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Frobenius polynomials for Calabi–Yau equations
Kira Samol and Duco van Straten

We describe a variation of Dwork’ s unit-root method to determine
the degree 4 Frobenius polynomial for members of a 1-modulus
Calabi–Yau family over P

1 in terms of the holomorphic period
near a point of maximal unipotent monodromy. The method is
illustrated on a couple of examples from the list [3]. For singular
points, we find that the Frobenius polynomial splits in a product
of two linear factors and a quadratic part 1 − apT + p3T 2. We
identify weight 4 modular forms which reproduce the ap as Fourier
coefficients.

1. Introduction

Given a projective morphism f : X −→ P
1 with smooth generic n − 1-

dimensional fibre, the sheaf Rn−1f∗(QX) restricts to a Q-local system H

over the smooth locus S ⊂ P
1 of f and hence determines, after the choice

of a base-point s0 ∈ S, a monodromy representation π1(S, s0) −→ Aut(Hs0).
The local system H carries a non-degenerate (−1)n−1-symmetric pairing

< −,− >: H ⊗ H −→ QS

induced by the intersection form in the fibres. Hence we can identify H with
its dual and the monodromy representation lands in a symplectic (n − 1
odd) or orthogonal group (n − 1 even). The primitive part of H underlies a
variation of Hodge structures (VHS), polarized by < −,− >, see [18].

We call a sub-VHS L ⊂ H a CY(n)-local system if the local monodromy
around 0 ∈ P

1 \ S is unipotent and consists of a single Jordan block of size
n. Hence, L is irreducible of rank n and the non-vanishing subquotients
GrW

2k (k = 0, 1, . . . , n − 1) of the monodromy weight filtration all have dimen-
sion equal to one. The Hodge filtration F · of the limiting mixed Hodge
structure at 0 is opposite to the weight filtration [9, 17]. If ω is a section of
the smallest Hodge space Fn−1 and γ a local section of L near 0, then the
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period function

f0 :=< γ, ω >

is holomorphic near 0 and satisfies a linear differential equation of order n,
called the associated Picard–Fuchs equation.

We call a linear differential operator of order n

P =
dn

dx
+ an−1(x)

dn−1

dx
+ · · · + a0(x) ∈ Q(x)

[
d

dx

]

a CY(n)-operator if

1. P has maximal unipotent monodromy at 0 (MUM).

2. P is self-dual in the sense that

P = (−1)n exp
(

− 2
n

∫
an−1

)
◦ P ∗ ◦ exp

(
2
n

∫
an−1

)
,

where ◦ means the composition of differential operators.

3. P has a convergent power series solution f0(x) ∈ Z[[x]] with f0(0) = 1.

The first condition implies that the operator P is irreducible and can
(after left multiplication by xn) be written in the form

θn + xP1(θ) + x2P2(θ) + · · · + xdPd(θ),

where θ := x d
dx and Pi(θ) ∈ Q[θ] is a polynomial in θ. We remark that

exp(
∫

an−1) ∈ Q(x) precisely if the differential Galois group of P belongs to
SL(n). In the second condition P ∗ is the formal adjoint of P . The condition
is equivalent to the condition that the transformed operator

P̃ = exp
(

1
n

∫
an−1

)
◦ P ◦ exp

(
− 1

n

∫
an−1

)
=

dn

dx
+ 0

dn−1

dx
+ · · ·

satisfies

P̃ = (−1)nP̃ ∗

which translates into �(n − 1)/2� differential-polynomial conditions on the
coefficients ai. These express the conditions that the differential Galois
group of P is in the symplectic or orthogonal group. For n = 4, one finds
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the condition of [2]:

a1 =
1
2
a2a3 − 1

8
a3

3 + a′
2 − 3

4
a3a3 − 1

2
a′′

3

If the Yukawa coupling is non-constant, then the differential Galois group is
Gal(P )0 = Sp(4) in general, see [6]. In [3], one finds a list with more than
350 examples of such fourth-order operators.

Because of the MUM-condition, the solution f0(x) from the third con-
dition is unique and conversely determines the operator P . As f0 is a
G-function, the operator P is a G-operator and hence by a theorem of Katz
is of fuchsian type with rational exponents, see [4].

A Picard–Fuchs operator that arises from a geometrical situation as
sketched above will satisfy the first two conditions and the period function
f0 will be a so-called G-function, see [4]. It would therefore perhaps seem
more natural to require f0 to be a G-function. However, requiring integrality
of the solution covers all interesting examples and helps fixing the coordinate
x. In [2], for n = 4, further integrality properties for the mirror map and
Yukawa coupling were required.

CY(2)-operators arise from families of elliptic curves, CY(3)-operators
arise from families of K3 with Picard-number 19 with a point of maximal
degeneration (type III in the terminology of [12]). CY(4)-operators arise
from families of Calabi–Yau 3-folds with h12 = 1 that are studied in mirror
symmetry, [7].

Dwork and Bombieri have conjectured conversely that all G-operators
come from geometry. So one may ask: is the local system of solutions Sol(P )
of a CY(n)-operator of the form C ⊗ L, where L is a CY(n)-local system in
the above sense? When can one achieve L = H? If L = H, can one find a
family f : X −→ P

1 with generic fibre a Calabi–Yau n − 1-fold?
We refer to [11] for a conjectural approach via mirror symmetry for

CY(4)-operators.
Now suppose the whole situation is defined over Z and consider the

reduction of X −→ P
1 modulo some prime number p. The object L ⊂

Rn−1f∗(Ql) (l 	= p now defines an l-adic sheaf on P
1, lisse (that is, smooth)

in some subset S. In particular, for each point s : Spec(k) −→ S, one has an
action of Gal(k̄/k) on the stalk Ls. Hence one obtains a Frobenius element
Frobs ∈ Aut(Ls) and

Ps(T ) := det(1 − T · Frobs) ∈ Z[T ]

determines a factor of the zeta function of the reduction Xs mod p.
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To get a computational handle on these Frobenius polynomials, it turns
out to be useful to change to a de Rham-type description of the cohomol-
ogy [14]. It was Dwork who realized early that there is a tight interaction
between the Gauss–Manin connection and the Frobenius operator. This
leads in general to a relation between periods and the zeta function and in
1958 he gave his famous p-adic analytic formula for the Frobenius polyno-
mial in terms of a solution of the Picard–Fuchs differential equation for the
Legendre family of elliptic curves, which we will now review.

