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HAMILTONIAN NORMAL FORMS

MAURICIO GARAY AND DUCO VAN STRATEN

ABSTRACT. We study a new type of normal form at a critical
point of an analytic Hamiltonian. Under a Bruno condition on the
frequency, we prove a convergence statement. Using this result, we
deduce the existence of a positive measure set of invariant tori near
the critical point.

To the memory of J.-C. Yoccoz.

INTRODUCTION

Investigations into normal forms of Hamiltonian systems can be traced
back the earliest beginnings of celestial mechanics and perturbation
theory in the works of Euler, Laplace, Delaunay, and others. The
Birkhoff normal form provides a practical way to extend the classical
theory of action-angle coordinates to critical points of Hamiltonians. As
a general rule, the map which reduces the Hamiltonian to normal form
is divergent, while under conditions of integrability it is convergent for
analytic Hamiltonians ([4, 9, 24] 39| 29, 32, 34] 35, 36, 37]).

On the other hand KAM theory always provides, under non-degeneracy
conditions, the existence of invariant tori. Since the appearance of
Kolmogorov’s original paper, the non-degeneracy conditions have been
weakened and even in case the system is degenerate, invariant tori are
known to exist (|1, 3], B, 6l 17, 1], 27, 31], 33, [34]).

Here we present an iteration scheme that leads to a different type of
normal form that we call the Hamiltonian normal form. It appears to
be suited for the application of KAM theory near critical points of a
Hamiltonian. We explain its relation to the classical Birkhoff normal
form. From a formal perspective, the Hamiltonian normal form seems
to be a rather trivial variant of the usual one, but it has some important
technical advantages. The first advantage is that the Cantor set over
which we work is fized during the iteration, whereas in the usual proofs
this set is constructed step by step and changes along the transforma-
tions of the iteration. A second advantage of the new iteration scheme
is the control over what we call the frequency space. As a consequence,
non-degeneracy conditions will be fulfilled automatically when passing
to the limit. For the readers acquainted with Arnold’s proof of the

KAM theorem, this corresponds to the fact that the UV-cutoff can
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be chosen so that it involves only the terms that appear in the linear
approximation.

The structure of the paper is as follows: In §1, after setting up some
notations and a quick review of the classical Birkhoff normal form,
we introduce the frequency space associated to a non-resonant critical
point of a Hamiltonian. It is the space defined by the linear relations
between the components of the gradient of the Birkhoff normal form.
This space will play an important role and takes over the role of the
usual non-degeneracy conditions of KAM theory.

In §2 we describe in some detail the formal aspects of an iteration that
leads to our Hamiltonian normal form. The first important point is
that the normalising maps in the iteration preserve, in a precise sense,
the frequency space.

In §3 we state and prove, under a Bruno condition on the frequency,
the convergence of the iteration procedure over a Cantor-like set in
the complement of the resonance fractal. We introduce the relevant
function spaces and rewrite the iteration in this context. The estimates
we need are all simple applications of lemmas that are collected in an
appendix.

In §4 we give an application to invariant tori near an elliptic fixed
point. By our control of the frequency space, we can apply the arith-
metic density theorem from [I5] and obtain a measure result for the
preimage under the frequency map. A conjecture formulated by M.
Herman [I8] is an easy corollary. The setup chosen here represents a
significant improvement and simplification of the original arguments
used in [11], 13} [14].

At the background of our investigations is a more general theory of
normal forms based on a functional analytic theory of Banach space val-
ued functors that we are currently developing. The reader interested in
these lines of thought may take a look in the preliminary [8], 10} 13, 16].
From that perspective there appeared to be a certain incongruency
between the usual Birkhoff normal form and the general theory of nor-
mal forms. The Hamiltonian normal form presented here seems to be
the more natural one: the proof is from an abstract point of view in
complete congruence with that of the ordinary Kolmogorov theorem.
Nevertheless, for the convenience of the reader, we decided to keep the
paper self-contained and provide complete proofs of all results used, with
the exception of the arithmetical density result, which is taken from [15].

Acknowledgement. When we started to develop an abstract version of
KAM theory, J.-C. Yoccoz was among the few enthusiastic dynamicists,
eager to bridge the frontiers between algebra, topology and analysis.
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After two months of numerous exchanges, he was forced to stop due
to health problems. Yoccoz made several influential and motivating
remarks, and for this reason we dedicate this research to his memory.

1. The Birkhoff normal form and the frequency space

We will be concerned with the structure of an analytic Hamiltonian
system with d degrees of freedom near a critical point of the form

d
H = Z a;pigi + O(3).

i=1
We assume that the frequency vector:
o= (ay,q,..., 04 € C?

is non-resonant, i.e., its components «; are Q-linearly independent. We
can consider the Hamiltonian H as an element of the formal power
series ring

P = (C[[q’p“ = CHQla cosqd;P1y - 7pd]]-
The Poisson bracket of f, g € P, defined by

d
{f7g} = Zaqua 9 — 8pzfa 9>
=1

makes P into a Poisson-algebra. An element h € P is a power series
that can be written as

hi=> Cao'q’, Cap€C,
a,b

where we use the usual multi-index notation, so that

al a2 ad b1 b2

pa’ = plps? . piial L d,
and so on. We will assign weight 1 to each of the variables, so that
the monomial p®¢® has weight |a| + |b|. We write h = O(k) if h only
contains monomials of degree > k, and say that h has order k. If h is
analytic, it is represented by a convergent series, and our usage of the
O corresponds to its usual meaning.

1.1. Birkhoff normal form. A derivation v € Der(P) that preserves
the Poisson-bracket:

v({f,9}) = {v(f), g} +{f,v(9)}

is called a Poisson-derivation and we denote by ©(P) the vector space
of all Poisson-derivations or Poisson vector fields. The map

P— ©O(P), h—{—h}

associates to h the corresponding Poisson-derivation, usually called the
Hamiltonian vector field of h. If h = O(k) and f = O(l), then clearly
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{f,h} = O(k +1—2), so the vector field v := {—, h} is said to be of
order k — 2, although the coefficients of the vector field v are O(k — 1).
In particular, if h = O(3), then one can exponentiate v and obtain a
Poisson automorphism of the ring P:

¢ = I+ {1} + o {{—.h}, B} + ... € Aut(P)

If we let

d
ho =Y aipigi,
=1

{ho.p"¢"} = (a,a = 0)p°q”,
where (—, —) denotes the standard euclidean scalar product. So if «
is non-resonant, then each monomial p®¢® with a # b appearing in
H = hg + O(3) can be removed by an application of the derivation

o
(a,a — b)

Hence, we can construct a sequence of automorphisms

then

v=7ip'¢) = {-, p*q’}.

