
FROM BRIANÇON-SKODA TO SCHERK-VARCHENKO

DUCO VAN STRATEN

To the memory of Egbert Brieskorn

Abstract. In this survey paper we try to explain how the mon-
odromy theorem for isolated hypersurface singularities led to un-
expected conjectures by J. Scherk relating the smallest power r
for which fr belongs to the jacobian ideal Jf to the size of the
Jordan-blocks in the vanishing cohomology. These were proven by
A. Varchenko using his asymptotic mixed Hodge structure on
the vanishing cohomology.

1. The Monodromy Transformation

The study of the ramification of integrals depending on parameters
has a history that can be traced back at least to the work of Euler,
Legendre and Gauss, but it seems that the systematic study of the
topology of algebraic varieties and their period integrals has its roots
in the nineteenth century in the work of Poincaré and Picard. To
see what is involved, let us start with a well-known and basic example.
The equation

y2 = (t− x2)(1− x)

describes an affine part of an elliptic curve Et depending on a parameter
t.

The small loop in the picture that runs between x = −
√
t and x =

√
t

shrinks to a point for t = 0: it is a vanishing cycle. The projection
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to the x-line represents Et as a double cover of the Riemann sphere,
ramified over the four points −

√
t,
√
t, 1,∞

From this one can see that for general t the topology of Et is that of a
2-torus, but for t −→ 0, this torus degenerates to a pinched torus.

One can pick a basis for H1(Et) consisting of the vanishing cycle δ =
δ(t) ∈ H1(Et) that runs around the points ±

√
t and a cycle γ = γ(t)

that survives the contraction of the vanishing cycle, but gets pinched.
When we make a small detour t = ε exp(iθ), θ ∈ [0, 2π] in the complex
plane around the point t = 0, the two branch-points ±

√
t get inter-

changed. When we follow the cycles by parallel transport, we obtain a
monodromy-transformation

T : H1(Et) −→ H1(Et) .

For the cycles δ and γ we find Tδ = δ, and Tγ = γ + δ, as indicated
by the following pictures.



FROM BRIANÇON-SKODA TO SCHERK-VARCHENKO 3

Hence the monodromy is represented by the matrix

T =

(
1 1
0 1

)
, (T − 1)2 = 0

The behaviour of the cycles is reflected in the behaviour of the period
integrals

ΦΓ(t) =

∫
Γ

ηt, ηt =
dx√

(t− x2)(1− x)
.

These satisfy the linear differential equation

(16Θ2 − t(4Θ + 1)(4Θ + 3))ΦΓ(t) = 0

where Θ := t∂/∂t. For the above cycles δ, γ one finds the following
series expansions:

Φδ(t) = 2π

(
1 +

3

16
t+

105

1024
t2 + . . .

)
2πiΦγ(t) = log(t)Φδ(t) + 2π

(
5

8
t+

389

1024
t2 + . . .

)
The analytic continuation of these period integrals exactly reflect the
monodromy behaviour of the cycles δ and γ: continuation around t = 0
gives

Φδ −→ Φδ, Φγ −→ Φγ + Φδ .

This example turns out to be part of a much more general story: for
families of curves of higher genus acquiring nodes as singularities the
situation is very similar and was first described in Picard-Simart,
Tome I, Chapter IV, §19, [29]. For an excellent account see [8], §9.3,
where also an example similar to the above one is worked out in detail.
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The generalisation to the case of n-dimensional varieties Yt aquiring an
ordinary double point was first described by Lefschetz, [21].
The effect of the monodromy can be described by the Picard-Lefschetz
formula

T : Hn(Yt) −→ Hn(Yt), γ 7→ γ ± 〈γ, δ〉δ

where 〈−,−〉 denotes the intersection of cycles on Yt, and the sign is
found to be (−1)(n+1)(n+2)/2, [17, 45].

In general, a holomorphic one-parameter family of compact complex
n-dimensional manifolds degenerating over 0 is described by a smooth
n+1-dimensional complex manifold Y with a proper holomorphic map
f := Y −→ D to the disc D, submersive on Y∗ = Y \ f−1(0). By the
Ehresmann fibration theorem, the family f ∗ : Y∗ −→ D∗ is a dif-
ferentiable fibre bundle over the punctured disc D∗. As D∗ contracts
to a circle, this fibre bundle is described by a geometric monodromy
transformation Yt −→ Yt, which induces a cohomological monodromy
transformation T .

