Dwork congruences and reflexive polytopes

Kira Samol ${ }^{1}$ • Duco van Straten ${ }^{1}$

Received: 4 September 2014 / Accepted: 8 April 2015 / Published online: 11 August 2015
© Fondation Carl-Herz and Springer International Publishing Switzerland 2015

Abstract

We show that the coefficients of the power series expansion of the principal period of a Laurent polynomial satisfy strong congruence properties. These congruences play key role in the explicit p-adic analytic continuation of the unit-root. The methods we use are completely elementary.

Résumé Nous montrons que les coefficients du développement en série de puissances de la période principale d'un polynôme de Laurent satisfont à de fortes propriétés de congruence. Ces congruences jouent un rôle clé pour le prolongement analytique p-adique explicite sur le disque unité.

Keywords Laurent polynomials • Dwork congruences • Analytic continuation • Newton polyhedrons • Polytopes

Mathematics Subject Classification 11K31•11B99 14J33

1 Introduction

The sequence of numbers

$$
a(0), a(1), a(2), a(3), \ldots=1,3,19,147, \ldots
$$

with general term

$$
a(n)=\sum_{k=0}^{\infty}\binom{n}{k}^{2}\binom{n+k}{k}
$$

played a crucial role in Apéry's irrationality proof [2] of ζ (2). These numbers satisfy various remarkable congruence properties [3,4], like

Duco van Straten
straten@mathematik.uni-mainz.de
1 Institut für Mathematik, FB 08 Physik, Mathematik und Informatik, Johannes Gutenberg-Universität, 55099 Mainz, Germany

$$
a\left(m p^{r}-1\right) \equiv a\left(m p^{r-1}-1\right) \quad \bmod p^{3 r}
$$

for a prime p and m a number prime to p.
Another simple property is the following: when we write the number n in base p as

$$
n=n_{0}+n_{1} p+n_{2} p^{2}+\cdots+n_{r} p^{r}
$$

with $0 \leq n_{i} \leq p-1$, then

$$
a\left(n_{0}+n_{1} p+n_{2} p^{2}+\cdots+n_{r} p^{r}\right) \equiv a\left(n_{0}\right) a\left(n_{1}\right) a\left(n_{2}\right) \cdots a\left(n_{r}\right) \bmod p .
$$

This is a consequence of more general congruences that we call Dwork congruences and which were used by Dwork for the p-adic analytic continuation of the associated period function

$$
\Phi(t)=\sum_{n=0}^{\infty} a(n) t^{n}
$$

that satisfies the Picard-Fuchs equation

$$
\left(\theta^{2}-t\left(11 \theta^{2}+11 \theta+3\right)-t^{2}(\theta+1)^{2}\right) \Phi(t)=0
$$

where $\theta=t \partial / \partial t$.
In this paper, we show that these Dwork congruences result from the fact that the coefficient $a(n)$ is the constant term of the nth power of a Laurent polynomial, whose Newton-polytope has a unique interior point. The sequence of Apéry numbers can be generated in that way, as one can take for example

$$
f(x, y)=3+x+y+2\left(\frac{1}{x}+\frac{1}{y}\right)+\frac{x}{y}+\frac{y}{x}+\frac{1}{x y}
$$

and one has

$$
a(n)=\text { constant term of } f^{n}
$$

2 Dwork congruences

Definition 2.1 Let $\{a(n)\}_{n \in \mathbb{N}_{0}}$ be a sequence of integers with $a(0)=1$ and let p be a prime number. We say that $\{a(n)\}_{n}$ satisfies the Dwork congruences if for all $s, m, n \in \mathbb{N}_{0}$ one has
(D1) $\frac{a(n)}{a(\lfloor n / p\rfloor)} \in \mathbb{Z}_{p}$,
(D2) $\frac{a\left(n+m p^{s+1}\right)}{a\left(\lfloor n / p\rfloor+m p^{s}\right)} \equiv \frac{a(n)}{a(\lfloor n / p\rfloor)} \bmod p^{s+1}$.
In fact, the validity of these congruences is implied by those for which $n<p^{s+1}$, as one sees by writing $n=n^{\prime}+m p^{s+1}$ with $n^{\prime}<p^{s+1}$. By cross-multiplication, (D2) becomes (D3) $a\left(n+m p^{s+1}\right) a\left(\left\lfloor\frac{n}{p}\right\rfloor\right) \equiv a(n) a\left(\left\lfloor\frac{n}{p}\right\rfloor+m p^{s}\right) \bmod p^{s+1}$.

The congruences for $s=0$ say that for $0 \leq n_{0} \leq p-1$ one has

$$
a\left(n_{0}+m p\right) \equiv a\left(n_{0}\right) a(m) \quad \bmod p .
$$

So if we write n in base p as

$$
n=n_{0}+p n_{1}+\cdots+n_{r} p^{r}, \quad 0 \leq n_{i} \leq p-1,
$$

we find by repeated application that

$$
a(n) \equiv a\left(n_{0}\right) a\left(n_{1}\right) \cdots a\left(n_{r}\right) \quad \bmod p .
$$

In fact, this is easily seen to be equivalent to D 3 for $s=0$.
Similarly, for higher s the congruences D3 are equivalent to

$$
\begin{align*}
& a\left(n_{0}+\cdots+n_{s+1} p^{s+1}\right) a\left(n_{1}+\cdots+n_{s} p^{s-1}\right) \\
& \quad \equiv a\left(n_{0}+\cdots+n_{s} p^{s}\right) a\left(n_{1}+\cdots+n_{s+1} p^{s}\right) \quad \bmod p^{s+1} \tag{2.1}
\end{align*}
$$

The congruences express a strong p-adic analyticity property of the function

$$
n \longmapsto \frac{a(n)}{a(\lfloor n / p\rfloor)}
$$

and play a key role in the p-adic analytic continuation of the series

$$
F(t)=\sum_{n=0}^{\infty} a(n) t^{n}
$$

to points on the closed p-adic unit disc. More precisely, one has the following theorem (see [8, Theorem 3]).

Theorem 2.2 Let $\{a(n)\}_{n}$ be a \mathbb{Z}_{p}-valued sequence satisfying the Dwork congruences D1 and D2. Let

$$
F(t)=\sum_{n=0}^{\infty} a(n) t^{n} \quad \text { and } \quad F^{s}(t)=\sum_{n=0}^{p^{s}-1} a(n) t^{n} .
$$

Let \mathfrak{D} be the region in \mathbb{Z}_{p} defined by

$$
\mathfrak{D}:=\left\{x \in \mathbb{Z}_{p}:\left|F^{1}(x)\right|=1\right\} .
$$

Then $\frac{F(t)}{F\left(t^{p}\right)}$ is the restriction to $p \mathbb{Z}_{p}$ of an analytic element f of support \mathfrak{D} :

$$
f(x)=\lim _{s \rightarrow \infty} \frac{F^{s+1}(x)}{F^{s}\left(x^{p}\right)}
$$

The congruences were used in [10] to determine Frobenius polynomials associated to Calabi-Yau motives coming from fourth order operators of Calabi-Yau type from the list [1]. Although there are many examples of sequences that satisfy these congruences, the true cohomological meaning remains obscure at present. For a recent interpretation in terms of formal groups, see [11]. In this paper we will give a completely elementary proof of the congruences D3 for sequences $\{a(n)\}_{n}$ that arise as constant term of the powers of a fixed Laurent polynomial with integral coefficients and whose Newton polyhedron contains a unique interior point. These include the series that come from reflexive polytopes.