Vo v1

wo:=€e " pri=e " pyi=e ... € Aut(P)
that remove successively all monomials p®q®, a # b of weight k + 3 from
Hy., defined recursively by
Hy == ¢o(H), Hy = p1(H1), ...,

so that the automorphism

Dp 1= Yp_1...©1¥0

maps H to Hj. The infinite composition

b= .. . orpr_1-..p1p0 € Aut(P)

is a formal symplectic coordinate transformation that removes all mono-
mials p?¢®, a # b from our Hamiltonian H, so that

®(H) = By,
where Bp is a series of the form

By = Z Cap*q“.
aeNd

The series By is called the Birkhoff normal form of H. There exist
several variants of this algorithm, which differ in details and notation.
For example, it is possible to remove certain terms at the same time.
These may lead to different normalising transformations ®, but it is
known that these different choices lead to the same series By. As in the
iteration process one has to divide by the quantity (a, a — b) to remove
the p?q®-term, small denominators appear, which lead to convergence
problems for the formal series involved.
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C. L. Siegel has shown that for a generic critical point of a real analytic
Hamiltonian H with d > 2 degrees of freedom, the series of the trans-
formation @ is in fact divergent [35]. It is expected that in general the
series By itself is also divergent, but no published proof is known to
us (see [29] for more details).

1.2. The Moser Extension. As the monomials p;q; (1 = 1,2,...,d)
Poisson commute with the Birkhoff normal form By, Birkhoff nor-
malisation implies that any non-resonant Hamiltonian H is formally
completely integrable. To express this fact more clearly, it is useful to
enlarge the ring P and consider

Q = C[[7—7Qap]] = C[[Tla <o Tds 41y - - -5 4d, P15 - - 7de

with the extra 7-variables, introduced by Moser. With the same defini-
tion of the Poisson-bracket as before, () becomes a Poisson algebra with
Poisson centre @y := CJ[[7]]. We will assign weight = 2 to the variables
7;, so that the d elements

fi=pigi—1,€Q

are homogeneous of degree two. These elements Poisson commute,
{fi, f;} =0, and we obtain a Poisson commuting sub-algebra

(CHT? f“ = (CHT7 f17 f27 R fd“ = C[[Tapl(h; cee 7dedH

containing Q)o. The fi, fo,..., f4 also generate an ideal

I=(fi,for-- s fa) € Q=Cl[r,q,1]]

and clearly, the canonical map

CH@P, CJH—>CHP7 (Z]]a Di &= Diy Qi & G, T B D

induces an isomorphism of the factor ring /I with our original ring P:
Q/I = P.

Although f; maps to zero under this map, the derivation {—, f;} induces
the non-zero derivation {—,p;¢;} on P, so the map Q — P is not
a Poisson-morphism. The ideal I? C @ is the square of the ideal I,
i.e. generated by the elements f;f;, 1 < 4,7 < d, and plays a very
distinguished role in dynamics. The reason is that if T € I?, then
{h,T} C I. As a consequence, H and H + T determine the same
Hamiltonian vector field on Q/I = P.

Extending the multi-index notation in an obvious way, we can write

d
Pt =T+ f) =7+ 0 i+ I
i=1
The term 7¢ is in the centre of (), whereas the above remark implies that
p*q® and Zle 0., 7 f; define the same derivation on the ring P = Q/I.
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We can consider the Birhoff normal form series B(pq) = Bu(pq) as an
element of (). When we write pg = 7 + f, then we find:

d
B(r+ f) = B(r) + »_bi(r)f; mod I*.

=1

The first term B(7) belongs to the Poisson centre () and is dynamically
trivial, but gets mapped to the non-trivial element By € P. The
second term Z?:l b;(T) f; carries the dynamical information in @, but
is mapped by the canonical map () — P to zero.

The formal power series by,...,by € C|[7]] are obtained as partial
derivatives of B, considered as a series in the 7;-variables:

b= (by,...,by) = VB(r).

One has b(0) = «, and the higher order terms describe how the frequen-
cies change with 7 and for this reason we call it the (formal) frequency
map. If the system happens to be integrable, then the series are con-
vergent and the vector b(7) = (by(7),b2(7),...,bq(7)) is the frequency
of motion on the corresponding manifold defined by f;(7,q,p) = 0,
1=1,2,...,d.

For a multi-index a € N¢, we consider the vector

9"
~ ore
Definition 1.1. The frequency space of H is the vector space F(H) C
C? generated by the vectors Vb(0), |a| > 1.

V(0) : (0) € C*.

This vector space controls an important aspect of the non-degeneracy
conditions in KAM theory. The space F(H) = {0} if there are no
terms of degree > 2 in the Birkhoff normal form. This is the case
considered by Riifmann [32], who proved, under arithmetic conditions
on the frequency vector «, that in this situation the transformation
® actually is convergent, so H is analytically completely integrable.
The classical non-degeneracy condition from KAM-theory lead to the
opposite case F(H) = C%. Our main interest lies in the intermediate
cases. In §4 we will define in the real domain a C'*°-map

B:W — a+TF(H) CR?,

defined in a neighbourhood W C R, F(H) := F(H) N R¢ and whose
Taylor series coincides with the above formal power series b.

2. THE HAMILTONIAN NORMAL FORM

We will now describe a variant of the Birkhoff normal form algorithm
that allows for a better control of the invariant tori. For this we have
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to introduce d further additional variables
Wi, Wa, . .., Wq,
to which we assign weight zero. The iteration will take place in the
formal power series ring with 4d variables
R :=Cllw,T,q,p]] = Cllw1,way -+ yWay T1y -+ s Tdy Q1y - - 5 qds Py - - - » Pd)]-

Again we retain the standard Poisson bracket, so now the Poisson
centre is the subring Ry := C[[w, 7]]. The following sub-algebra is of
importance for our discussion:

Definition 2.1. We let
M :=Cllw,, f]] = Cllw, 7, pq]] C R,
and call it the Moser-algebra of R.

We remark that M is a Poisson commutative sub-algebra of R and that
all monomials of M have even degree. We will also make use of the
projection

T:R— M

that maps all monomials not in M to zero. Clearly, moi = Idy;, where
1 : M — R is the inclusion.

2.1. The homological equation. As before, we denote the vector
space of Poisson derivations of R by ©(R), which has the structure of a
module over the Poisson centre Ry. These derivations decompose into
Hamiltonian and non-exact parts:

©(R) = Ham (R) @ Der (Ry),

that is, an element of O(R) is of the form

v={—,h}+w
with .

0 0

v ’LZI 8wi + aTi < RO
Definition 2.2. Let F,m € R and v € O(R). If
v(F) =m,

we say that v solves the homological equation for m on F'.

We will now solve the homological equation for certain special elements.
The following function will play an important role in the paper.