The Monodromy Theorem: The cohomological monodromy trans-
formation

T : Hq(Yt) −→ Hq(Yt)

is quasi-unipotent. More precisely, there exists an integer e such that

(T e − 1)q+1 = 0 .

So the eigenvalues of T are roots of unity and the size of the Jordan-
blocks is bounded by q + 1. One can write T = S · U = U · S where S
is semi-simple and U is unipotent. The nilpotent operator 1 − U has
the same Jordan type as 1− T e or as the monodromy logarithm

N := log(U) = (U − 1)− 1

2
(U − 1)2 +

1

3
(U − 1)3 + . . .

The first proof of this fundamental theorem appeared in the (unpub-
lished) Berkeley thesis of Landman of 1966, [18] (see also [19]). A
further topological proof was given by Clemens, [9]. Many alternative
proofs, avoiding resolutions of singularities and using arithmetical or
Hodge theoretical arguments were given by Deligne, Grothendieck,
Katz, Borel, [10, 15, 16].



FROM BRIANÇON-SKODA TO SCHERK-VARCHENKO 5

2. Isolated Hypersurface Singularities

Locally around any point of Y , the map can be described by a germ
f : (Cn+1, 0) −→ (C, 0) determined by a convergent power-series f ∈
S := C{x0, x1, . . . , xn}. One speaks of an isolated singularity if the
equations

∂f

∂x0

=
∂f

∂x1

= . . . =
∂f

∂xn
= 0

have only 0 as a common solution in a neighborhood of 0. This is
equivalent to the condition that the Jacobi-ring

Qf := S/Jf , Jf = (∂0f, ∂1f, . . . , ∂nf)

is of finite C-dimension. One says that two singularities f and g are
right-equivalent, notation f ∼ g, if one can find a coordinate transfor-
mation (Cn+1, 0) −→ (Cn+1, 0) that maps f to g. The classification up
to right equivalence then starts with the famous ADE-list, [2]. Here
some pictures of some well-known singularities, together with a defor-
mation that explains their name.

2.1. Milnor Fibration. An isolated singularity always posseses a so-
called good representative, see [23], pp.21. By this we mean the follow-
ing. First one picks ε > 0 so small, that for all 0 < ε′ ≤ ε the boundary
∂Bε′ is transverse to the special fibre f−1(0). One obtains a smooth
orientable differentiable manifold

L = ∂Bε ∩ f−1(0)
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of dimension 2n− 1, called the link of the singularity. Then one picks
η > 0 such that for all t with 0 < |t| ≤ η the fibre f−1(t) is transverse
to ∂Bε. We put B = Bε = {|x| ≤ ε} and D = Dη = {|t| ≤ η} and let
X := B ∩ f−1(D), so that f determines a map X −→ D, called good
representative of the germ f . Furthermore, in such a situation we set
D∗ := D \ {0}, X ∗ := X \ f−1(0), and we obtain a map

f ∗ : X ∗ −→ D∗

Again, the Ehresmann fibration theorem shows that

f ∗ : X ∗ −→ D∗

is a C∞-fibre bundle. This fibration is now commonly called the Milnor-
fibration, its fibre Xt := f−1(t) the Milnor-fibre.

Theorem: The Milnor fibre has the homotopy type of a bouquet of
n-spheres.

Xt ≈
µ∨
i=1

Sn .

The number µ of spheres, called the MIlnor number, can be computed
as

µ = dim(S/Jf ) .

The spheres appearing in the first part of the statement are contracted
upon approaching the fibre over 0, and are called, extending the termi-
nology used by Lefschetz, the vanishing cycles of the singularity. A
consequence of the bouquet-theorem is that the Milnor fibre only has
one interesting cohomology group Hn(Xt,Z), which is free of rank µ.

Although all Milnor fibres Xt are diffeomorphic, one can not speak
about ’the’ Milnor-fibre, as the manifold Xt depends on t. For some
constructions it is convenient to use the canonical Milnor-fibre X∞,
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defined as the pull-back of X ∗ over the universal covering D̃ −→ D∗ of
the punctured disc

X∞ = X ∗ ×D∗ D̃ .

Then X∞ contracts to each of the Milnor-fibres Xt and we have a single
group Hn(X∞,Z) isomorphic to each of the Hn(Xt,Z).