3 Laurent polynomials

We will use the familiar multi-index notation for monomials and exponents

$$
X^{\mathbf{a}}=X_{1}^{a_{1}} X_{2}^{a_{2}} \cdots X_{n}^{a_{n}}, \quad \mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}
$$

to write a general Laurent polynomial as

$$
f=\sum_{\mathbf{a}} c_{\mathbf{a}} X^{\mathbf{a}} \in \mathbb{Z}\left[X_{1}, X_{1}^{-1}, X_{2}, X_{2}^{-1}, \ldots, X_{n}, X_{n}^{-1}\right] .
$$

The support of f is the set of exponents a occuring in f, i.e.,

$$
\operatorname{supp}(f):=\left\{\mathbf{a} \in \mathbb{Z}^{n} \mid c_{\mathbf{a}} \neq 0\right\} .
$$

The Newton polyhedron $\Delta(f) \subset \mathbb{R}^{n}$ of f is defined as the convex hull of its support, namely

$$
\Delta(f):=\operatorname{convex}(\operatorname{supp}(f)) .
$$

When the support of f consists of m monomials, we can put the information of the polyhedron $\Delta:=\Delta(f)$ in an $n \times m$ matrix $\mathcal{A} \in \operatorname{Mat}(m \times n, \mathbb{Z})$, whose columns \mathbf{a}_{j}, $j=1,2, \ldots, m$, are the exponents of f,

$$
\mathcal{A}=\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{m}\right)=\left(\begin{array}{cccc}
a_{1,1} & a_{1,2} & \ldots & a_{1, m} \\
a_{2,1} & a_{2,2} & \ldots & a_{2, m} \\
\vdots & \vdots & & \vdots \\
a_{n, 1} & a_{n, 2} & \ldots & a_{n, m}
\end{array}\right),
$$

so that we can write

$$
f=\sum_{j=1}^{m} c_{j} X^{\mathbf{a}_{j}}=\sum_{j=1}^{m} c_{j} \prod_{i=1}^{n} X^{a_{i, j}}
$$

The polyhedron Δ is the image of the standard simplex Δ_{m} under the map

$$
\mathbb{R}^{m} \xrightarrow{\mathcal{A}} \mathbb{R}^{n} .
$$

The following theorem will play a key role in the sequel.
Theorem 3.1 Let Δ be an integral polyhedron with 0 as unique interior point. Then for all non-negative integral vectors $\left(\ell_{1}, \ell_{2}, \ldots, \ell_{m}\right) \in \mathbb{Z}^{m}$ such that $\sum_{i=1}^{m} a_{i, j} \ell_{j} \neq 0$ for some $1 \leq i \leq n$, one has

$$
\underset{i=1, \ldots, n}{\operatorname{gcd}}\left(\sum_{j=1}^{m} a_{i, j} \ell_{j}\right) \leq \sum_{j=1}^{m} \ell_{j} .
$$

Proof Assume that there exists a non-negative integral vector $\ell=\left(\ell_{1}, \ldots, \ell_{m}\right) \in \mathbb{Z}^{m}$ such that $\sum_{i=1}^{m} a_{i, j} \ell_{j} \neq 0$ for some $1 \leq i \leq n$ and

$$
\underset{i=1, \ldots, n}{\operatorname{gcd}}\left(\sum_{j=1}^{m} a_{i, j} \ell_{j}\right)>\sum_{j=1}^{m} \ell_{j} .
$$

We have

$$
\mathbf{a}_{1} \ell_{1}+\cdots+\mathbf{a}_{m} \ell_{m}=\mathcal{A}\left(\begin{array}{c}
\ell_{1} \\
\vdots \\
\ell_{m}
\end{array}\right)=\left(\begin{array}{c}
\sum_{j=1}^{m} a_{1, j} \ell_{j} \\
\vdots \\
\sum_{j=1}^{m} a_{n, j} \ell_{j}
\end{array}\right)
$$

The components of the vector at the right-hand side are all divisible by g, so that after division by g we obtain a non-zero lattice point

$$
v:=\frac{\ell_{1}}{g} \mathbf{a}_{1}+\cdots+\frac{\ell_{m}}{g} \mathbf{a}_{m} \in \mathbb{Z}^{n}
$$

of Δ with

$$
\sum_{j} \frac{\ell_{j}}{g}<1 .
$$

The interior points of Δ (i.e., the points that do not lie on the boundary) consist of the combinations

$$
\alpha_{1} \mathbf{a}_{1}+\cdots+\alpha_{m} \mathbf{a}_{m}
$$

of the columns of \mathcal{A} with $\sum_{j=1}^{m} \alpha_{j}<1$. As 0 was assumed to be the only interior lattice point of Δ we arrive at a contradiction.

We remark that the above statement applies in particular to reflexive polyhedra.

4 The fundamental period

Notation 4.1 For a Laurent polynomial we denote by $[f]_{0}$ the constant term, that is, the coefficient of the monomial X^{0}.

Definition 4.2 The fundamental period of f is the series

$$
\Phi(t):=\sum_{k=0}^{\infty} a(k) t^{k}, \quad a(k):=\left[f^{k}\right]_{0} .
$$

Note that the function $\Phi(t)$ can be interpreted as the period of a holomorphic differential form on the hypersurface

$$
X_{t}:=\{t . f=1\} \subset\left(\mathbb{C}^{*}\right)^{n},
$$

as one has

$$
\begin{aligned}
\Phi(t)=\sum_{k=0}^{\infty}\left[f^{k}\right]_{0} t^{k} & =\sum_{k=0}^{\infty} \frac{1}{(2 \pi i)^{n}} \int_{T} f^{k} t^{k} \Omega \\
& =\frac{1}{(2 \pi i)^{n}} \int_{T} \sum_{k=0}^{\infty} f^{k} t^{k} \Omega=\frac{1}{(2 \pi i)^{n}} \int_{T} \frac{1}{1-t f} \Omega=\int_{\gamma_{t}} \omega_{t} .
\end{aligned}
$$

Here

$$
\Omega:=\frac{d X_{1}}{X_{1}} \frac{d X_{2}}{X_{2}} \cdots \frac{d X_{n}}{X_{n}},
$$

T is the cycle given by $\left|X_{i}\right|=\epsilon_{i}$ and homologous to the Leray coboundary of $\gamma_{t} \in H_{n-1}\left(X_{t}\right)$ and

$$
\omega_{t}=\operatorname{Res}_{X_{t}}\left(\frac{1}{1-t f} \Omega\right)
$$

In particular, $\Phi(t)$ is a solution of a Picard-Fuchs equation; the coefficients $a(k)$ satisfy a linear recursion relation.

Theorem 4.3 Let $f \in \mathbb{Z}\left[X_{1}, X_{1}^{-1}, \ldots, X_{n}, X_{n}^{-1}\right]$ with integral coefficients. Assume that the Newton polyhedron $\Delta(f)$ has 0 as its unique interior lattice point. Then the coefficients $a(n)=\left[f^{n}\right]_{0}$ of the fundamental period satisfy for each prime number p and $s \in \mathbb{N}$ the congruence

$$
\begin{align*}
& a\left(n_{0}+\cdots+n_{s} p^{s}\right) a\left(n_{1}+\cdots+n_{s-1} p^{s-2}\right) \\
& \quad \equiv a\left(n_{0}+\cdots+n_{s-1} p^{s-1}\right) a\left(n_{1}+\cdots+n_{s} p^{s-1}\right) \bmod p^{s} \tag{4.1}
\end{align*}
$$

where $0 \leq n_{i} \leq p-1$ for $0 \leq i \leq s-1$.
We remark that already for the simplest cases where the the Newton polyhedron contains more than one lattice point, like $f=X^{2}+X^{-1}$, the coefficients $a(n)$ do not satisfy such simple congruences.

