divisible by g, so that after division
by g we obtain a non-zero lattice point

v := �1

g
a1 + · · · + �m

g
am ∈ Z

n

of � with
∑

j

� j

g
< 1.

The interior points of � (i.e., the points that do not lie on the boundary) consist of the
combinations

α1a1 + · · · + αmam

of the columns of A with
∑m

j=1 α j < 1. As 0 was assumed to be the only interior lattice
point of � we arrive at a contradiction. �

We remark that the above statement applies in particular to reflexive polyhedra.

4 The fundamental period

Notation 4.1 For a Laurent polynomial we denote by [ f ]0 the constant term, that is, the
coefficient of the monomial X0.

Definition 4.2 The fundamental period of f is the series

�(t) :=
∞∑

k=0

a(k)tk, a(k) := [ f k]0.

Note that the function �(t) can be interpreted as the period of a holomorphic differential
form on the hypersurface

Xt := {t. f = 1} ⊂ (C∗)n,

as one has

�(t) =
∞∑

k=0

[ f k]0t
k =

∞∑

k=0

1

(2π i)n

∫

T
f k tk


= 1

(2π i)n

∫

T

∞∑

k=0

f k tk
 = 1

(2π i)n

∫

T

1

1 − t f

 =

∫

γt

ωt .

Here


 := dX1

X1

dX2

X2
· · · dXn

Xn
,

T is the cycle given by |Xi | = εi and homologous to the Leray coboundary of γt ∈ Hn−1(Xt )

and

ωt = ResXt

(
1

1 − t f



)
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190 K. Samol, D. van Straten

In particular, �(t) is a solution of a Picard–Fuchs equation; the coefficients a(k) satisfy
a linear recursion relation.

Theorem 4.3 Let f ∈ Z[X1, X
−1
1 , . . . , Xn, X−1

n ] with integral coefficients. Assume that the
Newton polyhedron �( f ) has 0 as its unique interior lattice point. Then the coefficients
a(n) = [ f n]0 of the fundamental period satisfy for each prime number p and s ∈ N the
congruence

a(n0 + · · · + ns p
s)a(n1 + · · · + ns−1 p

s−2)

≡ a(n0 + · · · + ns−1 p
s−1)a(n1 + · · · + ns p

s−1) mod ps, (4.1)

where 0 ≤ ni ≤ p − 1 for 0 ≤ i ≤ s − 1.

We remark that already for the simplest cases where the the Newton polyhedron contains
more than one lattice point, like f = X2 + X−1, the coefficients a(n) do not satisfy such
simple congruences.

5 Proof for the congruence mod p

For s = 1 we have to show that for all n0 ≤ p − 1,

a(n0 + n1 p) ≡ a(n0)a(n1) mod p .

The proof we will give is completely elementary; the key ingredient is Theorem 3.1, which
states that for all non-negative integral � = (�1, . . . , �m), one has

gcd
i=1,...,n

⎛

⎝
m∑

j=1

ai, j� j

⎞

⎠ ≤
m∑

j=1

� j .

Proposition 5.1 Let f be a Laurent polynomial as above and n0 < p. Then
[
f n0 f n1 p

]
0 ≡ [ f n0

]
0

[
f n1
]

0 mod p.

Proof As f has integral coefficients, we have f n1 p(X) ≡ f n1(X p) mod p. So the congru-
ence is implied by the equality

[
f n0(X) f n1(X p)

]
0 = [ f n0(X)

]
0

[
f n1(X)

]
0 ,

which means: the product of a monomial from f n0(X) and a monomial from f n1(X p) can
never be constant, unless the two monomials are constant themselves. It is this statement that
we will prove now.

For the product of a non-constant monomial from f n0(X) and a non-constant monomial
from f n1(X p) to be constant, the monomial coming from f n0(X) has to be a monomial in
X p

1 , . . . , X p
n , since all monomials in f n1(X p) are monomials in X p

1 , . . . , X p
n .