The affine part of the Legendre family is given by

Xs : y2 = x(x − 1)(x − s),

where s 	= 0, 1. Over C, the relative de Rham cohomology H1
dR of the fam-

ily is free of rank 2, and the Hodge filtration Fil1H1
dR is generated by the

differential

ω :=
dx

y
.

Let ∇ be the Gauss–Manin connection on H1
dR. Then, ω satisfies the differ-

ential equation

s(s − 1)ω′′ + (1 − 2s)ω′ − 1
4
ω = 0,

where ω′ = ∇(ω). Let f0 be the unique solution in C[[s]] to the above differ-
ential equation satisfying f0(s) = 1. f0 is then given by the hypergeometric
series

f0(s) = F

(
1
2
,
1
2
, 1, s

)
=

∞∑
j=0

(
(1/2)j

j!

)2

sj .

Now let s0 ∈ Fpa such that f
(p−1)/2
0 (s0) 	= 0, where f

(p−1)/2
0 is the trun-

cation of f0 up to degree (p − 1)/2. Let ŝ be the Teichmüller lifting of s0 to
W (Fpa). The formal power series

h(s) :=
f0(s)
f0(sp)

converges at ŝ and can be evaluated there. If ε = (−1)(p−1)/2, the element

π := εaf0(ŝ)f0(ŝp) · · · f0(ŝpa−1
)

is a reciprocal zero of the Frobenius polynomial, and the zeta function of
Xs0 is given by

ζ(Xs0 , T ) =
(1 − πT )(1 − pa/πT )

(1 − T )(1 − paT )
.
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Thus, Dwork found a way to derive a formula for the Frobenius polyno-
mial, which does only depend (up to ε) on the solution of the Picard–Fuchs
differential equation. The geometrical origin of ε lies in the geometry of the
singular fibre X0, which has a node with tangent cone x2 + y2 = 0, which
splits over Fp precisely when ε = 1.

In this paper, we will consider the following

Question. Given a CY(n)-operator P of f : X −→ P
1 defined over Z, is

there a way to calculate the Frobenius polynomials Ps(T )?
We describe a method to solve this problem for n = 4 (modulo “ε”) and

illustrate the procedure on some non-trivial examples.

2. Dworks unit-root crystals

We give a short introduction to the theory of Hodge F -crystals, which pro-
vides a framework to formalize the interaction between the Gauss–Manin
connection and the Frobenius operator. (see [8, 13,20,22]).

Let k be a perfect field of characteristic p > 0, and let W (k) be the
ring of Witt vectors of k. Let A be the ring W (k)[z][g(z)−1], where g is
a polynomial in z (which will be specified later according to the actual
situation), and let An be the ring A/pn+1A. By A∞ := lim

←
A/pn+1A, we

denote the p-adic completion of A.
Let σ be the absolute Frobenius on k, given by σ(x) = xp. Following [22],

we define

Definition 2.1. 1. An F -crystal over W (k) is a free W (k)-module H of
finite rank with a σ-linear endomorphism

F : H → H

such that F ⊗ Qp : H ⊗ Qp → H ⊗ Qp is an isomorphism. If F itself
is an isomorphism, we call H a unit-root F -crystal.

2. A Hodge F -crystal over W (k) is an F -crystal H equipped with a fil-
tration by free W (k)-submodules

H = Fil0H ⊃ Fil1H ⊃ · · · ⊃ FilN−1H ⊃ FilNH = 0

(called the Hodge filtration on H) which satisfies F (FiliH) ⊂ piH
for all i.
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The Frobenius automorphism σ on k lifts canonically to an automorphism
σ on W (k).

There are different lifts of the Frobenius σ on A∞, which restrict to σ
on W (k) and reduce to the p-th power map modulo p. Let φ : A∞ → A∞
be such a lift of Frobenius.

Definition 2.2. An F -crystal over A∞ is a finitely generated free A∞-
module H with an integrable and p-adically nilpotent connection

∇ : H → ΩA∞/W (k) ⊗A H

such that for every lift φ : A∞ → A∞ of Frobenius, there exists a homomor-
phism of A∞-modules

F (φ) : φ∗H → H

such that the square

H
∇ ��

F (φ)φ∗

��

Ω1
A∞/W (k) ⊗ H

φ⊗F (φ)φ∗

��

H
∇ �� Ω1

A∞/W (k) ⊗ H

is commutative, and such that F (φ) ⊗ Qp : φ∗H ⊗ Qp → H ⊗ Qp is an iso-
morphism. If F (φ) itself is an isomorphism, we call H a unit-root crystal.

From now on, to simplify the notation, we set F := F (φ)φ∗.

Definition 2.3. A divisible Hodge F -crystal H is an F -crystal H equipped
with a filtration by free A∞-submodules

H = Fil0H ⊃ Fil1H ⊃ · · · ⊃ FilN−1H ⊃ FilNH

(called the Hodge filtration on H) which satisfies

1. ∇FiliH ⊂ Ω1
A∞/W (k) ⊗A∞ Fili−1H;

2. F (FiliH) ⊂ piH.

Proposition 2.1. Let H be a divisible Hodge F -crystal where H/Fil1H is
free of rank 1. Then ∧2H is a divisible Hodge F -crystal, with homomorphism
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of A∞-modules
1
p

∧2 F : ∧2H → ∧2H

and with Hodge filtration given by

Fili−1(∧2H) =
i∑

k=0

FilkH ∧ Fili−kH

for i ≥ 1.