2.2. Exotic Spheres. One of the strong motivations to study the
differential topological properties of isolated hypersurface singularities
came from the discoveries of Hirzebruch [13] and Brieskorn [5, 6]
that the link L of such singularity can be a sphere with an exotic differ-
entiable structure. The so-called Brieskorn-Pham polynomials of the
form

f = xa00 + xa11 + . . .+ xann
played an important role in that story. The Milnor number of f is
easily seen to be

µ = (a0 − 1)(a1 − 1) · · · (an − 1) .

Furthermore, Pham [30] determined the cohomological monodromy T
of this singularity. It is of finite order

e := lcm(a0, a1, . . . , an)

and the eigenvalues of T on Hn(Xt) are the numbers

ω0ω1 . . . ωn

where ωi runs over all ai-th roots of unity. A closer analysis of the
topology of the Milnor-fibration (see [26], pp. 65) shows that the link
L of an isolated singularity has the integral homology of a sphere if
and only if det(I − T ) = ±1, from which one can conclude for n 6= 2
that L in fact is homeomorphic to a sphere. Brieskorn [6] used this
to show for example that the link of

x2
0 + x2

1 + x2
2 + x3

3 + x6k−1
4

for k = 1, 2, . . . , 28 represents the 28 distinct differentiable structures
on the 7-sphere S7. In fact, all exotic spheres that bound a paralleliz-
able manifold appear as links of such Brieskorn-Pham singularities.

2.3. The Brieskorn lattice. In [7] Brieskorn described a method
to determine the cohomological monodromy of an isolated hypersurface
singularity and used it to give a proof of the monodromy theorem for
isolated hypersurface singularities, thus answering a question of Mil-
nor.
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Monodromy Theorem for Isolated Hypersurface Singularities
The cohomological monodromy transformation

T : Hn(Xt) −→ Hn(Xt)

is quasi-unipotent: there exists e such that

(T e − 1)n+1 = 0 .

The idea is to look at the cohomology bundle over D∗ with fibres
Hn(Xt,C), the cohomology of the Milnor-fibre. This bundle comes with
a natural flat connection defined by parallel-transport of (co)cycles:
the Gauss-Manin connection. Brieskorn then develops a deRham
description to represent sections of this cohomology bundle and gives
an explicit description of Gauss-Manin connnection in local terms. The
resulting system of linear differential equations describe the variation
of the period integrals over the vanishing cycles and the monodromy of
this differential system is identified with the cohomological monodromy
T . In more detail it works as follows:

A (germs of a) differential form

ω ∈ Ωn+1 := Sdx0dx1 . . . dxn = C{x0, x1, . . . , xn}dx0dx1 . . . dxn

determines a section of the cohomology bundle: we obtain a family of
closed differential forms on the Milnor fibres Xt by

ηt = ResXt

(
ω

f − t

)
The forms ω that belong to the sub-space df ∧dΩn−1 give rise to forms
that are exact on the fibres and hence the Brieskorn lattice defined by

H := Ωn+1/df ∧ dΩn−1

can be thought to give families of cohomology classes on the Milnor
fibration. It is called H ′′ in [7].
On H there are various important structures. First it has a natural
structure as a C{t}-module: the action of t on H is realised by multi-
plication of differential forms by f . In fact one has:

Theorem: H is a free C{t}-module of rank µ.

The statement about the rank is due to Brieskorn, the freeness is
due to Sebastiani [38]. His and other proofs use integration and no
completely algebraic proof is known to me.
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Example: Consider f = y2 + x3. In the following diagram the dots
indicate non-zero monomials

xaybdxdy

in the Brieskorn lattice H. The dotted arrows indicate relations be-
tween these monomials in H, coming from

df ∧ d(xpyq) = (3qx2+pyq−1 − 2pyq+1xp−1)dxdy

We can use the monomials dxdy and xdxdy as a C{t}-basis of H.
The Brieskorn lattice H carries another operation called ∂−1, which
Brieskorn identifies as the inverse of the Gauss-Manin connection.
It is defined as follows: if the (n + 1)-form ω ∈ Ωn+1 on (Cn+1, 0)
represents an element of H, we can write it as dη for some η ∈ Ωn.
One now sets

∂−1ω := df ∧ η
It is easy to check that this gives a well-defined operation on H, which
satisfies

t∂−1 − ∂−1t = ∂−2

The map ∂−1 : H −→ H is injective and the cokernel can be identified
with

H/∂−1H = Ωn+1/df ∧ Ωn =: Qf

which after a choice of a volume form is isomorphic to Qf = S/Jf , the
Jacobi-ring of C-dimension µ. When we choose a basis ω1, ω2, . . . , ωµ
of H as C{t}-module, we can write out the action of ∂−1 in this basis

∂−1


ω1

ω2

. . .
ωµ

 = B(t)


ω1

ω2

. . .
ωµ


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from which one obtains a meromorphic connection matrix A(t) =
B(t)−1(1−B′(t)) for H:

∂


ω1

ω2

. . .
ωµ

 = A(t)


ω1

ω2

. . .
ωµ


If δ(t) denotes a (multi-valued) horizontal family of cycles in Hn(Xt)
the (in general multi-valued) period integral is

Φ(t) =

∫
δ(t)

ηt .