A monomial

M := X�1a1+�2a2+···+�mam =
m∏

j=1

X
a1, j � j
1 · · · Xan, j � j

n

appearing in f n0(X) corresponds to a partition

n0 = �1 + · · · + �m

123



Dwork congruences and reflexive polytopes 191

of n0 in non-negative integers �i . On the one hand, if M were a monomial in X p
1 , . . . , X p

n ,
then we would have the divisibility

p

∣∣∣∣∣∣

m∑

j=1

ai, j � j for 1 ≤ i ≤ n,

and hence

p

∣∣∣∣∣ gcd
i=1,...,n

⎛

⎝
m∑

j=1

ai, j� j

⎞

⎠ .

On the other hand, by 3.1 we have

gcd
i=1,...,n

⎛

⎝
m∑

j=1

ai, j� j

⎞

⎠ ≤
m∑

j=1

� j = n0 < p.

So we conclude that
m∑

i=1

ai, j� j = 0 for 1 ≤ j ≤ n

and that the monomial M is the constant monomial X0. Hence it follows that
[
f n0(X) f n1(X p)

]
0 = [ f n0(X)

]
0

[
f n1(X p)

]
0 ,

and since
[
f n1(X p)

]
0 = [ f n1(X)

]
0 ,

the proposition follows. �
We remark that the congruence has the following interpretation. By a result of [7] (Theorem

4.) one can compactify the map f : (C∗)n −→ C given by the Laurent polynomial to a map
φ : X −→ P

1 such that the differential form 
 extends to a form in 
n((X\φ−1({∞}))). In
the case �( f ) is reflexive one has

deg(π∗ωX/S) = 1;
see (8.3) of [6]. On the other hand, from this and under an additional condition (R), it follows
from Corollary 3.7 of [11] that the mod p Dwork-congruences hold.

6 Strategy for higher s

The idea for the higher congruences is basically the same as for s = 1, but is combinatorially
more involved. Surprisingly, one does not need any statements stronger than 3.1. To prove
the congruence 4.1, we have to show that

[
s∏

k=0

f nk p
k

]

0

[
s−1∏

k=1

f nk p
k−1

]

0

≡
[
s−1∏

k=0

f nk p
k

]

0

[
s∏

k=1

f nk p
k−1

]

0

mod ps . (6.1)

To do this, we will use the following expansion of f np
s
(X).
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192 K. Samol, D. van Straten

Proposition 6.1 We can write

f np
s
(X) =

s∑

k=0

pkgn,k(X
ps−k

),

where gn,k is a polynomial of degree npk in the monomials of f , independent of s, defined
inductively by gn,0(X) = f n(X) and

pkgn,k(X) := f (X)np
k −

k−1∑

j=0

p j gn, j (X
pk−1− j

). (6.2)

Proof We have to prove that the right-hand side of Eq. 6.2 is divisible by pk . This is proved
by induction on k and an application of the congruence

f (X)p
m ≡ f (X p)p

m−1
mod pm . (6.3)

For k = 1, the divisibility follows directly by (6.3). Assume that the statement is true for
m ≤ k − 1. Write

f (X)np
k−1 =

k−1∑

j=0

p j gn, j (X
pk−1− j

).

Then,

k−1∑

j=0

p j gn, j (X
pk− j

) = f (X p)np
k−1 ≡ f (X)np

k
mod pn,

and thus

f (X)np
k −

k−1∑

j=0

p j gn, j (X
pk− j

) ≡ 0 mod pn .

�
The congruences involve constant term expressions of the form

[
b∏

k=a

f nk p
k

]

0

=
⎡

⎣
b∏

k=a

k∑

j=0

p j gnk , j (X
pk− j

)

⎤

⎦

0

=
∑

ia≤a

. . .
∑

ib≤b

p
∑b

k=a ik

[
b∏

k=a

gnk ,ik (X
pk−ik

)

]

0

. (6.4)

Thus, Eq. (6.1) translates modulo ps into

∑

i0≤0

· · ·
∑

is≤s

∑

j1≤0

· · ·
∑

js−1≤s−2

pA

[
s∏

k=0

gnk ,ik
(
X pk−ik )

]

0

[
s−1∏

k=1

gnk , jk
(
X pk−1− jk )

]

0

≡
∑

i0≤0

· · ·
∑

is−1≤s−1

∑

j1≤0

· · ·
∑

js≤s−1

pB
[
s−1∏

k=0

gnk ,ik
(
X pk−ik )

]

0

[
s∏

k=1

gnk , jk
(
X pk−1− jk )

]

0

(6.5)
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Dwork congruences and reflexive polytopes 193

with

A :=
s∑

k=0

ik +
s−1∑

k=1

jk and B :=
s−1∑

k=0

ik +
s∑

k=1

jk .