5 Proof for the congruence $\bmod p$

For $s=1$ we have to show that for all $n_{0} \leq p-1$,

$$
a\left(n_{0}+n_{1} p\right) \equiv a\left(n_{0}\right) a\left(n_{1}\right) \quad \bmod p .
$$

The proof we will give is completely elementary; the key ingredient is Theorem 3.1, which states that for all non-negative integral $\ell=\left(\ell_{1}, \ldots, \ell_{m}\right)$, one has

$$
\underset{i=1, \ldots, n}{\operatorname{gcd}}\left(\sum_{j=1}^{m} a_{i, j} \ell_{j}\right) \leq \sum_{j=1}^{m} \ell_{j}
$$

Proposition 5.1 Let f be a Laurent polynomial as above and $n_{0}<p$. Then

$$
\left[f^{n_{0}} f^{n_{1} p}\right]_{0} \equiv\left[f^{n_{0}}\right]_{0}\left[f^{n_{1}}\right]_{0} \quad \bmod p .
$$

Proof As f has integral coefficients, we have $f^{n_{1} p}(X) \equiv f^{n_{1}}\left(X^{p}\right)$ mod p. So the congruence is implied by the equality

$$
\left[f^{n_{0}}(X) f^{n_{1}}\left(X^{p}\right)\right]_{0}=\left[f^{n_{0}}(X)\right]_{0}\left[f^{n_{1}}(X)\right]_{0}
$$

which means: the product of a monomial from $f^{n_{0}}(X)$ and a monomial from $f^{n_{1}}\left(X^{p}\right)$ can never be constant, unless the two monomials are constant themselves. It is this statement that we will prove now.

For the product of a non-constant monomial from $f^{n_{0}}(X)$ and a non-constant monomial from $f^{n_{1}}\left(X^{p}\right)$ to be constant, the monomial coming from $f^{n_{0}}(X)$ has to be a monomial in $X_{1}^{p}, \ldots, X_{n}^{p}$, since all monomials in $f^{n_{1}}\left(X^{p}\right)$ are monomials in $X_{1}^{p}, \ldots, X_{n}^{p}$.

A monomial

$$
M:=X^{\ell_{1} \mathbf{a}_{1}+\ell_{2} \mathbf{a}_{2}+\cdots+\ell_{m} \mathbf{a}_{m}}=\prod_{j=1}^{m} x_{1}^{a_{1, j} \ell_{j}} \cdots X_{n}^{a_{n, j} \ell_{j}}
$$

appearing in $f^{n_{0}}(X)$ corresponds to a partition

$$
n_{0}=\ell_{1}+\cdots+\ell_{m}
$$

of n_{0} in non-negative integers ℓ_{i}. On the one hand, if M were a monomial in $X_{1}^{p}, \ldots, X_{n}^{p}$, then we would have the divisibility

$$
p \mid \sum_{j=1}^{m} a_{i, j} \ell_{j} \quad \text { for } 1 \leq i \leq n
$$

and hence

$$
p \mid \underset{i=1, \ldots, n}{\operatorname{gcd}}\left(\sum_{j=1}^{m} a_{i, j} \ell_{j}\right)
$$

On the other hand, by 3.1 we have

$$
\underset{i=1, \ldots, n}{\operatorname{gcd}}\left(\sum_{j=1}^{m} a_{i, j} \ell_{j}\right) \leq \sum_{j=1}^{m} \ell_{j}=n_{0}<p
$$

So we conclude that

$$
\sum_{i=1}^{m} a_{i, j} \ell_{j}=0 \quad \text { for } 1 \leq j \leq n
$$

and that the monomial M is the constant monomial X^{0}. Hence it follows that

$$
\left[f^{n_{0}}(X) f^{n_{1}}\left(X^{p}\right)\right]_{0}=\left[f^{n_{0}}(X)\right]_{0}\left[f^{n_{1}}\left(X^{p}\right)\right]_{0}
$$

and since

$$
\left[f^{n_{1}}\left(X^{p}\right)\right]_{0}=\left[f^{n_{1}}(X)\right]_{0}
$$

the proposition follows.
We remark that the congruence has the following interpretation. By a result of [7] (Theorem 4.) one can compactify the map $f:\left(\mathbb{C}^{*}\right)^{n} \longrightarrow \mathbb{C}$ given by the Laurent polynomial to a map $\phi: \mathcal{X} \longrightarrow \mathbb{P}^{1}$ such that the differential form Ω extends to a form in $\Omega^{n}\left(\left(\mathcal{X} \backslash \phi^{-1}(\{\infty\})\right)\right)$. In the case $\Delta(f)$ is reflexive one has

$$
\operatorname{deg}\left(\pi_{*} \omega_{X / S}\right)=1
$$

see (8.3) of [6]. On the other hand, from this and under an additional condition (R), it follows from Corollary 3.7 of [11] that the mod p Dwork-congruences hold.

6 Strategy for higher s

The idea for the higher congruences is basically the same as for $s=1$, but is combinatorially more involved. Surprisingly, one does not need any statements stronger than 3.1. To prove the congruence 4.1 , we have to show that

$$
\begin{equation*}
\left[\prod_{k=0}^{s} f^{n_{k} p^{k}}\right]_{0}\left[\prod_{k=1}^{s-1} f^{n_{k} p^{k-1}}\right]_{0} \equiv\left[\prod_{k=0}^{s-1} f^{n_{k} p^{k}}\right]_{0}\left[\prod_{k=1}^{s} f^{n_{k} p^{k-1}}\right]_{0} \bmod p^{s} \tag{6.1}
\end{equation*}
$$

To do this, we will use the following expansion of $f^{n p^{s}}(X)$.

Proposition 6.1 We can write

$$
f^{n p^{s}}(X)=\sum_{k=0}^{s} p^{k} g_{n, k}\left(X^{p^{s-k}}\right)
$$

where $g_{n, k}$ is a polynomial of degree $n p^{k}$ in the monomials of f, independent of s, defined inductively by $g_{n, 0}(X)=f^{n}(X)$ and

$$
\begin{equation*}
p^{k} g_{n, k}(X):=f(X)^{n p^{k}}-\sum_{j=0}^{k-1} p^{j} g_{n, j}\left(X^{p^{k-1-j}}\right) \tag{6.2}
\end{equation*}
$$

Proof We have to prove that the right-hand side of Eq. 6.2 is divisible by p^{k}. This is proved by induction on k and an application of the congruence

$$
\begin{equation*}
f(X)^{p^{m}} \equiv f\left(X^{p}\right)^{p^{m-1}} \quad \bmod p^{m} \tag{6.3}
\end{equation*}
$$

For $k=1$, the divisibility follows directly by (6.3). Assume that the statement is true for $m \leq k-1$. Write

$$
f(X)^{n p^{k-1}}=\sum_{j=0}^{k-1} p^{j} g_{n, j}\left(X^{p^{k-1-j}}\right)
$$

Then,

$$
\sum_{j=0}^{k-1} p^{j} g_{n, j}\left(X^{p^{k-j}}\right)=f\left(X^{p}\right)^{n p^{k-1}} \equiv f(X)^{n p^{k}} \quad \bmod p^{n}
$$

and thus

$$
f(X)^{n p^{k}}-\sum_{j=0}^{k-1} p^{j} g_{n, j}\left(X^{p^{k-j}}\right) \equiv 0 \quad \bmod p^{n}
$$