Definition 2.3. The formal unfolding of hg = 27:1 a;p;iq; 1s the ele-

ment
d

Ay = Z(O&Z + wz)plql € R.

i=1
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So Ay is obtained from hg by detuning the frequencies in the most
general way.

The infinitesimal action
O(R) — R, v+ v(Ay)

on Ay takes a simple form in the monomial basis:

{A0,p"¢"} = (a +w,a — b)p°g’,
O Ao = D,
9, Ao = 0.

Definition 2.4. We define a C|[w, T]]-linear map
L: R — O(R) =Ham (R) & Der (Ry), m +— Lm
by setting for a # b:

1
Lab:: o ab‘
phq’ = { ,—(aw’a_b)pq}

For a = b, or more generally for a series

m = g(p1q1,p2q2 - - -, Pada) = 9(pq)

we set

d
, dg(7)
Lm = E ar, O -

We note that the first case of the definition applies to the monomials
in the kernel of the projection map 7, whereas the second part of the
definition applies to the elements of the Moser sub-algebra M.

Definition 2.5. For A= Ay +T, T € I? we define a linear map
ja: R— O(R)
in terms of L by the formula
ja:m— Lm — L(Lm(T)) = L(m — Lm(T))

Proposition 2.6. For any A = Ay +T € Ay + I?, there exists
t € Ry + I? such that

ja(m)(A) = m+t.

Proof. First, for A = Ay we have ja, = L. For m = p?¢® with a # b we

have
1
; A ={A a by _ a b __
Jao(m)(Ao) {o,—(aw,a_b)pq} plq =m
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and for m = g(pq) we have, with ¢, = 0, ¢,

Jao(m)(Ao) = Z%(T)aaij = gi(7)pig

i=1

— Zg’ )fi mod Ry = g(pq) mod Ry + I?,

where we used the Taylor expansion

9(pq) = g(r + f) = g(r +Zgl ) f; mod I2.

This shows the correctness for T'= 0. For the general case A = Ag+ T,
we get

Ja(m)(Ao +T) = Lm(Ao) + Lm(T') — L(Lm(T))Ag — L(Lm(T))(T)
=m+ Lm(T) — Lm(T) — L(Lm(T))(T) mod Ry + I*
=m + L(Lm(T))(T) mod Ry + I*.

Because T € I?, it follows that Lm(T) € I. Furthermore, for any g € I,
we have Lg(T) € I?. This can be seen by writing g as C[[w, 7]]-linear
combination of terms of the form p?¢®f;. If a # b, {T,p¢"f;} € I?,
whereas for a = b, we obtain a combination of terms d,, 7', which is in
I%, as the generators f; = p;q; — 7; are independent of w;. Il

2.2. Hamiltonian normal form iteration. Our Hamiltonian nor-
mal form is obtained from the following basic iteration. Starting from
a Hamiltonian

d
H = Z a;pig; + O(3),
i=0
we first form
d

FO =H+ sz-piqi = A() + 0(3)
i=1
Solving the homological equation on Aj for the degree 3 part of Fj
determines a Poisson derivation vg. The application of e~ to Fy
produces F}, where this term is removed and we put A; = Ag. The
solution of the homological equation for the degree 4 and 5 part of
F; on A; defines v;. Then the application of e to F} produces F3,
where now the terms of degree 4 and 5 are removed, modulo terms in
(Ry + I*) N M. These terms we add to A; = Ay and obtain Ay. Then
we solve the homological equation for the terms of degree 6,7,8,9 of
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F5, but now on Ay, etcetera. Thus we obtain a by iteration a sequence
of triples

(B, Anyvn), n=0,1,2...
that we call the Hamiltonian normal form iteration and which we will
describe now in some detail. It is convenient to write

[Al]

7

for the sum of terms of h of weight > 7 and < j, so that [h]::+1 represents
the part of h of pure weight i. When j = +o0o we omit the letter 7,
when ¢ = 0 we omit the letter z. In a similar way we can truncate a
vector field by truncating its coeflicients, but taking the shift of grading
by 1 into account.

We begin with the initialisation step

d
Fy=H+ ) wpigi = Ao+ O(3)
i=1
d
Ay = Z(Oéi + wi)Pigs
i=1

vo = [jao ([Fo]3)]°

The next terms are determined by the iteration step:
From F,,, A, we first compute

. PARES NP
Up = []An([Fn]2n+2+ )]2 :

and then obtain
Fn+1 - eivnFn,
An—l—l = An + [Fn - Un(Fn)]

2n+1
2n4-2 -

Then compute

X n+2 n+2
Onst = [t (Frsilonn 15)]°

etcetera. The extra truncation of v, is not needed for the arguments
here, but it will play a role in [2.6]
It is useful to define the increments

n+1
Spy1 = [F — vn<Fn>]§n+2+2 ’

so that:
An+1 = An + Sn+1-

There are a few simple but important points to notice:
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Proposition 2.7.

(i) The derivation v, has order 2", i.e. v, = [vy]on = [vn]gz+1
(i) F, = A, + O(2" + 2).

(iii) S, € (Ro+ I*) N M.

Proof. (i) From the recursive definition we see that v, is obtained by
solving the homological equation with the terms of degrees 2" + 2 up
to 2"t + 2 from F,. Taking Poisson-bracket with a term of degree
2" + 2 shifts degrees by 2", and similarly for the non-exact part of v,,.
So indeed v,, has order 2.

(i) This follows from an easy induction on n. By definition, the state-
ment holds for n = 0. Let us assume that

F, = A, +0(2" +2)

From the definition of F),,; we have
1
Foyy=e"F, =F, —v,(F,) + 51)721(}7’”) - ...

and as v, has order 2", it follows that
v2(F,) = 02+ 2" +2") = 02" 4 2).

So we have
Frpr = Ao+ [Fy = va(F)l3n 5" + 02" +2) = Ay + 02" +2).
(iii) We use induction on n and assume that S,, € (Ry+ I?) N M. From
(ii) we have

The derivation v, = [ja, ([Fu]2nss 2)]3 " is constructed to solve the

homological equation up to terms of high order:
Un(An) = [Fons 2+t 4+ 02" +2), te(Ry+1)NM
As we have
U (F) = vp(An + 02" 4+ 2)) = v, (A4,) + 02" +2),
we see that the increment
[Fo = on(Fa)lanys™ € (Ro + ) N M,
hence also S, 41 € (Ro + I*) N M. O

2.3. Quadratic and non-quadratic nature of the iteration. The
Hamiltonian normal form iteration produces a sequence (F,, A,,v,):

the series
d

Fo=H+ Zwipi%’ = Ao+ 0(3)
i=1
is transformed by
D, =t e ™
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to a series of the form
F,=A,+0(2"+2).
If we let n go to oo, we obtain a formal Poisson automorphism
Oy i=...e7"...e”™ € Aut(R),
and obtain
Fo =0 (Fp) = Ay, A € Ao+ (Ro+1P)NM

The automorphism @, transforms the perturbation Fy = Ag + O(3)
back to the normal form Ay, plus terms that have no effect on the
dynamics.