Since this congruence is supposed to hold modulo ps , on the left-hand side, only the sum-
mands in A with

s∑

k=0

ik +
s−1∑

k=1

lk ≤ s − 1

contribute, and on the right-hand side, only those in B with

s−1∑

k=0

ik +
s∑

k=1

lk ≤ s − 1

play a role.
Now, we proceed by comparing these summands on both sides of Eq. 6.1. We will prove

that each summand on the right-hand side is equal to exactly one summand on the left-hand
side and vice versa.

7 Splitting positions

So we are led to study for a ≤ b expressions of the type

G(a, b; I ) :=
[

b∏

k=a

gnk ,ik

(
X pk−ik

)]

0

where the integers 0 ≤ nk ≤ p − 1 are fixed for a ≤ k ≤ b and I := (ia, . . . , ib) is a
sequence with 0 ≤ ik ≤ k.

Definition 7.1 We say that G(a, b; I ) splits at � if

G(a, b; I ) = G(a, � − 1; I ) G(�, b; I ).

The number of entries of I is determined implicitly by a and b, so that by the product
G(a, �−1; I ) we mean the expression corresponding to the sequence (ia, . . . , i�−1), while by
G(�, b; I ), we mean the expression corresponding to (i�, . . . , ib). Note that � = a represents
a trivial splitting, but splitting at � = b is a non-trivial property.

Proposition 7.2 If k − ik ≥ � for all k ≥ �, then G(a, b; I ) splits at �.

Proof A monomial
∏m

j=1(X
pk−ik

)a jβ j,k occuring in gnk ,ik (X
pk−ik

) corresponds to a partition

β1,k + · · · + βm,k = pik nk ≤ pik+1 − pik

of the number pik nk in non-negative integers β1,k, . . . , βm,k . So we have

pk−ik (β1,k + · · · + βm,k ≤ pk+1 − pk .
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194 K. Samol, D. van Straten

It follows from the assumptions that the product

G(�, b; I ) =
b∏

k=�

gnk ,ik
(
X pk−ik )

is a Laurent polynomial in X p . As a consequence, the product of a monomial in

G(a, � − 1; I ) =
�−1∏

k=a

gnk ,ik (X
pk−ik

)

and a monomial of G(�, b; I ) can be constant only if the sum

mi :=
m∑

j=1

pa−ia ai, jβ j,a + · · · +
m∑

j=1

p�−1−i�−1ai, jβ j,�−1

is divisible by p� for 1 ≤ i ≤ n.
Set

γ j := pa−iaβ j,a + · · · + p�−1−i�−1β j,�−1

so that
m∑

j=1

ai, jγ j = mi .

It follows that
m∑

j=1

γ j =
m∑

j=1

pa−iaβ j,a + · · · +
m∑

j=1

p�−1−i�−1β j,�−1

≤ pa+1 − pa + · · · + p� − p�−1 = p� − pa < p�.

Hence, it follows that

p�

∣∣∣∣∣∣
gcd

i=1,...,n

⎛

⎝
m∑

j=1

ai, jγ j

⎞

⎠ ≤
m∑

j=1

γ j < p�,

where the first inequality follows from Theorem 3.1. This implies

m∑

j=1

ai, jγ j = 0 for 1 ≤ i ≤ n.

But this means that the monomial in

s−1∏

k=t

gnk ,ik
(
X pk−ik )

is itself constant. �
Now that we know that we can split up expressions G(a, b; I ) satisfying the condition

given in Proposition 7.2, we proceed by proving that all the summands on both sides of
Eq. 6.5 that do not have a coefficient divisible by ps satisfy this splitting condition.
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Dwork congruences and reflexive polytopes 195

8 Three combinatorial lemmas

In this section, we prove three simple combinatorial lemmas which will be applied to split
up expressions G(0, s; I )G(1, s − 1; J + 1) that occur in the congruence (6.1).