The congruences involve constant term expressions of the form

$$
\begin{align*}
{\left[\prod_{k=a}^{b} f^{n_{k} p^{k}}\right]_{0} } & =\left[\prod_{k=a}^{b} \sum_{j=0}^{k} p^{j} g_{n_{k}, j}\left(X^{p^{k-j}}\right)\right]_{0} \\
& =\sum_{i_{a} \leq a} \ldots \sum_{i_{b} \leq b} p^{\sum_{k=a}^{b} i_{k}}\left[\prod_{k=a}^{b} g_{n_{k}, i_{k}}\left(X^{p^{k-i_{k}}}\right)\right]_{0} \tag{6.4}
\end{align*}
$$

Thus, Eq. (6.1) translates modulo p^{s} into

$$
\begin{align*}
& \sum_{i_{0} \leq 0} \cdots \sum_{i_{s} \leq s} \sum_{j_{1} \leq 0} \cdots \sum_{j_{s-1} \leq s-2} p^{A}\left[\prod_{k=0}^{s} g_{n_{k}, i_{k}}\left(X^{p^{k-i_{k}}}\right)\right]_{0}\left[\prod_{k=1}^{s-1} g_{n_{k}, j_{k}}\left(X^{p^{k-1-j_{k}}}\right)\right]_{0} \\
& \quad \equiv \sum_{i_{0} \leq 0} \cdots \sum_{i_{s-1} \leq s-1} \sum_{j_{1} \leq 0} \cdots \sum_{j_{s} \leq s-1} p^{B}\left[\prod_{k=0}^{s-1} g_{n_{k}, i_{k}}\left(X^{p^{k-i_{k}}}\right)\right]_{0}\left[\prod_{k=1}^{s} g_{n_{k}, j_{k}}\left(X^{p^{k-1-j_{k}}}\right)\right]_{0} \tag{6.5}
\end{align*}
$$

with

$$
A:=\sum_{k=0}^{s} i_{k}+\sum_{k=1}^{s-1} j_{k} \quad \text { and } \quad B:=\sum_{k=0}^{s-1} i_{k}+\sum_{k=1}^{s} j_{k} .
$$

Since this congruence is supposed to hold modulo p^{s}, on the left-hand side, only the summands in A with

$$
\sum_{k=0}^{s} i_{k}+\sum_{k=1}^{s-1} l_{k} \leq s-1
$$

contribute, and on the right-hand side, only those in B with

$$
\sum_{k=0}^{s-1} i_{k}+\sum_{k=1}^{s} l_{k} \leq s-1
$$

play a role.
Now, we proceed by comparing these summands on both sides of Eq. 6.1. We will prove that each summand on the right-hand side is equal to exactly one summand on the left-hand side and vice versa.

7 Splitting positions

So we are led to study for $a \leq b$ expressions of the type

$$
G(a, b ; I):=\left[\prod_{k=a}^{b} g_{n_{k}, i_{k}}\left(X^{p^{k-i_{k}}}\right)\right]_{0}
$$

where the integers $0 \leq n_{k} \leq p-1$ are fixed for $a \leq k \leq b$ and $I:=\left(i_{a}, \ldots, i_{b}\right)$ is a sequence with $0 \leq i_{k} \leq k$.

Definition 7.1 We say that $G(a, b ; I)$ splits at ℓ if

$$
G(a, b ; I)=G(a, \ell-1 ; I) G(\ell, b ; I) .
$$

The number of entries of I is determined implicitly by a and b, so that by the product $G(a, \ell-1 ; I)$ we mean the expression corresponding to the sequence $\left(i_{a}, \ldots, i_{\ell-1}\right)$, while by $G(\ell, b ; I)$, we mean the expression corresponding to $\left(i_{\ell}, \ldots, i_{b}\right)$. Note that $\ell=a$ represents a trivial splitting, but splitting at $\ell=b$ is a non-trivial property.

Proposition 7.2 If $k-i_{k} \geq \ell$ for all $k \geq \ell$, then $G(a, b ; I)$ splits at ℓ.
Proof A monomial $\prod_{j=1}^{m}\left(X^{P^{k-i_{k}}}\right)^{\mathbf{a}_{j} \beta_{j, k}}$ occuring in $g_{n_{k}, i_{k}}\left(X^{p^{k-i_{k}}}\right)$ corresponds to a partition

$$
\beta_{1, k}+\cdots+\beta_{m, k}=p^{i_{k}} n_{k} \leq p^{i_{k}+1}-p^{i_{k}}
$$

of the number $p^{i_{k}} n_{k}$ in non-negative integers $\beta_{1, k}, \ldots, \beta_{m, k}$. So we have

$$
p^{k-i_{k}}\left(\beta_{1, k}+\cdots+\beta_{m, k} \leq p^{k+1}-p^{k} .\right.
$$

It follows from the assumptions that the product

$$
G(\ell, b ; I)=\prod_{k=\ell}^{b} g_{n_{k}, i_{k}}\left(X^{p^{k-i_{k}}}\right)
$$

is a Laurent polynomial in X^{p}. As a consequence, the product of a monomial in

$$
G(a, \ell-1 ; I)=\prod_{k=a}^{\ell-1} g_{n_{k}, i_{k}}\left(X^{P^{k-i_{k}}}\right)
$$

and a monomial of $G(\ell, b ; I)$ can be constant only if the sum

$$
m_{i}:=\sum_{j=1}^{m} p^{a-i_{a}} a_{i, j} \beta_{j, a}+\cdots+\sum_{j=1}^{m} p^{\ell-1-i_{\ell-1}} a_{i, j} \beta_{j, \ell-1}
$$

is divisible by p^{ℓ} for $1 \leq i \leq n$.
Set

$$
\gamma_{j}:=p^{a-i_{a}} \beta_{j, a}+\cdots+p^{\ell-1-i_{\ell-1}} \beta_{j, \ell-1}
$$

so that

$$
\sum_{j=1}^{m} a_{i, j} \gamma_{j}=m_{i}
$$

It follows that

$$
\begin{aligned}
\sum_{j=1}^{m} \gamma_{j} & =\sum_{j=1}^{m} p^{a-i_{a}} \beta_{j, a}+\cdots+\sum_{j=1}^{m} p^{\ell-1-i_{\ell-1}} \beta_{j, \ell-1} \\
& \leq p^{a+1}-p^{a}+\cdots+p^{\ell}-p^{\ell-1}=p^{\ell}-p^{a}<p^{\ell}
\end{aligned}
$$

Hence, it follows that

$$
p^{\ell} \mid \underset{i=1, \ldots, n}{\operatorname{gcd}}\left(\sum_{j=1}^{m} a_{i, j} \gamma_{j}\right) \leq \sum_{j=1}^{m} \gamma_{j}<p^{\ell}
$$

where the first inequality follows from Theorem 3.1. This implies

$$
\sum_{j=1}^{m} a_{i, j} \gamma_{j}=0 \text { for } 1 \leq i \leq n
$$

But this means that the monomial in

$$
\prod_{k=t}^{s-1} g_{n_{k}, i_{k}}\left(X^{p^{k-i_{k}}}\right)
$$

is itself constant.
Now that we know that we can split up expressions $G(a, b ; I)$ satisfying the condition given in Proposition 7.2, we proceed by proving that all the summands on both sides of Eq. 6.5 that do not have a coefficient divisible by p^{s} satisfy this splitting condition.

8 Three combinatorial lemmas

In this section, we prove three simple combinatorial lemmas which will be applied to split up expressions $G(0, s ; I) G(1, s-1 ; J+1)$ that occur in the congruence (6.1).

Definition 8.1 Let $a \leq b$ and $I=\left(i_{a}, i_{a+1}, \ldots, i_{b}\right)$ a sequence with $0 \leq i_{k} \leq k$ for all k with $a \leq k \leq b$. We say that ℓ is a splitting index for I if $\ell>a$ and for $k \geq \ell$ one has $i_{k} \leq k-\ell$.