For convenience of the reader we include the following diagram that
indicates the degrees of the quantities that appear in the iteration.

| [2[3]4]5]6]7[8]9]10[11[12]13]14[15]16[17]18
Fe[xM/A/H/H/ NN E/ /NN BN/ NN NN
File[o[x[xM/M/M/N H /NN N NN NN
Ble|lole|lo[x[x[x|[x/H|/A|/A /N H/H E E N
F;lle|lo|e|o|e|o|le|o| X | X | X |Xx|X|x|x]|x|H
F4.OQO.O.O.OQO.O.O><

The bullets e and circles o represent terms of A,,. They belong to
the Ry + I? part of the Moser-algebra : the e terms are constant in
columns, the circles o are zero, as the Moser-algebra only has terms of
even degree.
So e and o represents the normal form range, consisting of terms of F),
of degree

2 < degree < 2" + 2

The crosses x represent the terms of F;, that determine the derivations
v,. These make up what we call the active range of degrees:

2" + 2 < degree < 2" + 2.

The black squares B represent the terms of F,, that of degree higher
than 2"*1 + 2 that do not directly influence the next iteration step, but
of course must be carried along.

We now rewrite the iteration in a form where this trichotomy in degrees
is manifest. Consider the decomposition

F,=A,+M,+U,=e+x+H1,
where

An = [Fn]2n+27 Mn = [Fn]§::12+27 Un = [Fn]2"+1+27
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are the lower, middle and upper part of F,,. The middle term decom-
poses, by the construction of v, as sum of two terms

(1) My = Spyr + [0 (A2,

where

Sn+1 = [Fn - Un<Fn)]§::12+2 S (R() + 12) N M,

where we also used

n+1 n+1
[a(A)5ns" = [oa(Fa)3nis "

The quantity v, (A,) has only terms of middle and high degree:

(2) va(An) = [va(An)3r 5" + R,

where

R, = [vn(Ap)]an+110.

represents a remainder part. We then have

Fn+1

=e "F,

=e (A, + M, +U,)

= e " (Ap + Spyr + [0 (A5 + UL

2 e (Ap + Spi1 + vn(A4,)) + e (U, — Ry)

= A, + Sp1 + (€7 = Id)(An + Spa1) + e (vu(An)) + e (U, — Ry)

= Ap + Spir + (€7 (Id 4 v,) — Id)Ap + (67 = 1d)(Spsr) + € (U, — Ry)

where we indicated the equations we used to establish the equalities.
The third and fourth equalities are just obtained by rearrangement of
the different terms.

Now,

when we set

Bn = Mn + Un = [Fn]2n+2 = X + .,

we can formulate the KAM-form of the iteration in the formal setting:

with

n+1
Spy1 = [Bn — Un(An)]gn:-;Qv
An+1 = An + Sn—i—la

Bpir = ¥(vn)Snar + ¢(0n) An + €7 ([Br — vn(An)]ani142)
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and where we used the abbreviation:

2n+1

Un = ]an - [jAn(Bn)]Qn

Note that the increments S, and the vector fields v, are auxiliary
quantities, which depend linearly on B,,. We see that the terms involving
¢ and v are quadratic in B,,, whereas the third term is not. But that
term only depends on the higher order terms of the series.

In the classical Kolmogorov scheme, the convergence is ensured by
the quadraticity of the iteration, while in the Arnold-Nash-Moser case
there does appear such a remainder term from the classical UV cutoff
technique. However, one may hope that these terms will remain small,
as they involve terms of sufficiently high order.

As we will see, unlike the cases considered by these authors, in our
situation it is important to be very precise about the degrees in the
truncation, as otherwise we would loose control over the fields v,, and
the convergence properties of the iteration could be spoiled.

2.4. Some further remarks on the iteration. Let us denote by
R .= C{w,1,p,q}

the Poisson sub-algebra of R consisting of convergent power series.
Its Poisson centre is R§" := C{w,7}. If v € O(R™) is an analytic
Poisson-derivation of order > 1, then the exponential series e” converges
as an element of Aut(R*). As a result, if we start with an analytic
Hamiltonian, the terms of iteration (Fj, Sk, vx) are are all analytic, but
of course the limit objects a priori are given by formal series.

The variable w plays a very special role. From the definition of the
operation L, it follows that the iteration can be formulated in a much
smaller ring. We define the ring SD, of small denominators at o as the
subring of the field C(w) of rational functions, defined by localisation
of Clw] with respect with the multiplicative subset S generated by all
linear polynomials (o +w, J),J € Z"\ {0}:

SD, = Clw|s := Clw, ,J €72\ {0}] Cc C(w).

(a+w,J)
Then the iteration makes sense in the Poisson-algebra

R™ N SD,[[7,p,4q]l,

but we will not make use of this fact in this paper.

In section 3 we will formulate a version of this iteration in appropriate
function spaces and study its convergence properties.



HAMILTONIAN NORMAL FORMS 15

2.5. Relation to the Birkhoff normal form. When we start from
an analytic Hamiltonian H (p, q), we first formed

d
Fﬂ(w7p7 Q) = H(p7 q) + szpz(ba
i=1

and the Hamiltonian normal form iteration produces a sequence of
Poisson derivations:

Up, n=0,1,2,...
These exponentiate to Poisson-automorphisms ¢, := e " and the
compositions

v

®n = (;On—lgpn—l s ()018007 SDTL = 6_ n7
preserve the ring R** C R of convergent series. We have
q)n(FO) = Fn € C{wu T, D, q}v

and the infinite composition is a Poisson automorphism of the formal
power series ring R:

D= ... On1Pn-1--- L1900 € Aut(R),
and correspondingly
Ooo(Fo) = Fioo € Cllw, 7, p, q]].
Note that
Fo=Ay=A0+Ts, Tx € Ry+ I
From the construction of the vector fields v,, we see that
D, (1) =71, Poo(m) =7

As any Poisson-automorphism, ®,, and ®., preserve the Poisson centre,
so we have

D, (w;) € C{w, 7}, Poo(w;) € Cllw, 7]].

As these element will play an important role in the sequel, will give the
them a fixed name:

Definition 2.8. We set
R, :=®,(w;) € C{w, T},
Roo,i = CI)OO<WZ) € (C[[(,U,T]].