Definition 8.1 Let a ≤ b and I = (ia, ia+1, . . . , ib) a sequence with 0 ≤ ik ≤ k for all k
with a ≤ k ≤ b. We say that � is a splitting index for I if � > a and for k ≥ � one has
ik ≤ k − �.

Remark that for a splitting index � one can apply 7.2 and that i� = 0.

Lemma 8.2 Let I as above and assume that
b∑

k=a

ik ≤ b − a − 1.

Then there exists at least one splitting index for I .

Proof Let

N := {k |ik = 0}
be the set of all indices k such that the corresponding ik is zero. Since the sum has b− a + 1
summands ik , the set N has at least two elements. So there exists at least one index k �= a
such that ik = 0. We will show by contradiction that one of these zero-indices is a splitting
index.

We say that ν > k is a violating index with respect to k ∈ N if iν > ν − k. Assume now
that all k ∈ N posses a violating index. It follows directly that for each violating index ν,
iν ≥ 2. Furthermore, if ν is a violating index for m different zero-indices k1 < · · · < km , it
follows that iν ≥ m + 1.

Now assume that we have μ different violating indices ν1, . . . , νμ and that ν j is a violating
index for all j ∈ N j , where we partition N into disjoint subsets

N = N1 ∪ N2 ∪ · · · ∪ Nμ.

Then
μ∑

j=1

iν j ≥
μ∑

j=1

(#N j + 1) = #N + μ,

and
b∑

k=a+1

ik ≥ #N · 0 +
μ∑

j=1

iν j + (b − a − (#N + μ)) · 1 = b − a > b − a − 1,

a contradiction. �
We can sharpen Lemma 8.2 to the following one.

Lemma 8.3 Let I be as above and assume that
b∑

k=a

ik = b − a − m.

Then there exist at least m different splitting indices for I .
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196 K. Samol, D. van Straten

Proof We proceed by induction on m. The case m = 1 is just Lemma 8.2. Assume that for
all n ≤ m, we have proven the statement. Now assume

b∑

k=a

ik = b − a − (m + 1).

Since m + 1 > 1, there exists a splitting index ν. We can split up the set of indices

{ia, . . . , ib} = {ia, . . . , iν−1} ∪ {iν, . . . , ib}
in position ν such that

ν−1∑

k=a

ik = Nν and
b∑

k=ν

ik = b − a − m − 1 − Nν .

Depending on Nν , we have to distinguish between the following cases.

Case (1): Nν > (ν − 1) − a − 1. It follows that

b − a − m − 1 − Nν < b − a − m − ((ν − 1) − a − 1) = b − m − (ν − 1),

and thus

b∑

k=ν

ik ≤ b − ν − m.

By induction, there exists at least m splitting indices in (iν, . . . , ib), and thus for the whole
(ia, . . . , ib), there exist at least m + 1 such indices.

Case (2): The case Nν ≤ (ν − 1) − a − 1 splits up in two subcases:

(i) Nν ≤ (ν − 1)− a −m. By induction, (ia, . . . , iν−1) has at least m splitting indices, and
the whole (ia, . . . , ib) has at least m + 1 such indices.

(ii) Nν = (ν − 1) − a − n, where 1 ≤ n ≤ m. Since

ν−1∑

k=a

ik = (ν − 1) − a − n,

by induction for (ia, . . . , iν−1) there exist at least n splitting indices. Since

b∑

k=ν

ik = b − ν − (m − n),

for (iν, . . . , ib), there exist at leastm−n splitting indices. Thus, for the whole (ia, . . . , ib)
there exist at least n + (m − n) + 1 = m + 1 splitting indices. �

Lemma 8.4 (i) Let I = (i0, . . . , is) and J = ( j1, . . . , js−1) with

s∑

k=0

ik +
s−1∑

k=1

jk ≤ s − 1.