For such period integrals on can prove an estimate of the form

|Φ(t)| ≤ O(t−N)

which implies the regularity theorem: the resulting differential system
is regular singular, hence can be transformed into a system with first
order pole:

A(t) =
A−1

t
+ A0 + A1t+ . . .

And the monodromy exp(2πA−1) is identified with the (complexifi-
cation) of the cohomological monodromy T . In this way we have a
theoretical method to determine the cohomological monodromy trans-
formation T (up to conjugacy). As T is an automorphism of the lattice
Hn(Xt,Z), the characteristic polynomial has integer coefficients, and
it follows that the eigenvalues of T are algebraic numbers. From the
fact that the construction is ’algebraically defined’, the eigenvalues α
of A−1 are algebraic too. As by the theorem of Gelfond-Schneider
for an irrational algebraic number α, the number

exp(2πiα)

is transcendental, Brieskorn concluded that the eigenvalues of the
monodromy are roots of unity!

The period integrals expand in series of the following sort

Φ(t) =
∑
α,k

Aα,kt
α(log t)k .

It was shown by Malgrange [25] that in fact Aα,k = 0 for α ≤ −1,
which provides an alternative proof of the fact that H is C{t}-free.
(The reason is that elements ω ∈ H in the kernel of multiplication by
t belong to the space C−1, defined in §5.)
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Gauss-Manin System: It has become customary to embed the Brieskorn
lattice H into the Gauss-Manin system G of f . This is explained by
Pham in his book [31], p.153-167: one considers the de Rham complex
Ω• of (germs) of differential forms on (Cn+1, 0) and let D be a variable.
By Ω•[D] we denote the set of polynomials with coefficients in Ω•. On
it we have a the twisted differential d := d+Ddf∧:

d(ωDk) := dωDk + df ∧ ωDk+1

The Gauss-Manin system G is defined as the (n+1)-cohomology group
of the twisted deRham complex:

G := Hn+1(Ω•[D], d+Ddf∧)

The element ωDk can be thought of as standing for the family of dif-
ferential forms

ResXt

(
k!ω

(f − t)k+1

)
on the Milnor-fibres Xt. On G one has actions of t and ∂

t(ωDk) = fωDk − kωDk−1

∂(ωDk) = ωDk+1

which are easily checked to satisfy

∂t− t∂ = 1

so G becomes a module over D := C{t}[∂]. The map ω ∈ Ωn+1 7→ ωD0

induces a well-defined embedding

H ↪→ G

In fact, ∂ is invertible on G, and the restriction of the inverse ∂−1 co-
incides with the operation on H defined earlier.
M. Schulze has implemented Brieskorns algorithm in Singular, [37].
From the computational point of view it is useful to change, as advo-
cated by Pham [31], to the micro-local point of view, that is using
s = ∂−1 as expansion parameter. This boils down to looking at the
incomplete Laplace transform of the period integrals, that is to the
associated oscillatory integral. The relevant formula is∫

Γ(t)

e−f/sω =

∫ t

0

e−t/sRes(
ω

f − t
)

where Γ(t) is trace of the vanishing cycle, also known as Lefschetz-
thimble.
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3. Questions and Answers

In the paper [12] Griffiths reports on p.249-250 on a question raised
by Brieskorn and related to him by Deligne.

Problem: Is the P.-L. transformation T : Hn(Xt) −→ Hn(Xt) of finite
order?

Here “P.-L.” of course stands for “Picard-Lefschetz”. Although the
monodromy transformation in the global case usually has Jordan-blocks,
the transformation on the vanishing cohomology of the simplest singu-
larities like the ordinary node or the Brieskorn-Pham singularities have
finite order. Lê proved in 1971 that the monodromy is of finite order
for irreducible curve singularities, [20]. There were serious attemps to
prove the result in general.

Tδ = δ

So it came somewhat as a surprise when A’Campo in 1973 [1] pub-
lished the first examples of plane curve singularities where the mon-
odromy transformations on the cohomology of the Milnor fibre had a
Jordan-block.