To see what happens to the original Hamiltonian H(p, q) during the
iteration, we remark that

FO(W - 077-7p7q) = H(pJQ)

But during the iteration, the condition w; = 0 is transformed into the
condition R, ;(w,7) = 0:

(I)n<F0) = FO<RH(W7T)7 T, Pn<w77—7pa Q)a Qn(w77—ap7 Q)) = Fn(W,T,p, Q)
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So if we want to follow H(p,q) during these transformations, we will
need to solve for w the equations

Ry i(w,7)=0, i=1,2,...,d,
and
Rei(w,7) =0, i=1,2,...,d.
From the fact that vector fields v, have order 2", we readily see that
Ry; =w;, Rn;=R,1;+0(2"),

so the equations R, ;(w,7) = 0 can be solved for the w; and we obtain
convergent power series

wn,i(T) € C{T},
such that
Ry i(wn(7),7) =0,
and similarly for n = oo, we find formal power series
weo,i(T) € C[7]]
solving
Re i(weo(T), 7) = 0.
So we then have
P, (H(p,q)) = Fa(wa(T),7,p,q) =t Ha(7,p,q)-
and is thus of the form

+Z a; +wni(7)) fi + O(2" + 2) mod I N M

with fi = pigi — 7.
Comparing with the Taylor expansion of [1.2) m

Blgp) = B(t + f) = +Zb ) fi mod I,

we deduce that the coefficients b;(7) of the frequency map are related
to the wy,;(7) by the congruence

a; + wm-(T) = bZ(T) + O(2n + 2),
and that the constant term gives back the Birkhoff normal form of H:
ho(T) = B(1) + O(2" 4 2).

One may be tempted to go one step further and use the projection
() — P, where we eliminate the 7-variables using the relations f; = 0,
1=1,2,...,d, in order to create an iteration taking place in the ring
P. This certainly can be done, but the resulting formulas are much
more complicated and less revealing. The great advantage of working
with the Hamiltonian normal form iteration is that we avoid solving
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these implicit relations R, ;(w,7) = 0 and f; = 0. This leads to a great
simplification of the setup.

2.6. Behaviour of the frequency space. We will now see that the
precise truncations that we made for the derivations v, allow us to
control some non degeneracy properties from the formal iteration.

We can find open subsets U,, C C?? in the 2d-dimensional w, T space,

on which the power series R, ;(w,T), wgi(7), i = 1,2,...,n converge.
They define d-dimensional complex analytic manifolds
X, ={(r,w) €U, | Rpi(t,w) =+ = Ry q(1,w) = 0},

which are the graphs of the map
Wy = (Wn,1(7), .., wna(T)).

Proposition 2.9. The manifolds X,, are contained in F(H) x C¢,
where F(H) denotes the frequency space of H.

Proof. We prove the statement by induction on n. Clearly, this is true
for X, which reduces to the d-dimensional plane

wi=--=wyg=0.

Un

As X, is the image of X,, under the automorphism by ¢, = e™"»,
it is sufficient show that the restriction of the vector field v, to X, is
contained in the frequency space F(H).

To see this, decompose the field v,, into Hamiltonian and non-Hamiltonian

part
d

vy, = Zvi,n(w,r)awi + w,, w, € Ham (Q).
i=1
Only the non-Hamiltonian part enters the computation of
on(w;) = Wi — vy i(w, 7) + O(2% 4 2).
As the R, ;(w,0) = w; + O(2), we may apply Weierstrass division
and divide the coefficients v, ; successively by the R, ;’s and get an
expression of the form:
d
Ui = ni(T) + Z Ry, i(w, T)by j(w, T).

=1

By definition, the coefficients R,, j(7,w) vanish on X,,. The Hamiltonian
H, 1 = (Fnt1)|x,,, is in Birkhoff normal form up to order 2" + 1 and
moreover a direct computation shows that:

Hn+1 = (An + Un(An))|Xn+1 + O(2n+1 + 2)
d
= (A0)1x,p, + Z ni(T)Pig;i + 02" 4+ 2) mod Ry + I?

=1
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Therefore by identification with the Birkhoff normal form, we get that
n+1
p,i(T) = [bn,i(T)]gn .

This shows that the vector field v,, is tangent to the frequency space
along X,,. Thus its time one flow e~ maps the analytic manifold
X, C F(H) x C% to an analytic submanifold X,,,; C F(H) x C%. This
proves the proposition. Il

This simple proposition will turn out to be a fundamental property of
the formal Hamiltonian normal form iteration.

3. CONVERGENCE OF THE HAMILTONIAN NORMAL FORM

We now proceed to the convergence properties of the iteration scheme
of the Hamiltonian normal form. Our strategy will be to transfer the
Hamiltonian normal form from power series rings to function spaces
and ‘“replace” the ring R by a sequence of Banach spaces E,,, where the
E,, are certain spaces of functions on a shrinking sequence of sets

WoD Wi DWe D ... D Wy,
so that there will be natural restriction mappings
Ey— FE = FEy—...— FE

of norm < 1. The iteration step will construct from A,, B, € E,
elements A, 1, B,11 € E, 1, using certain operators that emulate the
operators that appear in the iteration scheme of §2.

It is important to have a certain flexibility in the possible choices
of the spaces F,. The maps occurring in the iteration will always
satisfy precise estimates. The resulting technical difficulties are just of
notational nature and largely irrelevant, as we shall see.

3.1. The resonance fractal. The w-variables are crucial: we can
control the estimates only if we restrict the w-domain over a sequence of
decreasing sets. In this way we obtain convergence over the remaining
Cantor-like set.

Let us denote by
=, ={BeC?| (B,v)=0} cC

the hyperplane orthogonal to vector v € C¢, v # 0, with respect to the
standard scalar product

d
(67 U) = Z 6%1}1
=1

A vector 3 € C? is non-resonant precisely if for all J € Z4\ {0}
(8,J) # 0.
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Definition 3.1. The complex resonance fractal is the set
== |J =,
Jeza\{0}

The real resonance fractal is the set

x:= J %,

JeZa\{0}
where X; = =, N R?.
Proposition 3.2. i) The set = C C? is dense for d > 2.
ii) The set X C R? is dense for d > 1.

Proof. We only prove the first assertion. The second one is similar, but
easier. As QQ is dense in R, it follows that = is dense in the set

S:={3eC?:3 veR\{0},(B,v) =0},

consisting of all points the belong to the complexification of a real
hyperplane. Let us show that for d > 2, we have S = C% Let
2z € C? = R +iR? and write

z=x+1y, z,y € R

As d > 2, there exists a real hyperplane V C R? containing the vectors
z,y € R so

z=x+iyeVeC.
This proves the statement. U

3.2. Arithmetical classes. In general, if 8 is non-resonant, the scalar
product (3,J), J € Z%\ {0} is non-zero, but can become arbitrary
small. To quantify this, we consider the following.