Proof. Since H/Fil1H is of rank 1, Fil0 ∧ Fil0 = Fil0 ∧ Fil1.
Let a ∈ FilkH and b ∈ Fili−kH.Then, a ∧ b ∈ Fili−1(∧2H) and

1
p

∧2 F (a ∧ b) =
1
p
Fa ∧ Fb ∈ 1

p
pkH ∧ pi−kH = pi−1 ∧2 H.

For i ≥ 2,

∇(a ∧ b) = ∇(a) ∧ b + a ∧ ∇(b) ∈ ΩA∞/W (k) ⊗A∞ Fili−2(∧2H).

Let k′ be a perfect field extension of k and let e0 : A0 → k′ be a
k-morphism. Let e0(z) = α0, let α be the Teichmüller lifting of α0 in W (k′)
and let e : A∞ → W (k′) be the W (k)-morphism with e(z) = α. By Hα, we
denote the Teichmüller representative Hα := H ⊗(A∞,e) W (k′) of the crystal
H at the point e0, which is an F -crystal with corresponding map Fα := e∗F .
If H is a Hodge F -crystal, then so is Hα.

On W (k′)[[z − α]], we put the natural connection ∇ and choose the lift
of Frobenius given by φ(z) = zp. �

Theorem 2.1 ([22, Theorem 2.1] or [13, Theorem 4.1]). Let k̄ be the alge-
braic closure of k, and let H be a divisible Hodge F -crystal over A∞.

If H/Fil1H is of rank 1 and if for every k-morphism e0 : A0 → k̄ with
e0(z) = α0 and α ∈ W (k̄) a Teichmüller lifting of α0, Hα contains a direct
factor of rank 1, transversal to Fil1Hα, which is fixed by the map induced
by F on Hα, then there exists a unique unit-root F-subcrystal U of H such
that H = U ⊕ Fil1H as A∞-modules.

Suppose that over A∞, U is locally generated by u. Write F (u) = r(z)u
for r(z) ∈ A∗

∞. Then we have

1. Let e0 : A0 → k′ be a k-morphism to a perfect field extension k′ of k
with e0(z) = α0 where u is defined. Let α be the Teichmüller lifting
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of α0. Then there exists an f0 ∈ W (k′)[[z − α]] such that v := f0 · u ∈
W (k′)[[z − α]] ⊗A∞ H is horizontal with regard to ∇ and the quotient
f0/fφ

0 is in fact the expansion of an element in A∞.

2. There exists c ∈ W (k̄) such that c · v ∈ W (k̄) ⊗W (k) H is fixed by F

and r(z) = (cf0)/(cf0)φ.

The fact that f0/fφ
0 ∈ A∞ although f0 ∈ W (k)[[z − α]] means that f0/fφ

0
is a local expression of a “global” function. Although f0 itself does only con-
verge in a neighbourhood of α, the global function expressed by the ratio
f0/fφ

0 converges at any Teichmüller point in Spec(A∞).

2.1. CY(4)-operators and the corresponding crystals

Now let P be a CY(4)-operator. We assume that P is the Picard–Fuchs
operator on a rank 4 submodule H ⊂ H3

dR(X/S∞) for some family f : X →
S∞ of smooth CY 3-folds.

Let k be the finite field with pr elements. From now on, we have
S∞ = Spec(A∞), where A = W (k)[z][(zs(z)g(z))−1] for some polynomials
g(z) and s(z). We assume that over the roots of s(z), the family becomes
singular. We will specify the polynomial g(z) later (see Section 2.4); it
will be chosen in a way such that over each Teichmüller point α ∈ S∞, the
Frobenius polynomial on Hα is of the form

P := 1 + aT + bpT 2 + ap3T 3 + p6T 4.

with four different reciprocal roots

r1, pr2,
p2

r2
,

p3

r1
,

where r1 and r2 are p-adic units. Hence, giving a formula for the polynomial
P is equivalent to giving formulas for the p-adic units r1 and r2.

In general, if f : V → V is a homomorphism of vector spaces, then the
eigenvalues of ∧2f : ∧2V → ∧2V are given by products ab, where a and b
are eigenvalues of f corresponding to linearly independent eigenvectors.

Let α0 ∈ S0, and let α ∈ S∞ be the Teichmüller lifting of α0. By Propo-
sition 2.1, the Frobenius automorphism on each fibre ∧2Hα of the crystal
∧2H is given by 1

p ∧2 Fα, where Fα is the Frobenius on Hα ⊂ H3
dR(Xα). The

eigenvalues of the relative Frobenius (∧2Fα)r on the fibres ∧2Hα are of the
form aαbα/p, where aα and bα are eigenvalues of the relative Frobenius F r

α
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on the corresponding fibre Hα. Thus, if r1 is the unit root on a fibre Hα,
and r̂1 is the unit root on the corresponding fibre ∧2Hα, then the roots of
the Frobenius polynomial det(1 − TF r

α) on Hα are given by

(2.1) r1,
pr̂1

r1
,

p2r1

r̂1
,

p3

r1
.

We will give p-adic analytic formulas for the unit roots r1 and r̂1.

2.2. Horizontal sections for CY differential operators of
order 4 and 5

Let P be a CY(4)-operator. The differential equation Py = 0 can be written
in the form

y(4) + a3y
(3) + a2y

(2) + a1y
(1) + a0y = 0,

where the coefficients ai satisfy the following relation:

(2.2) a1 =
1
2
a2a3 − 1

8
a3

3 + a′
2 − 3

4
a3a

′
3 − 1

2
a′′

3.