Example: (A’Campo) Consider the curve singularity that consists of
two cusps, with distinct tangent cones.

f = (x2 + y3)(y2 + x3) = x2y2 + x5 + y5 + x3y3 ∼ x2y2 + x5 + y5
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It has µ = 11 and the monodromy satisfies

T 10 − 1 6= 0, (T 10 − 1)2 = 0

A good embedded resolution of f−1(0) is obtained by blowing up the
origin and then twice in the strict transform of the two cusps. We ob-
tain a chain of 5 exceptional divisors, with multiplicities 5, 10, 4, 10, 5;
the strict transforms of the cusps pass through the components with
multiplicity 10.

The Milnor-fibre f = t as a subset of the embedded resolution is a curve
very close to the union of the exceptional curves and the strict trans-
form of the two cusps. The multiplicity of each component indicates
how often the Milnor-fibre runs along the divisor. From this informa-
tion one can build a topological model of the Milnor-fibre. Usually
one first performs a semi-stable reduction, which in this case amounts
to replacing t by t10 and which comes down to taking a 10-fold cyclic
cover of the embedded resolution. As Milnor fibre one obtains a Rie-
mann surface consisting of two Riemann surfaces of genus 2, with a
boundary, and glued together via two cylinders. The cycle γ indicated
on the right has (T 10 − 1)γ 6= 0.

For more details we refer to [1] and [8], pp.751.
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A’Campo raised the problem of finding examples of singularities in
n + 1 variables whose cohomological monodromy had a Jordan-Block
of maximal size n+ 1. Such examples were described by Malgrange
[24] in a letter to the editors, published front-to-back to the paper of
A’Campo. Malgrange credits to Hörmander for the idea.

Example(Malgrange [24]:) The singularity

f = (x0x1 . . . xn)2 + x2n+4
0 + x2n+4

1 + . . .+ x2n+4
n

has a Jordan-Block of maximal size n+ 1. Let

E(t) := {(x0, x1, . . . , xn) ∈ Rn+1 | f ≤ t}

For t small enough, this is a topological ball; its boundary

δ(t) := ∂E(t)

is a vanishing cycle that for n = 2 looks like the picture below.

100(xyz)2 + x8 + y8 + z8 = 1

Clearly: ∫
δ(t)

x0dx1 . . . dxn =

∫
E(t)

dx0dx1 . . . dxn = V ol(E(t))

Now Malgrange computes

V ol(E(t)) ∼ Ct1/2 logn(t)

where C 6= 0. This shows that the vanishing cycle δ(t) ∈ Hn(Xt,Z)
sits in a Jordan-block of size n+ 1.
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4. Briançon-Skoda Theorem and Scherks Conjecture

According to C.T.C Wall [46] it was Mather who asked about the
smallest r for which

f r ∈ Jf
Around the same time as A’Campo and Magrange found the ex-
amples of singularities with maximal Jordan-blocks in their vanishing
cohomology, a strange algebraic theorem was discovered, whose proof
required deep results from complex analysis.

Recall that the integral closure I of an ideal I ⊂ S = C{x0, x1, . . . , xn}
consists of all functions h that satisfies an integrality equation over I:
h ∈ I if and only if for some n there exist ak ∈ Ik, k = 1, 2, . . . , n such
that

hn + a1h
n−1 + . . .+ an = 0 .

This ideal can be characterized in various other ways. For example,
one has f ∈ I if and only if

γ∗(f) ∈ γ∗I
for each curve germ γ : (C, 0) −→ (Cn+1, 0), [22] .

Theorem of Briançon-Skoda: If I is generated by k elements and
q = min(k, n+ 1) then

I
q ⊂ I .

This is a completely algebraic statement, but its proof was not. Teissier
and Lipman wrote [22]:

“The absence of an algebraic proof has been for algebraists something
like a scandal-perhaps even an insult-and certainly a challenge.”

In any case, as f ∈ Jf , it follows from this theorem that for any f ∈ S
one has

fn+1 ∈ Jf
or equivalently, the operator

[f ] : Qf −→ Qf

induced by multiplication with f on the Jacobi ring has index of nilpo-
tency bounded by n+ 1:

[f ]n+1 = 0 .
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In the paper of Briançon-Skoda it is also remarked that this estimate
on the exponent is optimal. As an example, they give

f = (x0x1 . . . xn)3 + z3n+2
0 + z3n+2

1 + . . .+ z3n+2
n

for which fn /∈ Jf .