Definition 3.3. The arithmetic sequence o(8) = (o(8)x) of a vector
B € C? is defined as

o(B), = min{|(8, )| : J € Z*\ {0}, [|]| < 2"}.

The precise nature of the falling sequence o(f) encodes important
arithmetical properties of the vector (.

Definition 3.4. Let a = (ax) be any real positive decreasing sequence.
The complex arithmetic class associated to a is the set

Cla)oo 1= Nye_yC(a)y,, where C(a)y, :={8 € C":Vk <m o(f)r > ar}.
Stmilarly, the real arithmetic class associated to a is the set

R(a)oo := N°_,R(a),m where R(a), := {8 € R : Yk <m o(B)r > ar}.
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Note that

R(a), = C(a), NRY, ¥Ym € NU {oo}.
If a vector 3 belongs to C(a)s, then |(3, )| > ay for all lattice vectors
0 # ||J|| < 2%, and thus small denominators are controlled by the
sequence a.
As we are dealing with a descending chain of closed sets C(a),, and

R(a)m, it follows that C(a)s and R(a) are closed subsets. From the
above propositions we can conclude immediately:

Corollary 3.5. i) The set C(a)o has an empty interior for d > 2.
ii) The set R(a)so has an empty interior for d > 1.

So the case of two degrees of freedom is special. In this case, the
complex arithmetic classes €(a),, € C? have a non-empty interior.
More precisely, if the frequency ratio is non-real,

B2/B1 ¢ R,

then it is an interior point of C?\ Z. This ensures a convergent Birkhoff

normalisation in two degrees of freedom. This peculiar fact was already
observed by Moser back in 1958 [25] (see also [28§]).

Although we tautologically have

B € R(a(F))se

it might be an isolated point of that set.

Note however, that a > a’ then C(a)s C €(a')s and similarly R(a)s, C
R(a"). The following elementary but fundamental result shows that
although arithmetic classes may have an empty interior, after replacing
a by a slightly smaller sequence va, they are big in the sense of measure
theory.

Proposition 3.6 ([15]). Let a = (a,) be a positive decreasing sequence
and B € R(a)w. Let v = (v,) be another positive decreasing sequence
with v; <1 and Y .2, v; < 0o. Then the density of R(va)s at B is equal
to 1:
L a(B(B.) N R(va)-)
im
e=0  u(B(Be))

Here va is the sequence with terms v,a, and pu denotes the Lebesgue
measure, B([3,¢) the ball with radius e, centred at 3.

=1

Definition 3.7. For a given vector 3 € R%, we say that a falling
sequence a = (a,) is f-dense, if the set R(a) has density 1 at the point
p:

- p(B(B.2) N R(a))

M (BG.o)
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So the above proposition says we can always find a < o(3) slightly
smaller, such that a is S-dense. Similar statements holds in the complex
case be we will not use it, as our range of applications is in the real
domain.

3.3. The sets Z, and W,,. We will have to study the set C(a)y in
the neighbourhood of a fixed frequency vector a.. For this we consider
a decreasing sequence s = (s,) and converging to a positive limit s...
We denote by B(r) C C? the ball of radius 7 centred at the origin.

Definition 3.8. For fixed decreasing sequences a and s we define the
closed set

Zn = Zyp(a,a,8) :={w € B(s,) : Yk <n,o(a+w)r > ar(so — sn)}

Note that Zy = B(sg). As the sequence (s,,) is decreasing we have

ak(so — Sn+1) = ar(so — sn),

so the sets (Z,) form a descending chain and can be considered as a local
variant of the chain (€(a),). Moreover if sy < 1 then ay > ax(so — s»)
for all n’s and therefore

B(s,) NC(a), C Z,
In the iteration, we will have to control the shrinking of the sets Z,.

To do so, given two open sets V C U C C?, we denote by §(U, V) the
supremum of the real numbers p for which

V+pB CU.
where B denotes the unit ball.

Lemma 3.9. The sequence (6(Zy, Zni1)),en Satisfies the estimate
N Zny Zng1) = 27" an(Sn — Spy1)-
Proof. The proof is straightforward. Assume that w € Z,,;; and take
r € C? satisfying
2]l < 27" an(sn — sn41)-
For k < n and ||J|| < 2*, we have:
(@ +w+a, J)| = [(a+w J)] = [z, ])|
> ar(so = sn1) — [l [| ]
> (lk<80 - Sn—i-l) - an<8n - Sn-‘rl)

> ax(s0 = Snt+1) — ak(Sn — Snt1) = ax(So — Sn)-

This shows that w 4+ x € Z,, and thus proves the lemma. O

The sets W,, we will be working with, are defined as follows.
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Definition 3.10. For fized decreasing sequences a and s we set
W, == Z, x D! x D2* c C? x C* x C*
where D, C C denotes the closed disc of radius t. Furthermore, we put
V,:=Z,x D! cC'xC’

The coordinates on C?% x C?% x C2? are

Wiy ooy Wdy T1ye -3 Tdy q1y---54dy P1s---5DPds

and there are projection maps

WTL —> VTL’ (UJ?T? Q7p) '_> (w7 T)'

3.4. The Banach spaces. The Banach spaces that we will use, consist
of functions that are holomorphic on the interior of the closed sets W,
defined above. They come in different flavours: we may require that
they extend continuously to the boundary, or more generally be Whitney
C*, or be square integrable.

For a closed subset X C R?, we denote by
C*(X,R)

the vector space of C*-Whitney differentiable functions, k € N, for
which the norm

||l = max sup |0" f ()]

1<k zex
is finite and therefore defines a Banach space structure on it]]]
There is a natural definition of a holomorphic function at a point = of a

closed subset X C C*. Let us say that a vector v at € X is interior
if:

0, ]t <6 = z+tve X.
Then f is holomorphic at x € X if for any interior vector v with the
property the limit
t .
o S t) = f(@)
t—0 t
exists for complex values of t.

If x is an interior point this is equivalent to the standard definition. In
the general case it allows us to control analyticity of the function on the

1Recall that a function f : X — R defined on a closed subset X of Euclidean
space is called Whitney differentiable at x € X, if there exists functions D’ f(x)
called the Whitney derivatives of f at x such that:

=3 2y a7 oy - 2

[I]<m

The sole difference that the Whitney definition bears is the uniformity of the limit
in the z,y variables.
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boundary of a set and also to avoid defining our spaces as topological
tensor products.

If f is defined in a closed polydisc D; x Ds, to be holomorphic means
that

(1) f is holomorphic in the interior of the polydisc.
(2) f(z1,—) and f(—,xs) define holomorphic functions for any x;
and any xs.