Proposition 2.2 [22]. Let P be a CY(4) differential operator and let
(H, ∇) be a Q(z)/Q differential module. Let ω ∈ H such that

∇4ω + a3∇3ω + a2∇2ω + a1∇ω + a0ω = 0

and let f0 ∈ Q[[z]] be a formal solution to the differential equation Py = 0. If
Y := exp

(
1/2

∫
a3

)
∈ Q[[z]], then the following element u4 ∈ H ⊗Q[z] Q[[z]]

is horizontal with regard to ∇:

u4 = Y [f0∇3(ω) − f ′
0∇2(ω) + f ′′

0 ∇(ω) − f ′′′
0 ω]

+(Y a3 − Y ′)[f0∇2(ω) − f ′′
0 ω]

+(Y a2 − (Y a3)′ + Y ′′)[f0∇(ω) − f ′
0ω].(2.3)

Proof. See [22]. The proof is by direct computation, using (2.2). �

Now let Q be a CY(5)-operator. The differential equation Qy = 0 can
be written in the form

y(5) + b4y
(4) + b3y

(3) + b2y
(2) + b1y

(1) + b0y = 0.
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Proposition 2.3. The operator Q satisfies the second condition for CY(5)
of the introduction if and only if the coefficients bi(z) satisfy the relations

(2.4) b2 =
3
5
b3b4 − 4

25
b3
4 +

3
2
b′
3 − 6

5
b4b

′
4 − b′′

4

and

b0 =
1
2
b′
1 − 2

125
b3b

3
4 +

1
5
b1b4 − 1

10
b3b

′′
4 +

2
5
b′′′
4 b4 +

4
5
b′′
4b

′
4 +

16
125

b′
4b

3
4

+
12
25

(b′
4)

2b4 − 3
10

b′′
3b4 +

8
25

b2
4b

′′
4 − 3

10
b′
3b

′
4 − 3

25
b2
4b

′
3 − 1

4
b′′′
3 +

16
3125

b5
4

+
1
5
b′′′′
4 − 3

25
b3b

′
4b4.(2.5)

Proof. By direct calculation, for details we refer to [6]. �

Proposition 2.4. Let Q be a CY(5) differential operator and let (H, ∇) be
a Q(z)/Q differential module. Let η ∈ H such that

∇5η + b4∇4η + b3∇3η + b2∇2η + b1∇η + b0η = 0

and let F0 ∈ Q[[z]] be a formal solution to the differential equation Qy = 0. If
Y := exp

(
2/5

∫
b4

)
∈ Q[[z]], then the following element u5 ∈ H ⊗Q[z] Q[[z]]

is horizontal with regard to ∇ :

u5 = Y [F0∇4(η) − F ′
0∇3(η) + F ′′

0 ∇2(η) − F ′′′
0 ∇(η) + F ′′′′

0 η]

+(Y b4 − Y ′)
[
F0∇3(η) − 1

3
F ′

0∇2(η) − 1
3
F ′′

0 ∇(η) + F ′′′
0 η

]

+(Y b3 − (Y b4)′ + Y ′′)[F0∇2(η) + F ′′
0 η]

+
(

4
3
((Y b4)′ − Y ′′) − αb3

)
F ′

0∇(η)

+
(

1
2
((Y b3)′ − 4

3
((Y b4)′′ − Y ′′′))

)
[F ′

0η + F0∇(η)]

+
(

Y b1 − 1
2
((Y b3)′ − 4

3
((Y b4)′ − Y ′′′′))

)
F0η,(2.6)

Proof. Applying the identities (2.4) and (2.6), one directly verifies that u5
satisfies ∇(u5) = 0. �
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2.3. Dwork’s congruences

Let p be a prime number. We say that a sequence (cn)n∈N satisfies the
Dwork-congruences for p, if the associated sequence C(n) := c(n)/c(�n

p �) ∈ Zp

satisfies

C(n) ≡ C(n + mps) mod ps

for all n, s ∈ N and m = {0, 1, . . . , p − 1} and if c(0) = 1. We say that the
Dwork-congruences hold for a CY(n) differential operator P if the Dwork-
congruences hold for the sequence (cn)n∈N of coefficients of the holomorphic
solution

f0(z) =
∞∑

n=0

cnzn

to the differential equation Py = 0 around z = 0. Dwork shows (see [10,
Corollaries 1 and 2]) that hypergeometric-type numbers satisfy these Dwork
congruences for all p.

Theorem 2.2. (see [10, Lemma 3.4]) Let y(z) =
∑

n cnzn such that (cn)
satisfies the Dwork congruences. Let D := {x ∈ Zp, |y(p−1)(x)| = 1}. Then,
for all x ∈ D,

y(z)
y(zp)

|z=x ≡ y(ps−1)(x)
y(ps−1−1)(xp)

mod ps.

This leads to an efficient evaluation of the left hand side at Teichmüller
points. (Here y(ps−1)(z) is the polynomial obtained from y(z) by truncation
at zps

.) This crucial fact was used in all of our computations.

2.4. A formula for the roots of the Frobenius polynomial

Let P := P(θ, z) be a CY(4)-operator, where θ denotes the logarithmic
derivative z∂/∂z.

As before, we assume that P is the Picard–Fuchs operator on a rank 4
submodule H ⊂ H3

dR(X/S∞) for a family f : X → S∞ of smooth CY 3-folds.
The rank 6 =

(4
2

)
A∞-module ∧2H is a direct sum of an A∞-module G

of rank 5 and a rank 1 module. The rank 1 module is generated by a section
that corresponds to the pairing < −,− > and is horizontal with respect to ∇.

We construct a fifth order differential operator Q on the submodule G
by choosing Q to be the differential operator of minimal order such that
for any two linearly independent solutions y1(z), y2(z) of the differential
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equation Py = 0,

w := z

∣∣∣∣ y1 y2
y′
1 y′

2

∣∣∣∣
is a solution of Qw = 0 .