Let SI be the set of splitting indices of I and SJ be the set of splitting indices of J . Then,

SI ∩ (SJ ∪ {1, s}) �= ∅.
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(ii) Let I = {i0, . . . , is−1} and J = ( j1, . . . , js) with

s−1∑

k=0

ik +
s∑

k=1

jk ≤ s − 1.

Let SI be the set of splitting indices of I and SJ be the set of splitting indices of J . Then,

(SI ∪ {s}) ∩ (SJ ∪ {1}) �= ∅.

Proof (i) Since SI ∪ SJ ∪ {1, s} ⊂ {1, 2, . . . , s}, it follows that

#(SI ∪ SJ ∪ {1, s}) ≤ s.

Note that
s∑

k=0

ik ≥ s − #SI

by Lemma 8.3. This implies that

s−1∑

k=1

jk ≤ s − 2 − (s − (#SI + 1)),

and hence that #SJ ≥ s − (#SI + 1) by Lemma 8.3. But

#SI + #SJ + 2 = #SI + s − (#SI + 1) + 2 = s + 1 > s,

which implies

#(SI ∩ (SJ ∪ {1, s})) ≥ 1,

and thus the statement follows.
(ii) Note that since (SI ∪ {s}) ∪ (SJ ∪ {1}) ⊂ {1, . . . , s}, it follows that

#(SI ∪ {s}) ∪ (SJ ∪ {1}) ≤ s.

Now

s−1∑

k=0

ik ≥ s − 1 − #SI ,

which implies

s∑

k=1

jk ≤ s − 1 − (s − #SI − 1) and #SJ ≥ s − #SI − 1.

But

#SI + 1 + #SJ + 1 ≥ #SI + 1 + s − #SI = s + 1 > s,

which implies that

#((SI ∪ {s}) ∩ (SJ ∪ {1})) ≥ 1,

and the statement follows. �
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9 Proof for higher s

We will use the combinatorial lemmas on splitting indices from the last section to prove the
congruence (6.1) modulo ps . For a sequence I = (ia, . . . , ib), we write

pI := p
∑b

k=a ik .

For a sequence J = ( ja, . . . , jb), we define

J + 1 := ( ja + 1, . . . , jb + 1).

Note that if k − jk > 0 for a ≤ k ≤ b, then we have

G(a, b; J + 1) = G(a, b; J ), (9.1)

since the constant term of a Laurent polynomial f (X) is the same as the constant term of the
Laurent polynomial f (X p).

Let

pI+J G(0, s; I )G(1, s − 1; J + 1)

be a summand on the left-hand side of (6.5) defined by the tuple (I, J ) with

s∑

k=0

ik +
s−1∑

k=1

jk ≤ s − 1,

and let 1 ≤ ν ≤ s be such that G(0, s; I ) splits in position ν and either G(1, s − 1; J + 1)

splits in position ν or ν ∈ {1, s}. We know that such a ν exists by Lemma 8.4.
Define I ′ = (i ′0, . . . , i ′s−1) and J ′ = ( j ′1, . . . , j ′s) by

⎧
⎪⎪⎨

⎪⎪⎩

i ′k = ik for k ≤ ν − 1,

i ′k = jk for k ≥ ν,

j ′k = jk for k ≤ ν − 1,

j ′k = ik for k ≥ ν.

To show that pI
′+J ′

G(0, s − 1; I ′)G(1, s; J ′ + 1) is in fact a summand on the right-hand
side of (6.5), we have to explain why i ′k ≤ k and j ′k ≤ k − 1. Note that jk ≤ k − 1 for
1 ≤ k ≤ s − 1 and ik ≤ k for 0 ≤ k ≤ s. Furthermore, we have ik ≤ k − 1 for k ≥ ν

since iν = 0 and G(0, s; I ) splits in position ν, which means that k − ik ≥ ν ≥ 1 for k ≥ ν.
By definition of j ′k and i ′k , it now follows that j ′k ≤ k − 1 for 1 ≤ k ≤ s, and i ′k ≤ k for
0 ≤ k ≤ s − 1.

Now that we know that pI
′+J ′

G(0, s − 1; I ′,G(1, s; J ′ + 1) is in fact a summand on
the right-hand side of congruence (6.5), we prove the following proposition. Remark that
obviously, we have pI+J = pI

′+J ′
.