So we see that to an isolated hypersurface singularity f ∈ S, one
can associate two natural vector-spaces of dimension µ, each with a
nilpotent endomorphism. On one hand, we have the topological space
Hf := Hn(X∞,C) with the endomorphism N , the monodromy loga-
rithm. On the other hand, we have the purely algebraic Qf with the
endomorphism [f ]. The monodromy theorem tells us that Nn+1 = 0,
while the theorem of Briançon-Skoda tells that [f ]n+1 = 0. According
to Scherk, it was Brieskorn who asked about a possible relation be-
tween the two appearences of n+1 in these theorems. In [34], Scherk
made the following

Conjecture 1 (Scherk, [34]): For any isolated hypersurface singu-
larity the following holds: If f r+1 ∈ Jf , then the Jordan normal form
of the monodromy has blocks of size at most (r + 1).

In case r = 0 the conjecture follows from the following two theorems.

Theorem (K. Saito, [32]): If f ∈ Jf , then one can find a coordinate
system in which f is represented as a quasi-homogeneous polynomial.

Recall that a polynomial f is called quasi-homogeneous if one can find
positive rational weights w0, w1, . . . , wn such that

f(λw0x0, λ
w1x1, . . . , λ

wnxn) = f(x0, x1, . . . , xn)

This is the case if and only if all monomials xa = xa00 x
a1
1 . . . xann appear-

ing in f with non-zero coefficient lie in the hyperplane

w0a0 + w1a1 + . . .+ wnan = 1 .

Theorem: For a quasi-homogeneous singularity with weights
w0, w1, . . . , wn, the cohomological monodromy is finite of order d, which
is the least common multiple of the denominators of the wi.

This generalises the result of Pham on the Brieskorn-Pham singulari-
ties and can be found in [26], p. 71.
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In the example of the Tp,q,r-singularities ( 1
p

+ 1
q

+ 1
r
< 1), given by

f(x, y, z) = xp + yq + zr + xyz,

one has f /∈ Jf , f 2 ∈ Jf and indeed the monodromy has a single 2× 2-
block for the eigenvalue 1. In this way the conjecture may also be seen
as a refinement of the usual monodromy theorem for isolated hyper-
surfaces. On the other hand, the converse of the statement is certainly
not true. Scherk gives the example

fa = y6 + x4y + ax5 .

For a = 0 the singularity is quasi-homogeneous, so f ∈ Jf and the
monodromy is of finite order. For a 6= 0, the singularity is no longer
quasi-homogeneous and so we have f /∈ Jf , but the monodromy is still
of finite order, as the topology of the singularity does not depend on
a. Similarly, one could take any quasi-homogeneous singularity f and
add a non-trivial term of quasi-homogenous degree > 1.

In [35] Scherk gave a proof of his conjecture, using a globalisation of
the Milnor fibre to a smooth projective hypersurface and using the re-
sulting variation of Hodge structures. In that paper he also formulated
a strengthening of his conjecture:

Conjecture 2 (J. Scherk, [35]): For an isolated hypersurface singu-
larity f and any integer k the following inequality takes place:

dimKer([f ]k : S/Jf −→ S/Jf ) ≤ dimKer(Nk : Hn(Xt) −→ Hn(Xt))

5. Period Integrals and Mixed Hodge Structures

The second conjecture of Scherk was proven by Varchenko in [43]
as a consequence of a stronger theorem.

Theorem (A. Varchenko, [43]): Consider an isolated hypersurface
singularity f ∈ S. There exists a filtration V • on S/Jf with the property
that

[f ] : V α 7→ V α+1

and such that

{f} := Gr•V [f ] : Gr•V S/Jf −→ Gr•+1
V S/Jf

and
N : Hn(X∞,C) −→ Hn(X∞,C)

have the same Jordan-normal form.
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As by going to an associated graded of a filtration kernels only can get
bigger, one obtains:

dimKer[f ]k ≤ dimKerNk .

The construction of the filtration V • is a bit involved. It lives naturally
on the Gauss-Manin system G and the Brieskorn lattice

H = Ωn+1/df ∧ dΩn−1

and induces a filtration on the quotient

Qf = Ωn+1/df ∧ Ωn = H/∂−1H

For a differential form ω ∈ Ωn+1 the V •-filtration reflects the asymp-
totic behaviour of the period integrals

Φ(t) =

∫
δ(t)

Res

(
ω

f − t

)
=
∑
α,k

Aα,kt
αlog(t)k,

The element ω belongs to V βH, if for all δ(t) the coefficients in the
above expansion vanish for α < β.