Proposition 2.5. The operator Q satisfies the first and the second condi-
tion of CY(5).

Proof. The statement that Q satisfies the first condition of CY(5) is the
content of [2, Proposition 4]. A direct computation shows that since P is
a CY(4)-operator, the coefficients of Q satisfy Equations (2.6) and (2.4), so
the second condition of CY(5) holds. �

In all examples, it was found that the operator Q also has an integral
power series solution, and thus satisfies the third condition of CY(5). For
the moment, however, we are unable to prove this is general so we

Conjecture 2.1. The differential operator Q, constructed from a CY(4)-
operator P as above, satisfies the third condition of CY(5).

So if Conjecture 2.1 holds true, the differential operator Q is a CY(5)-
operator.

Q can be expressed in terms of ∧2P(θ, z) as

Q(θ, z) = ∧2P(θ − 1, z).

For the differential operators P and Q, we use the same notation with coef-
ficients ai and bi as in Section 2.2.

Proposition 2.6. Let Q be the CY(5)-operator constructed above, and let
ω ∈ H such that

∇4ω + a3∇3ω + a2∇2ω + a1∇ω + a0ω = 0.

Then, the element η := zω ∧ ∇ω ∈ G satisfies

∇5η + b4∇4η + b3∇3η + b2∇2η + b1∇η + b0η = 0.

Proof. The proposition follows by a straightforward calculation, applying
the relations between the coefficients ai of the CY(4)-operator P and the
coefficients bi of the CY(5)-operator Q listed in [1].
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It still remains to point out how to choose the polynomial g(z) in the
definition of the ring W (k)[z][(zs(z)g(z))−1] to obtain divisible Hodge F -
crystals H ⊂ H3

dR(X/S∞) and G ⊂ ∧2H which satisfy the conditions of
Theorem 2.1. �

The following conjecture was crucial for the choice of the polynomial g(z):

Conjecture 2.2.

1. Let f0 be the solution of the differential equation Py = 0 around z = 0
with f0(0) = 1. If the coefficients cn in the expansion

f0(z) =
∞∑

n=0

cnzn

satisfy the Dwork congruences, then H satisfies the conditions of
Theorem (2.1) if the polynomial g(z) in the definition of A∞ is chosen
as g(z) := f

(p−1)
0 (z).

2. Let F0(z) be the solution of the differential equation Qy = 0 around
z = 0 with F0(0) = 1. If the coefficients dn in the expansion

F0(z) =
∞∑

n=0

dnzn

satisfy the Dwork congruences, then the sub-F -crystal G ⊂ ∧2H sat-
isfies the conditions of Theorem (2.1) if the polynomial g(z) in the
definition of A∞ is chosen as g(z) := F

(p−1)
0 (z).

According to the conjecture, it seems to be the right thing to choose
g(z) = f

(p−1)
0 (z)F (p−1)

0 (z). So from now on, we fix the ring A∞ by

A := W (k)[z][(zs(z)f (p−1)
0 (z)F (p−1)

0 (z))−1].

This choice was confirmed by our numerous computations; for each parame-
ter value z = α with f

(p−1)
0 (α0) 	= 0 mod p and F

(p−1)
0 (α0) 	= 0 mod p, in the

examples we considered, we were able to compute the Frobenius polynomial
explicitly.

For each pair of CY(4) and CY(5) operators we treat in this paper, the
functions

Y4 = exp
(

1
2

∫
a3

)
and Y5 = exp

(
2
5

∫
b4

)
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satisfy Y4 ∈ Q(z) and Y5 ∈ Q(z). Thus, in each of the examples we consid-
ered, the following proposition holds:

Proposition 2.7. Let

r(z) =
f0(z)
f0(zp)

and r̂(z) =
F0(z)
F0(zp)

.

Assuming that Conjecture 2.2 holds, if |αs(α)f (p−1)
0 (α)F (p−1)

0 (α)| = 1, there
exist constants ε4 and ε5 ∈ W (k̄) such that the p-adic units r1(α) and r̂1(α)
determining the Frobenius polynomial on Hα ⊂ H3

dR(Xα) are given by

r1(α) = (ε(1−σ)
4 )1+···+σr−1

r(α)r(αp) · · · r(αpr−1
)

and
r̂1(α) = (ε(1−σ)

5 )1+σ+···+σr−1
r̂(α)r̂(αp) · · · r̂(αpr−1

).

If we assume furthermore that

(ε1−σ
4 )1+σ+···+σr−1

= (ε1−σ
5 )1+σ+···+σr−1

= 1,

the p-adic units are given by

r1(α) = r(α)r(αp) · · · r(αpr−1
)

and
r̂1(α) = r̂(α)r̂(αp) · · · r̂(αpr−1

).

Proof. There exists an ω ∈ H such that the horizontal section w.r.t. ∇ is
given by formula (2.3), while on G, it is given by formula (2.6), where η =
zω ∧ ∇ω by Proposition 2.6. These sections u4 and u5 play the role of the
section v = f · u in Theorem 2.1. Hence, the section u in the theorem is given
by (f0Y4)−1u4 and (F0Y5)−1u5, respectively, where Y4 = exp

(
1/2

∫
a3

)
∈

Q(z) and Y5 = exp
(
2/5

∫
b4

)
∈ Q(z). Since

(
Y4(z)
Y4(zp)

|z=α

)1+σ+···+σr−1

= 1 and
(

Y5(z)
Y5(zp)

|z=α

)1+σ+···+σr−1

= 1,

by Theorem 2.1 there exist constants ε4 and ε5 ∈ W (k̄) (where k̄ denotes
the algebraic closure of Fp) such that

r1(α) = (ε(1−σ)
4 )1+···+σr−1

r(α)r(αp) · · · r(αpr−1
)



Frobenius polynomials 551

and

r̂1(α) = (ε(1−σ)
5 )1+σ+···+σr−1

r̂(α)r̂(αp) · · · r̂(αpr−1
).