Remark that for a splitting index ℓ one can apply 7.2 and that $i_{\ell}=0$.
Lemma 8.2 Let I as above and assume that

$$
\sum_{k=a}^{b} i_{k} \leq b-a-1
$$

Then there exists at least one splitting index for I.
Proof Let

$$
\mathcal{N}:=\left\{k \mid i_{k}=0\right\}
$$

be the set of all indices k such that the corresponding i_{k} is zero. Since the sum has $b-a+1$ summands i_{k}, the set \mathcal{N} has at least two elements. So there exists at least one index $k \neq a$ such that $i_{k}=0$. We will show by contradiction that one of these zero-indices is a splitting index.

We say that $v>k$ is a violating index with respect to $k \in \mathcal{N}$ if $i_{v}>v-k$. Assume now that all $k \in \mathcal{N}$ posses a violating index. It follows directly that for each violating index v, $i_{v} \geq 2$. Furthermore, if v is a violating index for m different zero-indices $k_{1}<\cdots<k_{m}$, it follows that $i_{v} \geq m+1$.

Now assume that we have μ different violating indices ν_{1}, \ldots, v_{μ} and that v_{j} is a violating index for all $j \in \mathcal{N}_{j}$, where we partition \mathcal{N} into disjoint subsets

$$
\mathcal{N}=\mathcal{N}_{1} \cup \mathcal{N}_{2} \cup \cdots \cup \mathcal{N}_{\mu}
$$

Then

$$
\sum_{j=1}^{\mu} i_{\nu_{j}} \geq \sum_{j=1}^{\mu}\left(\# \mathcal{N}_{j}+1\right)=\# \mathcal{N}+\mu,
$$

and

$$
\sum_{k=a+1}^{b} i_{k} \geq \# \mathcal{N} \cdot 0+\sum_{j=1}^{\mu} i_{v_{j}}+(b-a-(\# \mathcal{N}+\mu)) \cdot 1=b-a>b-a-1,
$$

a contradiction.
We can sharpen Lemma 8.2 to the following one.
Lemma 8.3 Let I be as above and assume that

$$
\sum_{k=a}^{b} i_{k}=b-a-m
$$

Then there exist at least m different splitting indices for I.

Proof We proceed by induction on m. The case $m=1$ is just Lemma 8.2. Assume that for all $n \leq m$, we have proven the statement. Now assume

$$
\sum_{k=a}^{b} i_{k}=b-a-(m+1)
$$

Since $m+1>1$, there exists a splitting index ν. We can split up the set of indices

$$
\left\{i_{a}, \ldots, i_{b}\right\}=\left\{i_{a}, \ldots, i_{v-1}\right\} \cup\left\{i_{v}, \ldots, i_{b}\right\}
$$

in position v such that

$$
\sum_{k=a}^{\nu-1} i_{k}=N_{v} \quad \text { and } \quad \sum_{k=\nu}^{b} i_{k}=b-a-m-1-N_{\nu}
$$

Depending on N_{ν}, we have to distinguish between the following cases.
Case (1): $N_{v}>(v-1)-a-1$. It follows that

$$
b-a-m-1-N_{v}<b-a-m-((v-1)-a-1)=b-m-(v-1),
$$

and thus

$$
\sum_{k=v}^{b} i_{k} \leq b-v-m
$$

By induction, there exists at least m splitting indices in $\left(i_{v}, \ldots, i_{b}\right)$, and thus for the whole $\left(i_{a}, \ldots, i_{b}\right)$, there exist at least $m+1$ such indices.

Case (2): The case $N_{v} \leq(v-1)-a-1$ splits up in two subcases:
(i) $N_{v} \leq(v-1)-a-m$. By induction, $\left(i_{a}, \ldots, i_{v-1}\right)$ has at least m splitting indices, and the whole $\left(i_{a}, \ldots, i_{b}\right)$ has at least $m+1$ such indices.
(ii) $N_{v}=(v-1)-a-n$, where $1 \leq n \leq m$. Since

$$
\sum_{k=a}^{v-1} i_{k}=(v-1)-a-n,
$$

by induction for $\left(i_{a}, \ldots, i_{v-1}\right)$ there exist at least n splitting indices. Since

$$
\sum_{k=v}^{b} i_{k}=b-v-(m-n)
$$

for $\left(i_{v}, \ldots, i_{b}\right)$, there exist at least $m-n$ splitting indices. Thus, for the whole $\left(i_{a}, \ldots, i_{b}\right)$ there exist at least $n+(m-n)+1=m+1$ splitting indices.

Lemma 8.4 (i) Let $I=\left(i_{0}, \ldots, i_{s}\right)$ and $J=\left(j_{1}, \ldots, j_{s-1}\right)$ with

$$
\sum_{k=0}^{s} i_{k}+\sum_{k=1}^{s-1} j_{k} \leq s-1
$$

Let S_{I} be the set of splitting indices of I and S_{J} be the set of splitting indices of J. Then,

$$
S_{I} \cap\left(S_{J} \cup\{1, s\}\right) \neq \emptyset .
$$

(ii) Let $I=\left\{i_{0}, \ldots, i_{s-1}\right\}$ and $J=\left(j_{1}, \ldots, j_{s}\right)$ with

$$
\sum_{k=0}^{s-1} i_{k}+\sum_{k=1}^{s} j_{k} \leq s-1
$$

Let S_{I} be the set of splitting indices of I and S_{J} be the set of splitting indices of J. Then,

$$
\left(S_{I} \cup\{s\}\right) \cap\left(S_{J} \cup\{1\}\right) \neq \emptyset .
$$

Proof (i) Since $S_{I} \cup S_{J} \cup\{1, s\} \subset\{1,2, \ldots, s\}$, it follows that

$$
\#\left(S_{I} \cup S_{J} \cup\{1, s\}\right) \leq s
$$

Note that

$$
\sum_{k=0}^{s} i_{k} \geq s-\# S_{I}
$$

by Lemma 8.3. This implies that

$$
\sum_{k=1}^{s-1} j_{k} \leq s-2-\left(s-\left(\# S_{I}+1\right)\right)
$$

and hence that $\# S_{J} \geq s-\left(\# S_{I}+1\right)$ by Lemma 8.3. But

$$
\# S_{I}+\# S_{J}+2=\# S_{I}+s-\left(\# S_{I}+1\right)+2=s+1>s,
$$

which implies

$$
\#\left(S_{I} \cap\left(S_{J} \cup\{1, s\}\right)\right) \geq 1,
$$

and thus the statement follows.
(ii) Note that since $\left(S_{I} \cup\{s\}\right) \cup\left(S_{J} \cup\{1\}\right) \subset\{1, \ldots, s\}$, it follows that

$$
\#\left(S_{I} \cup\{s\}\right) \cup\left(S_{J} \cup\{1\}\right) \leq s .
$$

Now

$$
\sum_{k=0}^{s-1} i_{k} \geq s-1-\# S_{I}
$$

which implies

$$
\sum_{k=1}^{s} j_{k} \leq s-1-\left(s-\# S_{I}-1\right) \text { and } \# S_{J} \geq s-\# S_{I}-1
$$

But

$$
\# S_{I}+1+\# S_{J}+1 \geq \# S_{I}+1+s-\# S_{I}=s+1>s,
$$

which implies that

$$
\#\left(\left(S_{I} \cup\{s\}\right) \cap\left(S_{J} \cup\{1\}\right)\right) \geq 1,
$$

and the statement follows.