Proposition 9.1 Let I, J, I ′ and J ′ be defined as above. Then,

G(0, s, I )G(1, s − 1; J + 1) = G(0, s − 1; I ′)G(1, s; J ′ + 1).

Thus, we can identify each summand on the left-hand side of (6.5) with a summand on the
right-hand side.
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Proof By a direct computation, we have

G(0, s; I )G(1, s − 1; J + 1)

= G(0, ν − 1; I )G(ν, s; I )G(1, ν − 1; J + 1)G(ν, s − 1; J + 1) (by Lemma 8.4)

= G(0, ν − 1; I )G(ν, s; I + 1)G(1, ν − 1; J + 1)G(ν, s − 1; J ) (by (9.1))

= G(0, ν − 1; I )G(ν, s − 1; J )G(1, ν − 1; J + 1)G(ν, s; I + 1) (commutation)

= G(0, ν−1; I ′)G(ν, s−1; I ′)G(1, ν − 1; J ′+1)G(ν, s; J ′+1) (by definition of I ′, J ′)
= G(0, s − 1; I ′)G(1, s; J ′ + 1) (by Lemma 8.4),

so the statement follows. Note that the last equality follows since by definition of I ′ and J ′,
i ′ν = j ′ν = 0, k − i ′k ≥ ν and k − j ′k ≥ ν for k > ν. Thus, G(0, s − 1; I ′) and G(1, s; J ′ + 1)

both split at ν. �
Since by Proposition 9.1, we can identify every summand on the left-hand side of Eq. (6.5)

satisfying I + J ≤ s−1 with a summand on the right-hand side, both sides are equal modulo
ps and the proof of Theorem 4.3 is complete.

Remark The above arguments to prove the congruence D3 can be slightly simplified, as was
shown to us by A. Mellit.

10 The examples of Batyrev and Kreuzer

In their paper Batyrev and Kreuzer [5] list several Laurent polynomials f with reflexive
Newton polyhedron �( f ), whose fibres are supposed to compactify to Calabi–Yau 3-folds
with h12 = 1.

Example No. 24 in their list is

f := 1/X4 + X2 + 1/X1X4 + 1/X1X3X4 + 1/X1X2X3X4 + 1/X3

+ X1/X3 + X2/X3X4 + X1/X3X4 + X1X2/X3X4 + X2/X4

+ 1/X2X4 + 1/X1X2X4 + 1/X1X2 + 1/X1 + 1/X2X3X4

+ X4 + 1/X2 + X1 + X1/X4 + 1/X3X4 + X3 + 1/X2X3.

to which our Theorem 4.3 applies: the coefficients a(n) := [ f n]0, where

a(0) = 1, a(1) = 0, a(2) = 18, a(3) = 168, a(4) = 2430, a(5) = 37200, a(6) = 605340,

satisfy the congruence D3 modulo ps for arbitrary s.

The power series �(t) = ∑∞
n=0 a(n)tn is solution to a rather complicated fourth order

linear differential equation PF = 0, where

P := 972θ4 + 97tθ(−291 − 1300θ − 2018θ2 + 1727θ3)

+ · · · + 26331347457 · t11(θ + 1)(θ + 2)(θ + 3)(θ + 4)),

(with θ := t∂/∂t). This operator was determined by Metelitsyn [9].

Example Of particular interest is the much simpler Laurent polynomial f corresponding to
No. 62 from the list of Batyrev and Kreuzer [5], which is given by

f := X1 + X2 + X3 + X4 + 1

X1X2
+ 1

X1X3
+ 1

X1X4
+ 1

X2
1X2X3X4

·
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Then, the coefficients a(n) are given by a(n) = 0 if n �= 0 mod 3 and

a(3n) = (3n)!
n!3

n∑

k=0

(
n

k

)2(n + k

k

)
.