Now we assume that the constants satisfy

(2.7) (ε1−σ
4 )1+σ+···+σr−1

= (ε1−σ
5 )1+σ+···+σr−1

= 1.

�

Then, the proposition follows.

3. Some special Picard–Fuchs equations

We will apply the method explained in the previous section to compute
Frobenius polynomials for some special fourth-order operators. These oper-
ators belong to the list [3]. A typical example is operator 45 from that
list:

θ4 − 4 x (2 θ + 1)2
(
7 θ2 + 7 θ + 2

)
− 128 x2 (2 θ + 1)2 (2 θ + 3)2 .

This operator is a so-called Hadamard product of two second-order operators.

3.1. Hadamard products

The Hadamard product of two power series f(x) :=
∑

n anxn and g(x) =∑
n bnxn is the power series defined by the coefficient-wise product:

f ∗ g(x) :=
∑

n

anbnxn.

It is a classical theorem, due to Hurwitz, that if f and g satisfy linear
differential equations P and Q, resp., then f ∗ g satisfies a linear differential
equation P ∗ Q. Only in very special cases, the Hadamard product of two
CY-operators will again be CY, but it is a general fact that if f and g satisfy
differential equations of geometrical origin, then so does f ∗ g. For a proof,
we refer to [4]. Here we sketch the idea. The multiplication map

m : C
∗ × C

∗ −→ C
∗, (s, t) �→ s · t

can be compactified to a map

μ : P̃1 × P1 −→ P
1
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by blowing up the two points (0,∞) and (∞, 0) of P
1 × P

1. Given two
families X → P

1 and Y → P
1 over P

1, we define a new family X ∗ Y → P
1,

as follows. The cartesian product X × Y maps to P
1 × P

1 and can be pulled
back to X ∗ Y over P̃1 × P1. Via the map μ, we obtain a family over P

1. If
n resp. m is the fibre dimension of X → P

1 resp. Y → P
1, then X ∗ Y → P

1

has fibre dimension n + m + 1. The local system Hn+m+1 of X ∗ Y → P
1

contains the convolution of the local systems of X → P
1 and Y → P

1. Note
that the critical points of X ∗ Y → P

1 are, apart from 0 and ∞, the products
of the critical values of the factors. In down-to-earth terms, if X → P

1 and
Y → P

1 are defined by say Laurent polynomials F (x) and G(y) resp., then
the fibre of X ∗ Y → P

1 over u is defined by the equations

F (x) = s, G(y) = t, s · t = u.

If the period functions for X −→ P
1 and Y −→ P

1 are represented as

f(s) =
∫

γ
Res

(
ω

F (x) − s

)
=

∑
n

ansn,

g(t) =
∫

δ
Res

(
η

G(y) − t

)
=

∑
m

bmtm,

then ∫
γ×δ×S1

ω ∧ η ∧ ds ∧ dt

(F (x) − s)(G(y) − t)(st − u)
=

∫
S1

∑
ansnbmtm

du

u

=
∑

anbnun = f(u) ∗ g(u)

is a period of X ∗ Y −→ P
1.

For example, if we apply this construction to the rational elliptic surfaces
X = Y with singular fibres of Kodaira type I9 over 0 and I1 over ∞ and
two further fibres of type I1, we obtain a family X ∗ Y −→ P

1, with generic
fibre a Calabi–Yau 3-fold with h12 = 1 and χ = 164.

3.2. Some special CY(2)-operators

We will use Hadamard products of some very special CY(2)-operators
appearing in [2] from which we also take the names. These operators all are
associated to extremal rational elliptic surfaces X −→ P

1 with non-constant
j-function. Such a surface has three or four singular fibres [16]. The six cases
with three singular fibres fall into four isogeny classes and each of these gives
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rise to a Picard–Fuchs operator of hypergeometric type (named A, B, C, D)
and one obtained by performing a Möbius transformation interchanging ∞
with the singular point 	= 0 (named e, h, i, j).

Name Operator an

A θ2 − 4z(2θ + 1)2 (2n)!2/n!4

B θ2 − 3z(3θ + 1)(3θ + 2) (3n)!/n!3

C θ2 − 4z(4θ + 1)(4θ + 3) (4n)!/(2n)!n!2

D θ2 − 12z(6θ + 1)(6θ + 5) (6n)!/(3n)!(2n)!n!

Name Operator an

e θ2 − z(32θ2 + 32θ + 12) 16n
∑

k(−1)k
(−1/2

k

)(−1/2
n−k

)2

+256z2(θ + 1)2

h θ2 − z(54θ2 + 54θ + 21) 27n
∑

k(−1)k
(−2/3

k

)(−1/3
n−k

)2

+729z2(θ + 1)2

i θ2 − z(128θ2 + 128θ + 52) 64n
∑

k(−1)k
(−3/4

k

)(−1/4
n−k

)2

+4096z2(θ + 1)2

j θ2 − z(864θ2 + 864θ + 372) 432n
∑

k(−1)k
(−5/6

k

)(−1/6
n−k

)2

+18664z2(θ + 1)2

The six cases with four singular fibres are the Beauville surfaces [5] and
also form four isogeny classes and lead to the six Zagier operators, called
(a, b, c, d, f, g).

These are also of the form

θ2 − z(aθ2 + aθ + b) − cz2(θ + 1)2

but now the discriminant 1 − az − cz2 is not a square, so the operator has
four singular points.