9 Proof for higher s

We will use the combinatorial lemmas on splitting indices from the last section to prove the congruence (6.1) modulo p^{s}. For a sequence $I=\left(i_{a}, \ldots, i_{b}\right)$, we write

$$
p^{I}:=p^{\sum_{k=a}^{b} i_{k}} .
$$

For a sequence $J=\left(j_{a}, \ldots, j_{b}\right)$, we define

$$
J+1:=\left(j_{a}+1, \ldots, j_{b}+1\right) .
$$

Note that if $k-j_{k}>0$ for $a \leq k \leq b$, then we have

$$
\begin{equation*}
G(a, b ; J+1)=G(a, b ; J), \tag{9.1}
\end{equation*}
$$

since the constant term of a Laurent polynomial $f(X)$ is the same as the constant term of the Laurent polynomial $f\left(X^{p}\right)$.

Let

$$
p^{I+J} G(0, s ; I) G(1, s-1 ; J+1)
$$

be a summand on the left-hand side of (6.5) defined by the tuple (I, J) with

$$
\sum_{k=0}^{s} i_{k}+\sum_{k=1}^{s-1} j_{k} \leq s-1
$$

and let $1 \leq v \leq s$ be such that $G(0, s ; I)$ splits in position v and either $G(1, s-1 ; J+1)$ splits in position v or $v \in\{1, s\}$. We know that such a v exists by Lemma 8.4.

Define $I^{\prime}=\left(i_{0}^{\prime}, \ldots, i_{s-1}^{\prime}\right)$ and $J^{\prime}=\left(j_{1}^{\prime}, \ldots, j_{s}^{\prime}\right)$ by

$$
\left\{\begin{array}{l}
i_{k}^{\prime}=i_{k} \text { for } k \leq v-1 \\
i_{k}^{\prime}=j_{k} \text { for } k \geq v \\
j_{k}^{\prime}=j_{k} \text { for } k \leq v-1 \\
j_{k}^{\prime}=i_{k} \text { for } k \geq v
\end{array}\right.
$$

To show that $p^{I^{\prime}+J^{\prime}} G\left(0, s-1 ; I^{\prime}\right) G\left(1, s ; J^{\prime}+1\right)$ is in fact a summand on the right-hand side of (6.5), we have to explain why $i_{k}^{\prime} \leq k$ and $j_{k}^{\prime} \leq k-1$. Note that $j_{k} \leq k-1$ for $1 \leq k \leq s-1$ and $i_{k} \leq k$ for $0 \leq k \leq s$. Furthermore, we have $i_{k} \leq k-1$ for $k \geq v$ since $i_{v}=0$ and $G(0, s ; I)$ splits in position v, which means that $k-i_{k} \geq v \geq 1$ for $k \geq v$. By definition of j_{k}^{\prime} and i_{k}^{\prime}, it now follows that $j_{k}^{\prime} \leq k-1$ for $1 \leq k \leq s$, and $i_{k}^{\prime} \leq k$ for $0 \leq k \leq s-1$.

Now that we know that $p^{I^{\prime}+J^{\prime}} G\left(0, s-1 ; I^{\prime}, G\left(1, s ; J^{\prime}+1\right)\right.$ is in fact a summand on the right-hand side of congruence (6.5), we prove the following proposition. Remark that obviously, we have $p^{I+J}=p^{I^{\prime}+J^{\prime}}$.

Proposition 9.1 Let I, J, I^{\prime} and J^{\prime} be defined as above. Then,

$$
G(0, s, I) G(1, s-1 ; J+1)=G\left(0, s-1 ; I^{\prime}\right) G\left(1, s ; J^{\prime}+1\right) .
$$

Thus, we can identify each summand on the left-hand side of (6.5) with a summand on the right-hand side.

Proof By a direct computation, we have

$$
\begin{aligned}
& G(0, s ; I) G(1, s-1 ; J+1) \\
& \quad=G(0, v-1 ; I) G(v, s ; I) G(1, v-1 ; J+1) G(v, s-1 ; J+1) \text { (by Lemma 8.4) } \\
& \quad=G(0, v-1 ; I) G(v, s ; I+1) G(1, v-1 ; J+1) G(v, s-1 ; J)(\text { by (9.1)) } \\
& \quad=G(0, v-1 ; I) G(v, s-1 ; J) G(1, v-1 ; J+1) G(v, s ; I+1)(\text { commutation) } \\
& \quad=G\left(0, v-1 ; I^{\prime}\right) G\left(v, s-1 ; I^{\prime}\right) G\left(1, v-1 ; J^{\prime}+1\right) G\left(v, s ; J^{\prime}+1\right)\left(\text { by definition of } I^{\prime}, J^{\prime}\right) \\
& \quad=G\left(0, s-1 ; I^{\prime}\right) G\left(1, s ; J^{\prime}+1\right)(\text { by Lemma } 8.4),
\end{aligned}
$$

so the statement follows. Note that the last equality follows since by definition of I^{\prime} and J^{\prime}, $i_{v}^{\prime}=j_{v}^{\prime}=0, k-i_{k}^{\prime} \geq v$ and $k-j_{k}^{\prime} \geq v$ for $k>v$. Thus, $G\left(0, s-1 ; I^{\prime}\right)$ and $G\left(1, s ; J^{\prime}+1\right)$ both split at v.

Since by Proposition 9.1, we can identify every summand on the left-hand side of Eq. (6.5) satisfying $I+J \leq s-1$ with a summand on the right-hand side, both sides are equal modulo p^{s} and the proof of Theorem 4.3 is complete.

Remark The above arguments to prove the congruence $D 3$ can be slightly simplified, as was shown to us by A. Mellit.

10 The examples of Batyrev and Kreuzer

In their paper Batyrev and Kreuzer [5] list several Laurent polynomials f with reflexive Newton polyhedron $\Delta(f)$, whose fibres are supposed to compactify to Calabi-Yau 3-folds with $h^{12}=1$.

Example No. 24 in their list is

$$
\begin{aligned}
f:= & 1 / X_{4}+X_{2}+1 / X_{1} X_{4}+1 / X_{1} X_{3} X_{4}+1 / X_{1} X_{2} X_{3} X_{4}+1 / X_{3} \\
& +X_{1} / X_{3}+X_{2} / X_{3} X_{4}+X_{1} / X_{3} X_{4}+X_{1} X_{2} / X_{3} X_{4}+X_{2} / X_{4} \\
& +1 / X_{2} X_{4}+1 / X_{1} X_{2} X_{4}+1 / X_{1} X_{2}+1 / X_{1}+1 / X_{2} X_{3} X_{4} \\
& +X_{4}+1 / X_{2}+X_{1}+X_{1} / X_{4}+1 / X_{3} X_{4}+X_{3}+1 / X_{2} X_{3} .
\end{aligned}
$$

to which our Theorem 4.3 applies: the coefficients $a(n):=\left[f^{n}\right]_{0}$, where
$a(0)=1, a(1)=0, a(2)=18, a(3)=168, a(4)=2430, a(5)=37200, a(6)=605340$,
satisfy the congruence $D 3$ modulo p^{s} for arbitrary s.
The power series $\Phi(t)=\sum_{n=0}^{\infty} a(n) t^{n}$ is solution to a rather complicated fourth order linear differential equation $P F=0$, where

$$
\begin{aligned}
P:= & 97^{2} \theta^{4}+97 t \theta\left(-291-1300 \theta-2018 \theta^{2}+1727 \theta^{3}\right) \\
& \left.+\cdots+2^{6} 3^{3} 13^{4} 7457 \cdot t^{11}(\theta+1)(\theta+2)(\theta+3)(\theta+4)\right),
\end{aligned}
$$