It follows from Morera’s theorem that if f is continuous then the
first condition implies the second one. On the other extreme if f is
defined in X = {0} x Dy, then to be holomorphic means that f(0,—)
is holomorphic. In this case, the set X has an empty interior. In our
iteration the limit set over which the functions are defined, namely W
has indeed an empty interior while for finite n, the sets W,, are the
closures of their interior.

Definition 3.11. Given a closed subset X C C¢, we denote by OF(X)
the Banach space of (bounded) C*-Whitney function which are holomor-
phic in X:

OF(X) = CH(X,C) N O(X)
For k =0, we use the notation O¢ instead of OF.
We define similarly O"(X) as the Hilbert space of square integrable
functions on X, holomorphic on the interior.

For our iteration scheme, we will use the following Banach spaces:
Definition 3.12.
Eb .= 0°(W,), b=h,c ork, n€ NU{oco}.
Note that E? is the subspace of O°(W,,) consisting of functions for
which f(w,—) is holomorphic for any w € Z..:
Ef ={feC'(Wx):YwE Z,, flw,—) € O¥D¥)}
That these subspaces are closed follows from Morera’s theorem.
Also the spaces of functions
FP =0V,

do play a role. Note that O°(V,) C O°(W,,), so E¥ can be identified
with the closed subspaces of EF, consisting of those functions that do
not depend on q, p.

The restriction mappings induce injective mappings
(Efm ’ |n) — (ng | ’ |m>’ m>n,

and this holds also for m = oo, since the image consists of Whitney
C* functions having analytic Taylor expansion. As the set W, is
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connected, this expansion defines uniquely a holomorphic function in
this neighbourhood.

Usually there is no ambiguity to drop the n in |z|,; for 2 € E, the
notation |z| just means |z|,. Furthermore, if (z,) is a sequence with
x, € E,, then the notation |z| can be used for the sequence |z,| and be
called the norm sequence of x, etc.

We say that a sequence (x,), x, € E, is convergent, if the image
sequence in E,, converges and that it converges quadratically, if there
is an estimate of the form

|2 — Zp)oo < Cq*,

for some ¢ €]0, 1] and C > 0.

3.5. Bruno sequences. We will make use of Bruno sequences in two
different ways. First, we will have to impose a Bruno-condition on
the frequency vector a and second, we will use a Bruno sequence p to
determine the sequence s of polyradii. This leads to a simple way to
control the small denominator estimates for the operators that will be
defined in the next section.

Definition 3.13 ([2]). A strictly monotone positive sequence a is called
a Bruno sequence if the infinite product

d k
1/2
H A
k=0

converges to a strictly positive number or equivalently if

>

k>0

log ay
ok

Since their introduction in [2], these sequences have played a key role
in KAM-theory. We denote respectively by BT and B~ the set of
increasing and decreasing Bruno sequences. The set of Bruno sequences
some obvious multiplicative properties:

i) Taking the multiplicative inverse interchanges B* and B,
ii) The product of two elements in B* is again in B*.
iii) An element of B* raised to a positive power remains in B*.

Note also that any geometrical sequence a,, = ¢", ¢ # 1 is a Bruno
sequence, belonging to B~ if ¢ < 1, to Bt if ¢ > 1. The sequence
a, = e belongs to B* if and only if 1 < a < 2.

Definition 3.14. A vector o € C¢ is said to satisfy Bruno’s arithmeti-
cal condition if o(a) € B™.
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log an

If (a,) € BT, a9 > 1, then from the convergence of the sum =&
see that for any € > 0, there is an IV such that for n > N we have

loga, <2"%, a, < (65)2n,

we

so the sequence can not increase faster than a quadratic iteration
Upt1 = ui, ug > 1.
Similarly, for (a,) € B~, a9 < 1 we find an estimate
an > (e7%)*" for n > N,

so that the sequence can not decrease too quickly.

Sequences of type P(a). We need to make a special choice of our
sequence s that determines the size of the sets W, in terms of an
auxiliary Bruno sequence p = (p,,) € B~.

We will always assume that py < 1 and that p converges to 0. For a
given sg > 0, we define s,, recursively by

1/2n

Sn+1 = (pn) Sn-

Because of the Bruno property of p, the sequence s = (s,,) converges to
a positive limit s..

The sequence p will be taken small enough to counteract certain small
denominators of the form

ay (s — sn1)™ = ay(1 - Pl/Qn)mSZL
that appear norm estimates.Therefore we define

Definition 3.15. Given a sequence a = (a,) € B~, we denote by
P = P(a) (resp. PT) the set of sequences depending on parameters
pn >0, n € N, whose terms are majorated by CpFa (s, — spy1)™™ for
some C,k,l,m >0 (resp. k>0):

Uy < C'Ofl
" afm(sn - 3n+1)m

The following lemma shows that an appropriate choice of p absorbs the
small denominators.

Proposition 3.16. For any falling Bruno sequence b € B~ and any
u € PT(a), there exists values of the sequence p = p(a,b) and a constant
K eR, sothatu < Kb and p € B™.

Proof. We let
Up < C’pfla;l(sn — Snt1)” ",

and show that the falling Bruno sequence

pp = 20 IMIE VLR GUELYE With M = max(C, 2%alby)
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satisfies the condition.

For this choice, we have:
Uy < 2(’"’1)mbn(3n — Spy1) "
By our choice of the sequence s = (s,) we have:
sn = snp1 = (1= p/* )50 > (1= pi/?")s0c.

The constant M is defined so that the falling sequence p is bounded by
1/2 and hence:

(1= pl2') = (1= 27Y/2") > plneD),
Thus we have the estimates

Uy < 2(_”_1)mbn(sn — Spa1) " < bps " = Kb,.

o0

This proves the proposition. O

So in the iteration process, small denominators al (s, — s,.1)™ can be

absorbed by the presence of such a sequence p in the numerator, and in
fact be pushed below any pre-given Bruno sequence.

3.6. The operators. The basic step in the iteration of §2 that deter-
mines A, 1, B,y1 form A, B, depended on the truncation operators

P G P

and the map j,, which came from a map j4 : R — ©O(R), which
was defined as a composition of several other maps. If we want to lift
these operator in the Banach space context, we often need to shrink the
domain of definition slightly. For this reason it is convenient to define
Banach spaces E, .. between F,, and E, 1, and set up things in such
a way that the iteration step brings us from FE, to E, i, using one or
more intermediate spaces E, .., where 0 < ¢ < 1. We implement this
idea in the following simple way: we interpolate the sequence s = (s,,)
by setting:

Snte = (pn)/ s, € €]0,1],
and then set
Wn—i—e = Lnte X Dgn+£ X Dg:iLE,

E2+s = ob<Wn+s)a
where we put
Znie ={w e Ch|Vk <n,o(a+w) > ap(so — Spie}
One then has:

5(Wna Wn+5) Z %(Sn - Sn-i—a) Z %(1 - p;/Qn)sov
The definition of P and P extend for a fixed € as well as the absorption
principle.
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Restriction maps. First, there are the restriction operators E? —
Efn, n > m. These have norm < 1 and thus are completely harmless.
We will not mention or even give names to these maps. A different
matter is that we also have to use 'flavour changing’ restriction maps,
like the canonical map

T @ B — B (n < m),

which arise by remarking that a square integrable holomorphic function
on W, is continuous on the smaller set W,,. From the local equivalence
lemma (Lemma , it follows that the norm sequence of r,, ,,+. belongs
to P. There is also a canonical map i, : ES — E" whose norm is
bounded by the volume of W, and as these volumes form a falling

sequence, this norm sequence is also in P.