Name Operator an

a θ2 − z(7θ2 + 7θ + 2) − 8z2(θ + 1)2
∑

k

(
n
k

)3

c θ2 − z(10θ2 + 10θ + 3) + 9z2(θ + 1)2
∑

k

(
n
k

)2(2k
k

)
g θ2 − z(17θ2 + 17θ + 6) + 72z2(θ + 1)2

∑
i,j 8n−i(−1)i

(
n
i

)(
i
j

)3

d θ2 − z(12θ2 + 12θ + 4) + 32z2(θ + 1)2
∑

k

(
n
k

)(2k
k

)(2n−2k
n−k

)
f θ2 − z(9θ2 + 9θ + 3) + 27z2(θ + 1)2

∑
k(−1)k3n−3k(

n
3k

)
((3k)!/k!3)

b θ2 − z(11θ2 + 11θ + 3) − z2(θ + 1)2
∑

k

(
n
k

)2(n+k
n

)
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The ten products A ∗ A, etc. form 10 of the 14 hypergeometric families
from [3]. The 16 products A ∗ e, etc. are not hypergeometric, but also have
three singular fibres. The 24 operators A ∗ a, etc. have, apart from 0 and
∞, two further singular fibres. The operators a ∗ a, etc. have four singular
fibres apart from 0 and ∞.
Observations

1) The Dwork congruences hold for the operators a, b, . . . , j. For the
Apery sequence (case b) this was also conjectured in [22]. (It follows
from [10] that A, B, C, D satisfy the Dwork congruences). It follows
that the Dwork congruences hold for all fourth-order Hadamard prod-
ucts within this group.

2) For the hypergeometric cases A ∗ A, etc. and the cases A ∗ a, etc. the
Dwork congruences also hold for the associated fifth-order operator,
although even for the simplest examples like the quintic 3-fold, this is
not at all obvious. In the case of the quintic, the holomorphic solution
around z = 0 to the fifth-order differential equation is given by the
formula F0(z) =

∑∞
n=0 Anzn, where

An :=
n∑

k=0

(5k)!
k!5

5(n − k)!
(n − k)!5

(1 + k(−5Hk + 5Hn−k + 5H5k − 5H5(n−k))),

and Hk is the harmonic number Hk =
∑k

j=1
1
j . Thus, by the formula,

it is not even obvious that the coefficients An are integers.

3) In fact, the Dwork congruences hold for almost all fourth-order opera-
tors from the list [3]. It is an interesting problem to try to prove these
experimental facts. On the other hand, it is clear that they cannot
hold in general for differential operators of geometrical origin: if we
multiply f0 with a rational function of x, we obtain a (much more
complicated) CY-operator for which the congruences in general will
not hold.

3.3. Computations

In the hypergeometric cases, we reproduced results obtained in [21]. In the
appendix of [19], the results of our calculations on the 24 operators which are
Hadamard products like A ∗ a, etc. are collected. We computed coefficients
(a, b) of the Frobenius polynomial

P (T ) = 1 + aT + bpT 2 + ap3T 3 + p6T 4
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for all primes p between 3 and 17 and for all possible values of z ∈ F
∗
p.

In our computations, we assumed that Conjecture 2.2 holds true and took
the constants (2.7) appearing in the formula for the unit root to be one. To
generate the tables of coefficients in [19], we used the programming language
MAGMA. We computed with an overall p-adic accuracy of 500 digits. This
was necessary, since in the computation of the power series solutions to
the differential equations Py = 0 and Qy = 0, denominators divisible by
large powers of p occurred during the calculations (although the solutions
themselves have integral coefficients). The occurrence of large denominators
reduces the p-adic accuracy in MAGMA, and thus we had to compute with
such a high overall accuracy to obtain correct results in the end. For the
unit roots themselves, we computed the ratio

f0(z)(p
3−1)

f0(zp)(p2−1) |z=α mod p3

with p-adic accuracy modulo p3. We checked our results for the tuples
(a, b) determined the absolute values of the complex roots of the Frobenius
polynomial, which by the Weil conjectures should have absolute value p−3/2.
Needless to say, this was always fulfilled.

3.4. Example

In this section, we describe the computational steps we performed in
MAGMA for one specific example. We consider the operator A ∗ a, which
is nr. 45 from the list [3].

We compute the Frobenius polynomial for p = 7 and α0 = 2 ∈ F7 with
4 digits of 7-adic precision, i.e., modulo 74. Since 2 	= − 1

16 and 2 	= 1
128 in

F7, α0 is not a singular point of the differential equation.
First of all, we computed the truncated power series solution f

(ps+1−1)
0 (z)

to the differential equation

Py = 0,

and obtained

f
(74−1)
0 (z) = 1 + 8z + 360z2 + 22400z3 + 1695400z4 + 143011008z5 + · · · .

Thus, f
(7−1)
0 (α0) = 1 ∈ F7 is non-zero. Let α(4) be the Teichmüller lifting

of α0 with 7-adic accuracy of four digits. Evaluating f0 in this point, we
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obtain

f
(74−1)
0 (α(4)) ≡ 1709 mod 74

and

f
(73−1)
0 ((α(4))7) ≡ 1814 mod 74.

Thus, the unit root of the Frobenius polynomial is

r4 :=
f

(74−1)
0 (α(4))

f
(73−1)
0 ((α(4))7)

≡ 582 mod 74.

To compute the second root of the Frobenius polynomial, we compute
the truncated power series solution F

(74−1)
0 (z) of the fifth-order differential

equation

Qy = 0,

where Q is the second exterior power of the differential operator P, given
by

Q = θ5 − z(44 + 260θ + 628θ2 + 792θ3 + 560θ4 + 224θ5)

+ z2(−6512 + 400θ + 44160θ2 + 71040θ3 + 42240θ4 + 8448θ5)

+ z3(4177920 + 13180928θ + 16588800θ2 + 10567680θ3

+ 3440640θ4 + 458752θ5)

+ z4222(θ + 1)(θ + 2)3(θ + 3).