Varchenko derives the theorem from his construction of an asymp-
totic mixed Hodge structure [42] on the vanishing cohomologyHn(X∞,Z).

Recall that a mixed Hodge structure on a finite rank abelian group
H is a linear algebra object that consist of two filtrations, to know
an increasing weight filtration W•, defined on HQ := H ⊗ Q, and a
decreasing Hodge filtration F • defined on HC := H ⊗ C, such that F •

induces on the graded pieces GrWk H = Wk/Wk−1 a pure Hodge struc-
ture of weight k. We refer to [28] for a more systematic account of
mixed Hodge theory.
Steenbrink had first constructed such a mixed Hodge structure, us-
ing an embedded resolution of f , [39, 40]. The weight-filtration is
constructed using the nilpotent operator N : it is the unique increasing
filtration W•

0 ⊂ W0 ⊂ W1 ⊂ W2 . . . ⊂ W2n−1 ⊂ W2n = Hn(X∞,Q),

such that

N : Wk −→ Wk−2

with the property that the operator Nk induces an isomorphism from
GrWn+kH to GrWn−kH:

Nk : GrWn+kH
≈−→ GrWn−kH .
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As this filtration is uniquely defined by the cohomological monodromy
operator, it is called the monodromy weight filtration.

In the asymptotic mixed Hodge structure of Varchenko, the Hodge
filtration F • is related to the V •-filtration and encodes the asymptotic
behaviour of the period integrals when t approaches the origin radially.
So we have the nice picture that the two filtrations, in a way, arise from
the decomposition in angular and radial components as the parameter
t −→ 0.
We now describe, following Scherk and Steenbrink [36], the con-
struction of the asymptotic mixed Hodge structure in more detail.

The generalized eigenspaces Cα: The Gauss-Manin system G has the
structure of a (finitely generated) regular singular C{t}[∂]-module. One
defines the generalised α-eigenspace by

Cα :=
⋃
k>0

ker(t∂ − α)k ⊂ G .

These are finite dimensional C-vector spaces. Note that

(t∂t − α)k(tα logk t) = 0,

so that Cα picks out those elements of G that ’behave like’ the function
tα logk t for some k.
The structure of G can be schematicaly visualised as follows:

Horizontally runs the eigenvalue parameter α. The vertical bars rep-
resent the generalised eigenspaces Cα. Multiplication by t maps Cα

to Cα+1, whereas ∂ maps Cα+1 back to Cα. The operators t∂ − α act
’vertically’ and are nilpotent on Cα. One has an isomorphism

Hn(X∞,C) =
⊕
−1<α≤0

Cα .

It follows from the regularity of the Gauss-Manin connection that the
generalised exp(2πiα)-eigenspace Hn(X∞,C)α of the monodromy T is
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isomorphic to the space Cα and the monodromy logarithm N identifies,
up to a factor 2πi, with the operator t∂ − α.

Hn(X∞,C)α
≈ //

N
��

Cα

2πi (t∂−α)

��
Hn(X∞,C)α

≈ // Cα

The position of the Briekorn lattice H inside G contains important in-
formation and is indicated in the picture as the region to right of the
wiggly curve. Note that H ⊂ V >−1, by the result of Malgrange.
The action of ∂ moves H to the left.

The V •-filtration: The V •-filtration of G is defined as the C{t}-span of
the Cβ with β ≥ α

V αG := 〈Cβ | β ≥ α〉
and we have

Cα ≈ V α/V >α

As H ⊂ G we obtain by intersection a V •-filtration on the Brieskorn
lattice H.

On the quotient

Qf = Ωn+1/df ∧ Ωn = H/∂−1H

one has a natural induced filtration by setting

V αQf := (V αH + ∂−1H)/∂−1H .

For an important class of singularities the V •-filtration can be com-
puted quite easily using a theorem of M. Saito, [33].

Theorem (M. Saito, [33]): For a Newton non-degenerate f the V •-
filtration on Qf coincides with the Newton-filtration N •, shifted by one:

V αQf = N α−1Qf .

Hodge filtration on Hn(X∞): By applying the operator ∂ to H ⊂ G,
we obtain a ’Hodge filtration’ on G:

H ⊂ ∂H ⊂ ∂2H ⊂ . . . ⊂ G

Using this, we define a filtration F • on Cα by setting

F pCα := (∂n−pH ∩ V α + V >α)/V >α ⊂ Cα
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and

F pHn(X∞,C) :=
⊕
−1<α≤0

F pCα .