(with $\theta:=t \partial / \partial t$). This operator was determined by Metelitsyn [9].
Example Of particular interest is the much simpler Laurent polynomial f corresponding to No. 62 from the list of Batyrev and Kreuzer [5], which is given by

$$
f:=X_{1}+X_{2}+X_{3}+X_{4}+\frac{1}{X_{1} X_{2}}+\frac{1}{X_{1} X_{3}}+\frac{1}{X_{1} X_{4}}+\frac{1}{X_{1}^{2} X_{2} X_{3} X_{4}} .
$$

Then, the coefficients $a(n)$ are given by $a(n)=0$ if $n \neq 0 \bmod 3$ and

$$
a(3 n)=\frac{(3 n)!}{n!^{3}} \sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k} .
$$

The Newton polyhedron $\Delta(f)$ is reflexive (see [5]), and hence by Theorem 4.3, the coefficients $a(n)$ satisfy the congruence (4.1) modulo p^{s} for arbitrary s. The power series $\Phi(t)=\sum_{n=0}^{\infty} a(3 n) t^{n}$ is solution to a fourth order linear differential equation $P F=0$, where the differential operator P is of Calabi-Yau type and is given by
$P:=\theta^{4}-3 t(3 \theta+2)(3 \theta+1)\left(11 \theta^{2}+11 \theta+3\right)-9 t^{2}(3 \theta+5)(3 \theta+2)(3 \theta+4)(3 \theta+1)$.
Since in this example (as in many others), only the coefficients $a(n)$ with $n=3 k$ are nonzero, it would be good to prove the following congruence for this example:

$$
\begin{aligned}
& a\left(3\left(n_{0}+n_{1} p+\cdots+n_{s} p^{s}\right)\right) a\left(3\left(n_{1}+\ldots+n_{s-1} p^{s-2}\right)\right) \\
& \quad \equiv a\left(3\left(n_{0}+\cdots+n_{s-1} p^{s-1}\right)\right) a\left(3\left(n_{1}+\cdots+n_{s} p^{s-1}\right)\right) \quad \bmod p^{s} .
\end{aligned}
$$

11 Behaviour under covering

The last example raises the question after a congruence among the k-fold coefficients if $a(n) \neq 0$ implies $k \mid n$. As before, we consider a Laurent polynomial f corresponding to Newton polyhedron $\Delta(f)$ with a unique interior point. Let \mathcal{A} be the exponent matrix corresponding to f, and consider the vectors with integral entries in the kernel of \mathcal{A}. If there exists a positive integer k such that

$$
\ell: \left.=\left(\begin{array}{l}
\ell_{1} \\
\vdots \\
\ell_{m}
\end{array}\right) \in \operatorname{ker}(\mathcal{A}) \Rightarrow k \right\rvert\,\left(\ell_{1}+\cdots+\ell_{m}\right)
$$

then it follows that

$$
a(n):=\left[f^{n}\right]_{0} \neq 0 \Rightarrow k \mid n,
$$

since for $l \in \mathbb{N}$,

$$
\left[f^{l}\right]_{0}=\sum_{\left(\ell_{1}, \ldots, \ell_{m}\right) \in A_{f, l}}\binom{l}{\ell_{1}, \ell_{2}, \ldots, \ell_{m}},
$$

where

$$
A_{f, l}:=\operatorname{ker}(\mathcal{A}) \cap\left\{\left(\ell_{1}, \ldots, \ell_{m}\right) \in \mathbb{N}_{0}^{m}: \ell_{1}+\cdots+\ell_{m}=l\right\}
$$

We are interested in the congruences

$$
\begin{align*}
& a\left(k\left(n_{0}+\cdots+n_{s} p^{s}\right)\right) a\left(k\left(n_{1}+\cdots+n_{s-1} p^{s-2}\right)\right) \\
& \quad \equiv a\left(k\left(n_{0}+\cdots+n_{s-1} p^{s-1}\right)\right) a\left(k\left(n_{1}+\cdots+n_{s} p^{s-1}\right)\right) \quad \bmod p^{s}, \tag{11.1}
\end{align*}
$$

which we will prove in general for $s=1$, and which we will prove for one example by proving that the following condition is satisfied:

Condition 1 For a tuple $\left(\ell_{1}, \ldots, \ell_{m}\right)$ with

$$
\ell_{1}+\cdots+\ell_{m}=k \mu \leq k(p-1),
$$

it follows that

$$
p \mid \operatorname{gcd}\left(\sum_{j=1}^{m} a_{i, 1} \ell_{1}, \ldots, \sum_{j=1}^{m} a_{j, n} \ell_{j}\right) \Rightarrow \sum_{j=1}^{m} a_{i, 1} \ell_{j}=\cdots=\sum_{j=1}^{m} a_{j, n} \ell_{j}=0 .
$$

Note that the proof is similar for many other examples which we will not treat in here.
First of all, before we come to the example, we give a general proof of (11.1) for $s=1$.
Proposition 11.1 Let $a(n), n \in \mathbb{N}$ be an integral sequence satisfying

$$
a\left(n_{0}+n_{1} p\right) \equiv a\left(n_{0}\right) a\left(n_{1}\right) \quad \bmod p
$$

for $0 \leq n_{0} \leq p-1$ and $a(n) \neq 0$ iff $k \mid n$. Then

$$
a\left(k\left(n_{0}+n_{1} p\right)\right) \equiv a\left(k n_{0}\right) a\left(k n_{1}\right) \quad \bmod p
$$

Proof If $k n_{0}<p$, then the proposition follows directly. Hence let us assume that $k n_{0}=$ $n_{0}^{\prime}+n_{0}^{\prime \prime} p>p-1$. Then

$$
a\left(k\left(n_{0}+n_{1} p\right)\right)=a\left(n_{0}^{\prime}+\left(k n_{1}+n_{0}^{\prime \prime}\right) p\right) \equiv a\left(n_{0}^{\prime}\right) a\left(k n_{1}+n_{0}^{\prime \prime}\right) \quad \bmod p
$$

Since $k \nmid n n_{0}^{\prime}$ and $a\left(n_{0}^{\prime}\right)=0$ by assumption, it follows on the one hand that

$$
a\left(k\left(n_{0}+n_{1} p\right)\right) \equiv 0 \quad \bmod p .
$$

On the other hand,

$$
a\left(k n_{0}\right)=a\left(n_{0}^{\prime}+n_{0}^{\prime \prime} p\right) \equiv a\left(n_{0}^{\prime}\right) a\left(n_{0}^{\prime \prime}\right) \quad \bmod p \quad \text { where } a\left(n_{0}^{\prime}\right)=0,
$$

and thus $a\left(k n_{0}\right) \equiv 0 \bmod p$ and

$$
a\left(k n_{0}\right), a\left(k n_{1}\right) \equiv 0 \quad \bmod p
$$

so the proposition follows.