The solution is given by

F
(74−1)
0 =1 + 44z + 3652z2+337712z3 + 33909700z4 + 3567877424z5 + · · · ,

F
(7−1)
0 (α0) = 2 ∈ F7 is non-zero and we compute

F
(74−1)
0 (α(4)) ≡ 51 mod 74

and

F
(73−1)
0 ((α(4))7) ≡ 1387 mod 74.

Thus,

r̂4 :=
F

(74−1)
0 (α(4))

F
(73−1)
0 ((α(4))7)

≡ 1101 mod 74.
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Since the Frobenius polynomial (with 7-adic accuracy 4) is given by

P (T ) = (1 − r4T )
(

1 − 7r̂4

r4T

) (
1 − 72r4

r̂4T

) (
1 − 73

r4T

)
,

we finally obtain

P (T ) = 76T 4 − 73 · 8T 3 + 7 · 2T 2 − 8T + 1.

As expected, the complex roots of P do have complex absolute value 7−3/2.
Exemplarily, we now list all values (a, b) we computed for the differen-

tial operator A ∗ a. If there occurs a “−” in the table instead of the tuple
(a, b), then the corresponding z ∈ Fp is either a zero of f

(p−1)
0 or F

(p−1)
0 or of

both, where f0 was the power series solution of the fourth-order differential
equation and F0 was the solution of the fifth-order equation. The appear-
ance of (a, b)′ means that the polynomial is reducible. The appearance of
(a, b)∗ means that the corresponding z is a singular point of the differential
equation.

p = 3 p = 5
z 1 2

– –
z 1 2 3 4

(6,−6)′ (28, 38)∗ – (32, 62)∗

p = 7
z 1 2 3 4 5 6

(2,−46) (−8, 2) (32,−94)∗ (80, 290)∗ (10, 50)′ –

p = 11
z 1 2 3 4 5 6 7 8

(56, 290)′ – (−16, 2)′ (6, 26) (16, 98) (12, 114)′ (26, 106) –

z 9 10
(−8, 2) (−36, 210)′

p = 13
z 1 2 3 4 5

(−8, 270)′ (20,−106) (−4, 86) (−204, 646)∗ (22,−30)

z 6 7 8 9 10
(−160, 30)∗ (−34, 50) (−16, 302) (58, 146) (18, 34)

z 11 12
(84, 406) (56, 206)′
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p = 17
z 1 2 3 4 5

(256,−322)∗ (256,−322)∗ (−24, 542) (44, 166) (210, 1218)

z 6 7 8 9 10
(24,−178)′ (−100, 278) (22, 50) (−4, 70) (52,470)

z 11 12 13 14 15 16
(−84, 342)′ – (22,−334)′ (18, 258) (184, 974) (−56, 302)′

3.5. Modular forms of weight 4

In some cases, the so chosen accuracy was too low, and we had to compute
mod p4. This happened in case the parameter α0 ∈ Fp was a critical point of
the differential equation. But it is somewhat of a miracle that our calculation
made sense at the critical points at all. In order to understand what is
supposed to happen at a singular point, recall that if the fibre Xs of a
family X −→ P

1 over s ∈ P
1(Q) acquires an ordinary double point, then the

Frobenius polynomial should factor as

P (T ) = (1 − χ(p)T )(1 − pχ(p)T )(1 − apT + p3T 2)

for some character χ. The factor (1 − apT + p3T 2) is the Frobenius polyno-
mial on the 2-dimensional pure part of H3. This part can be identified with
the H3 of a small resolution X̃s, which then is a rigid Calabi–Yau 3-fold.
According to the modularity conjecture for such Calabi–Yau 3-folds, the
coefficients ap are Fourier coefficients of a weight 4 modular form for some
congruence subgroup Γ0(N) [15].

This is exactly the phenomenon that occurs at the singular points of our
differential equations. For the hypergeometric cases, we refind the results
of [21]. For 16 of the 24 operators A ∗ a, etc., we have two rational critical
values. In 31 of the cases, we are able to identify the modular form.

We use the notation of modular forms as in [15]: the notation a/b means
the bth Hecke eigenform of level a. “Twist of” means the modular forms
differ by character. We remark that the critical points of the operators are
reciprocal integers and the level of the corresponding modular form divides
that integer. For the cases involving the operator c, one usually has equality
and so the modular form for D ∗ c presumably has level 3888, which was
outside the range of our table. Remark that all levels appearing only involve
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primes 2 and 3.

Case Point Form Twist of Point Form Twist of
A ∗ a −1/16 8/1 – 1/128 64/5 8/1
B ∗ a −1/274 27/2 27/1 1/126 54/2 –
C ∗ a −1/64 32/3 32/2 1/512 256/3 –
D ∗ a −1/432 216/4 216/2 1/3456 1728/16 216/1
A ∗ c 1/144 48/1 24/1 1/16 16/1 8/1
B ∗ c 1/243 243/1 – 1/27 27/1 –
C ∗ c 1/576 576/3 94/4 1/64 64/3 32/2
D ∗ c 1/3888 1944/5 1/432 432/9 216/2
A ∗ d 1/128 64/4 32/1 1/64 32/2 –
B ∗ d 1/216 9/1 – 1/108 108/4 108/2
C ∗ d 1/512 256/1 – 1/256 128/4 128/1
D ∗ d 1/3456 576/8 288/1 1/1728 864/3 864/1
A ∗ g 1/144 24/1 – 1/128 64/1 8/1
B ∗ g 1/243 243/2 243/1 1/216 54/4 54/2
C ∗ g 1/576 288/10 96/4 1/512 256/4 256/3
D ∗ g 1/3888 1944/6 1944/5 1/3456 1728/15 –

The simplest modular forms appearing are the well-known η-products
8/1 = η(q2)4η(q4)4, 9/1 = η(q3)8.
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Stuttgart, 1983.
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