The Newton polyhedron �( f ) is reflexive (see [5]), and hence by Theorem 4.3, the coef-
ficients a(n) satisfy the congruence (4.1) modulo ps for arbitrary s. The power series
�(t) = ∑∞

n=0 a(3n)tn is solution to a fourth order linear differential equation PF = 0,
where the differential operator P is of Calabi–Yau type and is given by

P := θ4 − 3t (3θ + 2)(3θ + 1)(11θ2 + 11θ + 3) − 9t2(3θ + 5)(3θ + 2)(3θ + 4)(3θ + 1).

Since in this example (as in many others), only the coefficients a(n) with n = 3k are nonzero,
it would be good to prove the following congruence for this example:

a(3(n0 + n1 p + · · · + ns p
s))a(3(n1 + . . . + ns−1 p

s−2))

≡ a(3(n0 + · · · + ns−1 p
s−1))a(3(n1 + · · · + ns p

s−1)) mod ps .

11 Behaviour under covering

The last example raises the question after a congruence among the k-fold coefficients if
a(n) �= 0 implies k|n. As before, we consider a Laurent polynomial f corresponding to
Newton polyhedron �( f ) with a unique interior point. Let A be the exponent matrix cor-
responding to f , and consider the vectors with integral entries in the kernel of A. If there
exists a positive integer k such that

� :=
⎛

⎜⎝
�1
...

�m

⎞

⎟⎠ ∈ ker(A) ⇒ k|(�1 + · · · + �m),

then it follows that

a(n) := [ f n]0 �= 0 ⇒ k|n,

since for l ∈ N,

[ f l ]0 =
∑

(�1,...,�m )∈A f,l

(
l

�1, �2, . . . , �m

)
,

where

A f,l := ker(A) ∩ {(�1, . . . , �m) ∈ N
m
0 : �1 + · · · + �m = l}.

We are interested in the congruences

a(k(n0 + · · · + ns p
s))a(k(n1 + · · · + ns−1 p

s−2))

≡ a(k(n0 + · · · + ns−1 p
s−1))a(k(n1 + · · · + ns p

s−1)) mod ps, (11.1)

which we will prove in general for s = 1, and which we will prove for one example by
proving that the following condition is satisfied:
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Condition 1 For a tuple (�1, . . . , �m) with

�1 + · · · + �m = kμ ≤ k(p − 1),

it follows that

p

∣∣∣∣∣∣
gcd

⎛

⎝
m∑

j=1

ai,1�1, . . . ,

m∑

j=1

a j,n� j

⎞

⎠ ⇒
m∑

j=1

ai,1� j = · · · =
m∑

j=1

a j,n� j = 0.

Note that the proof is similar for many other examples which we will not treat in here.
First of all, before we come to the example, we give a general proof of (11.1) for s = 1.

Proposition 11.1 Let a(n), n ∈ N be an integral sequence satisfying

a(n0 + n1 p) ≡ a(n0)a(n1) mod p

for 0 ≤ n0 ≤ p − 1 and a(n) �= 0 iff k|n. Then
a(k(n0 + n1 p)) ≡ a(kn0)a(kn1) mod p.

Proof If kn0 < p, then the proposition follows directly. Hence let us assume that kn0 =
n′

0 + n′′
0 p > p − 1. Then

a(k(n0 + n1 p)) = a(n′
0 + (kn1 + n′′

0)p) ≡ a(n′
0)a(kn1 + n′′

0) mod p.

Since k � nn′
0 and a(n′

0) = 0 by assumption, it follows on the one hand that

a(k(n0 + n1 p)) ≡ 0 mod p.

On the other hand,

a(kn0) = a(n′
0 + n′′

0 p) ≡ a(n′
0)a(n′′

0) mod p where a(n′
0) = 0,

and thus a(kn0) ≡ 0 mod p and

a(kn0) , a(kn1) ≡ 0 mod p

so the proposition follows. �
11.1 An example

In the example of the Laurent polynomial No. 62 in the list of Batyrev and Kreuzer [5], the
exponent matrix is

A :=

⎛

⎜⎜⎝

1 0 0 0 −1 −1 −1 −2
0 1 0 0 −1 0 0 −1
0 0 1 0 0 −1 0 −1
0 0 0 1 0 0 −1 −1

⎞

⎟⎟⎠ .