11.1 An example

In the example of the Laurent polynomial No. 62 in the list of Batyrev and Kreuzer [5], the exponent matrix is

$$
\mathcal{A}:=\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & -1 & -1 & -1 & -2 \\
0 & 1 & 0 & 0 & -1 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 & 0 & -1 & 0 & -1 \\
0 & 0 & 0 & 1 & 0 & 0 & -1 & -1
\end{array}\right) .
$$

A basis of $\operatorname{ker}(\mathcal{A})$ is given by

$$
\left\{\left(\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0 \\
1 \\
0 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
2 \\
1 \\
1 \\
1 \\
0 \\
0 \\
0 \\
1
\end{array}\right)\right\}
$$

and thus it follows that $\left[f^{n}\right]_{0} \neq 0 \Rightarrow 3 \mid n$ and $k=3$. We prove that Condition 1 is satisfied in this example. Assume that $p \neq 3$ and that

$$
p \mid \operatorname{gcd}\left(\sum_{j=1}^{8} a_{1, j} \ell_{j}, \ldots, \sum_{j=1}^{8} a_{4, j} \ell_{j}\right) \quad \text { for } \ell_{1}+\cdots+\ell_{8}=3 \mu \leq 3(p-1) .
$$

This means that there exist $x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{Z}$ such that

$$
\left\{\begin{array}{l}
\ell_{1}=\ell_{5}+\ell_{6}+\ell_{7}+2 \ell_{8}+x_{1} p \\
\ell_{2}=\ell_{5}+\ell_{8}+x_{2} p \\
\ell_{3}=\ell_{6}+\ell_{8}+x_{3} p \\
\ell_{4}=\ell_{7}+\ell_{8}+x_{4} p,
\end{array}\right.
$$

which implies

$$
3\left(\ell_{5}+\ell_{6}+\ell_{7}+2 \ell_{8}\right)+\left(x_{1}+x_{2}+x_{3}+x_{4}\right) p=3 \mu \leq 3(p-1) .
$$

Thus, it follows that $\left(x_{1}+\cdots+x_{4}\right)=3 z$ for some $z \in \mathbb{Z}$ and that

$$
\ell_{5}+\ell_{6}+\ell_{7}+2 \ell_{8}+z p=\mu \leq p-1 .
$$

Since $\ell_{5}, \ldots, \ell_{8}$ are nonnegative integers, it follows directly that $z \leq 0$. Now, consider the two following cases:
(1) Let $z=0$. Then,

$$
\begin{equation*}
\ell_{5}+\ell_{6}+\ell_{7}+2 \ell_{8} \leq p-1 . \tag{11.2}
\end{equation*}
$$

Assume that $x_{i}<0$, i.e., $x_{i} \leq-1$ for some $1 \leq i \leq 4$. Since $\ell_{1}, \ldots, \ell_{4}$ are nonnegative integers, it follows that either $\ell_{5}+\ell_{6}+\ell_{7}+2 \ell_{8} \geq p$ or $\ell_{j}+\ell_{8} \geq p$ for some $5 \leq j \leq 7$, a contradiction to (11.2). Thus, since $x_{1}+x_{2}+x_{3}+x_{4}=0$, it follows that $x_{1}=x_{2}=x_{3}=x_{4}=0$ and that

$$
\sum_{j=1}^{8} a_{1, j} \ell_{j}=\cdots=\sum_{j=1}^{8} a_{4, j} \ell_{j}=0
$$

in this example.
(2) Let $z<0$. Assume that $\ell_{5}+\ell_{6}+\ell_{7}+2 \ell_{8}<(-z+1) p$. Since $\ell_{1} \geq 0$, it follows that $x_{1}>z-1$, and since x_{1} is integral, that $x_{1} \geq z$. Since $x_{1}+x_{2}+x_{3}+x_{4}=3 z$, it follows that $x_{2}+x_{3}+x_{4} \leq 2 z$. Now assume that $x_{i} \geq z$ for $2 \leq i \leq 4$. Then $x_{2}+x_{3}+x_{4} \geq 3 z$, a contradiction. Hence there exists an index i such that $x_{i}<z$, and hence $x_{i} \leq z-1$. Since $\ell_{i} \geq 0$, it follows that $\ell_{i+2}+\ell_{8} \geq(-z+1) p$, a contradiction since

$$
\ell_{i+2}+\ell_{8} \leq \ell_{5}+\ell_{6}+\ell_{7}+2 \ell_{8}<(-z+1) p
$$

by assumption. Thus, we have $\ell_{5}+\ell_{6}+\ell_{7}+2 \ell_{8} \geq(-z+1) p$, which implies $p \leq$ $\ell_{5}+\ell_{6}+\ell_{7}+2 \ell_{8}+z p \leq p-1$, a contradiction.

Thus, it follows that the only possible case is $z=0$, and $x_{1}=x_{2}=x_{3}=x_{4}=0$, which proves that Condition 1 is satisfied in this example.

12 The statement D1

For the proof of congruence (4.1), the coefficients $c_{\mathbf{a}}$ of

$$
f(X)=\sum_{\mathbf{a}} c_{\mathbf{a}} X^{\mathbf{a}}
$$

did not play a role. This is different if one is interested in the proof of part D1 of the Dwork congruences. Let $n \in \mathbb{N}$, and write $n=n_{0}+p n_{1}$, where $n_{0} \leq p-1$. Then, to prove D 1 for the sequence $a(n):=\left[f^{n}\right]_{0}$ means that one has to prove that

$$
\begin{equation*}
\frac{\left[f^{n_{0}+n_{1} p}\right]_{0}}{\left[f^{n_{1}}\right]_{0}} \in \mathbb{Z}_{p} \tag{12.1}
\end{equation*}
$$

Sticking to the notation of the previous sections, we write

$$
\begin{equation*}
f^{n_{0}+n_{1} p}(X)=f^{n_{0}}(X) f^{n_{1}}\left(X^{p}\right)+p f^{n_{0}}(X) g_{n-1,1}(X) \tag{12.2}
\end{equation*}
$$

Assume that $p^{k} \mid\left[f^{n_{1}}\right]_{0}$. To prove (12.1), one has to prove that $p^{k} \mid\left[f^{n_{0}+n_{1} p}\right]_{0}$. By (12.2), this is equivalent to proving that $p^{k-1} \mid\left[f^{n_{0}} g_{n_{1}, 1}(X)\right]_{0}$. Thus, the proof of part D1 of the Dwork congruences requires an investigation in the p-adic orders of the constant terms of $f^{n_{1}}$ and $g_{n_{1}, 1}$ for arbitrary n_{1}, and requires methods that are completely different from the methods we applied to prove the congruence $D 3$.

Acknowledgments We thank A. Mellit for his comments. The work of the first author was funded by the SFB Transregio 45 Mainz-Bonn-Essen.

References

1. Almkvist, G., van Enckevort, C., van Straten, D., Zudilin, W.: Tables of Calabi-Yau equations. arXiv:math/0507430
2. Apéry, R.: Irrationalité de $\zeta(2)$ et ζ (3). Asérisque 61, 11-13 (1979)
3. Beukers, F.: Some congruences for the Apéry numbers. J. Number Theory 21, 141-155 (1985)
4. Beukers, F.: Another congruence for the Apéry numbers. J. Number Theory 25, 201-210 (1987)
5. Batyrev, V., Kreuzer, M.: Constructing new Calabi-Yau 3-folds and their mirrors via conifold transitions. Adv. Theor. Math. Phys. 14(3), 879-898 (2010)
6. Doran, C., Kerr, M.: Algebraic K-theory of toric hypersurfaces. CNTP 5(2), 397-600 (2011)
7. Duistermaat, J., van der Kallen, W.: Constant terms in powers of a Laurent polynomial. Indag. Math. 9, 221-231 (1998)
8. Dwork, B.: p-adic cycles. Publ. Math. de l'I.H.E.S., tome 37, 27-115 (1969)
9. Metelitsyn, P.: How to compute the constant term of a power of a Laurent polynomial efficiently. arXiv:1211.3959
10. Samol, K., van Straten, D.: Frobenius polynomials for Calabi-Yau equations. Commun. Number Theory Phys. 2(3), 537-561 (2008)
11. Jeng-Daw, Yu.: Notes on Calabi-Yau ordinary differential equations. Commun. Number Theory Phys. 3(3), 475-493 (2009)