Unwinding the definitions, one finds that the spaces GrpFC
α can be

identified with certain V •-graded piece of Qf :

∂n−p : Grα+n−p
V Qf ≈−→ GrpFC

α

The main theorem on asymptotic mixed Hodge theory is the following.

Theorem: The space Hn(X∞), together with the monodromy weight-
filtration W• and the above defined Hodge filtration F • define a mixed
Hodge structure, isomorphic to the limiting mixed Hodge structure de-
fined in [40].

This theorem, in a slightly different form, was first proven by Varchenko
in [42], [44]. We basically followed here the presentation of Scherk
and Steenbrink [36].
Although all the ingredients of the mixed Hodge structure can be de-
fined locally, the proofs of the required Hodge properties use globali-
sation to a projective hypersurface in an essential way; apparently no
purely local proof is known.

5.1. Varchenkos Theorem. A feature of mixed Hodge theory is that
all morphisms of mixed Hodge structures are strictly compatible with
weight and Hodge filtration: going from a morphism H −→ H ′ of
mixed Hodge structures to maps between the associated graded pieces,
such as GrpFGr

W
k H −→ GrpFGr

W
k H

′ preserves exactness properties. In
our situation there is one particular interesting morphism of mixed
Hodge structures, namely the morphism

N : Hn(X∞,Q) −→ Hn(X∞,Q) .

As by construction N : Wk −→ Wk−2 and N : F p −→ F p−1, N is a
morphism of type (−1,−1).

One now can argue as follows:

(1) From the strictness, the Jordan structure ofN onH := Hn(X∞,C)
is the same as that of

GrFN : Gr•FH −→ Gr•−1
F H
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(2) On the component Cα the map

GrFN : GrpFC
α −→ Grp−1

F Cα

is represented by

2πi(t∂ − α) = 2πit∂ mod F p

(3) Identifying the Hodge spaces GrpFC
α with pieces of the V •-

filtration on Qf we obtain a diagram

Grα+n−p
V Qf

∂n−p

��

{f}
// Grα+n−p+1

V Qf

∂n−p+1

��
GrpFC

α GrFN // Grp−1
F Cα

that is commutative up to a factor 2πi.

Corollary: The operator {f} on Gr•VQ
f and N on Hn(X∞,C) have

the same Jordan type.

Example: We analyse the example of A’Campo in terms of the V •-
filtration. As the function is Newton non-degenerate, we can use the
theorem of M. Saito to identify the V -filtration with the Newton-
filtration (shifted by one). A basis for Qf is given by the 11 differential
forms

dxdy, xydxdy, x2y2dxdy

xdxdy, x2dxdy, x3dxdy, x4dxdy, ydy, y2dxdy, y3dxdy, y4dxdy

The Newton weights of these monomials can be read off from the
Newton-diagram as:

1

2
, 1,

3

2

and

7

10
,

9

10
,
11

10
,
13

10
,

7

10
,

9

10
,
11

10
,
13

10
.

The fractions appearing here (or diminished by 1) are called the spectral
numbers of the singularity.
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Multiplication of the monomial dxdy of weight 1
2

by f maps to the

monomial x2y2dxdy of weight 3
2
, which thus represents a non-trivial

Jordan block N of the monodromy.
The picture on the right shows the Milnor fibre of f , which was decribed
earlier and seen to be a genus 5 Riemann surface with two holes. We
drew the surface around the monomials of the Newton-diagram, with
holes piercing through the edges of the Newton-diagram. In a way that
is a bit hard to explain in a precise way, one can see that the non-trivial
Jordan block ’hits’ the cycle γ on the Riemann surface that appeared
in A’Campos example!

This concludes our account of a unique key period in the theory of iso-
lated hypersurface singularities. Many important developments arose
out of them, e.g. M. Saito’s theory of mixed Hodge modules and
applications to log-canonical thresholds, multiplier ideals, jumping co-
efficients, etc. For these more recent developements we refer to [28],
[4], [11], [27].
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(1981).

[9] C. H. Clemens, Picard-Lefschetz theorem for families of nonsingular algebraic
varieties acquiring ordinary singularities, Transactions of the American Math.
Soc., 136 (1969), 93-108.

[10] P. Deligne, N. Katz, SGA7.II: Groupes de Monodomrie en géométrie
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