A basis of ker(A) is given by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
0
0
1
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
1
0
0
1
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
1
0
0
1
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
1
1
1
0
0
0
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,
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and thus it follows that [ f n]0 �= 0 ⇒ 3|n and k = 3. We prove that Condition 1 is satisfied
in this example. Assume that p �= 3 and that

p

∣∣∣∣∣∣
gcd

⎛

⎝
8∑

j=1

a1, j� j , . . . ,

8∑

j=1

a4, j� j

⎞

⎠ for �1 + · · · + �8 = 3μ ≤ 3(p − 1).

This means that there exist x1, x2, x3, x4 ∈ Z such that

⎧
⎪⎪⎨

⎪⎪⎩

�1 = �5 + �6 + �7 + 2�8 + x1 p
�2 = �5 + �8 + x2 p
�3 = �6 + �8 + x3 p
�4 = �7 + �8 + x4 p,

which implies

3(�5 + �6 + �7 + 2�8) + (x1 + x2 + x3 + x4)p = 3μ ≤ 3(p − 1).

Thus, it follows that (x1 + · · · + x4) = 3z for some z ∈ Z and that

�5 + �6 + �7 + 2�8 + zp = μ ≤ p − 1.

Since �5, . . . , �8 are nonnegative integers, it follows directly that z ≤ 0. Now, consider the
two following cases:

(1) Let z = 0. Then,
�5 + �6 + �7 + 2�8 ≤ p − 1. (11.2)

Assume that xi < 0, i.e., xi ≤ −1 for some 1 ≤ i ≤ 4. Since �1, . . . , �4 are nonnegative
integers, it follows that either �5 + �6 + �7 + 2�8 ≥ p or � j + �8 ≥ p for some
5 ≤ j ≤ 7, a contradiction to (11.2). Thus, since x1 + x2 + x3 + x4 = 0, it follows that
x1 = x2 = x3 = x4 = 0 and that

8∑

j=1

a1, j� j = · · · =
8∑

j=1

a4, j� j = 0

in this example.
(2) Let z < 0. Assume that �5 + �6 + �7 + 2�8 < (−z + 1)p. Since �1 ≥ 0, it follows that

x1 > z−1, and since x1 is integral, that x1 ≥ z. Since x1 + x2 + x3 + x4 = 3z, it follows
that x2 + x3 + x4 ≤ 2z. Now assume that xi ≥ z for 2 ≤ i ≤ 4. Then x2 + x3 + x4 ≥ 3z,
a contradiction. Hence there exists an index i such that xi < z, and hence xi ≤ z − 1.
Since �i ≥ 0, it follows that �i+2 + �8 ≥ (−z + 1)p, a contradiction since

�i+2 + �8 ≤ �5 + �6 + �7 + 2�8 < (−z + 1)p

by assumption. Thus, we have �5 + �6 + �7 + 2�8 ≥ (−z + 1)p, which implies p ≤
�5 + �6 + �7 + 2�8 + zp ≤ p − 1, a contradiction.

Thus, it follows that the only possible case is z = 0, and x1 = x2 = x3 = x4 = 0, which
proves that Condition 1 is satisfied in this example.
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12 The statement D1

For the proof of congruence (4.1), the coefficients ca of

f (X) =
∑

a

caX
a

did not play a role. This is different if one is interested in the proof of part D1 of the Dwork
congruences. Let n ∈ N, and write n = n0 + pn1, where n0 ≤ p − 1. Then, to prove D1 for
the sequence a(n) := [ f n]0 means that one has to prove that

[
f n0+n1 p

]
0

[ f n1 ]0
∈ Zp. (12.1)

Sticking to the notation of the previous sections, we write

f n0+n1 p(X) = f n0(X) f n1(X p) + p f n0(X)gn−1,1(X). (12.2)

Assume that pk |[ f n1 ]0. To prove (12.1), one has to prove that pk |[ f n0+n1 p]0. By (12.2), this
is equivalent to proving that pk−1|[ f n0gn1,1(X)]0. Thus, the proof of part D1 of the Dwork
congruences requires an investigation in the p-adic orders of the constant terms of f n1 and
gn1,1 for arbitrary n1, and requires methods that are completely different from the methods
we applied to prove the congruence D3.
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