Truncation maps. For the power series ring we used the truncation

operations
n+1
lF PSR o PP

that pick out some range of monomials from a series. Inside the Hilbert
spaces B the monomials form an orthogonal set on polydiscs, so these
truncations are just special orthogonal projectors. In this way we obtain
corresponding maps

T :EflZ —)E,]}l, (n <m),

n,m
and

O’Z’m CEM — EM . (n<m).
Corresponding truncation operators on E°-spaces can then be defined
as compositions

. Th r
¢ RS BN ER, MY pe
Tn,m - n n m’ m>

where n < m’ < m. We can make the specific but arbitrary choice
m' = (m+n)/2.
The norm of these maps can be estimated directly from the Arnold-Moser
lemma (Lemma |5.6) and the conclusion is that the norm sequences for
Ty nse and o (b € {h,c} ) belong to P for b = h. Due to local
equivalence (Lemma [5.2)), it also belongs to Pt for b = c.
More generally, one may define projectors for any subset S C N3 of
monomials pq®7¢. Such a subset generates a C[[w]]-module Mg in the
power series ring R. By the same method as above one can define the
projection maps for b € {c, h}

T8 nm : B — Bl (n <m),
on the space Mg N E° ’spanned’ by the monomials in S. The corre-
sponding norm sequence (|72, .. .|) belongs to P.
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Poisson derivations. We introduce the space of Poisson derivations
05, = O(R) N L(ES, EL,).
The quantity

[ull = sup  {(sp = sq)|u(x)lq/(e|]p)}
np<lg<m
is well-defined and defines a Banach space structure on ©¢ . (The
normalisation constant e ~ 2.718 is purely conventional and serves to
simplify the estimates of the Borel lemma [5.4])

The map H, ., : Ey, — Oy, (n < m), which associates to a function

f its hamiltonian field {—, f} is well-defined, and the norm sequence
for H, 41 belongs to P, again by Cauchy-Nagumo (Lemma .

Truncation maps for derivations factor:

ev

O v — (B — (Bl — ©%, n<n' <m/ <m

m/,m>
where ev is the map which evaluates derivations on the coordinates
T,w, q,p and the middle map of the diagram corresponds to the trunca-
tion
T [:L‘]%Z:_ll—'—l

Therefore the associated norm sequence for any choice of m = n + ¢,
n’, m’ depending on n belongs to P™. We will denote this map also by
Tom When n,n',m’,m are at equal mutual distances.

The map L°. Recall that in iteration scheme for the Hamiltonian
normal form of §2 used a specific C[|w, 7]]-linear map

L:R— O(R) = Ham (R) ® Der (Ry), m + Lm
that was defined by setting for a # b:

\ 1
Lp*q” = {~,

- agb b.
(a+w7a_b)pq}, a#

and
d

Lg(qp) == ) | %5(1)p,,

i=1 or;

We have to realise this on the level of Banach spaces.

We will define for n < m’ < m” < m a map

c
n,m’;m' ' m

: Efl — @m/,m
as a composition of five basic maps.
Inclusion step:

in: B¢ — B

Clearly, the norm sequence belongs to P.
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Truncation step:
Tn7m/ : E,,],Ll — E:Ln/
As remarked before, its norm sequence belongs to P*.

Diwvision step: We now use the map
divm/ — divm/,

where the map div,, : E" — E" is defined as by

.7 1.7
PO axw1—nl?
on (MM and equal to the identity on M". As w € Z,, we have
1 7 L1
< — .
I(aJWJ_J)pq |n < an!pq In

As the monomials p’q’ are orthogonal, we deduce that the norm se-
quence of div,, has its norm bounded by a=! € P.

Restriction step: After that, we use the restriction map

Pt = B — EC,
As remarked above, the norm sequence of 7,1 ¢ 2. belongs to P.
Poisson step: We use the map D,,» ,,,, where the map

Dy By — @;m
is defined on the level of monomials by

Dp'q” ={-.p'¢’}, T#
{ Dy(pq) = ¥y %20,

As we are dealing with a projection and partial differential operators,
its norm is again in P.

So we define

c . .
n.m’.m"”.m = Dm”,m () Tm/7m// (@) dl’Um/ O Tm’,n Olp
b b b

as the composition of these five maps:
in h T:LL m/ h div, B Tmlm! D1,
E,rcl ;> ETL ;) Em/ 4 Em/ —,> ,rcn// % fn//’m
We will make specific, but arbitrary choices for the intermediate points
by setting

m' :=n+e, m":=n+2, m=n+3e, ¢:=(m—n)/3

and use the choices to define

LE¢ N
nm *— “nm/ m’m

In our iteration we will use specifically L%,n+1/4 and L$1+1/6,n+1/3'
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Lemma 3.17. The norm sequences |Ly, ., | and [Ly 6., 5| belong

to Pt

Proof. The norm of the composition is at most the product of the norms,
which are all in P; the norm of truncation is in P*. Hence the result
follows. U

The map j. We proceed to the definition of the map j inside our
functional spaces. Recall that in §2 we defined it in term of L:

ja: R— O(R), m— L(m— Lm(T)).

It is quite simple to realise this on the level of Banach spaces; as we
need to apply it to only to specific elements

An:AO+Tn7 Tn:ZS’nv
i=1
we consider the map

Note that the map

c . ¢ c
nn+1/4 * En @n+1/6,n+1/47

so that L, ., /,(m) € ©; ., /6,1, indeed can be applied to T, € Ej.

We can now define a map
Jnt By = OO0 13041720 T Lyyyjapiige © Ma(2)

that emulates the map

. . n+2 nt1 ) n+2 nt1
gnc = [, (2 i) = a2l PP

defined in the formal KAM-iteration.

Note that by our implementation of L, we incorporated the truncation
step, which leads to a norm sequence in P*.

Lemma 3.18. We have 1|i—||T| e pt.

Proof. By definition one has:

[l < LG gl 1L jamga ol (L4 Ta]) € (L4 TP
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3.7. The iteration in the Banach spaces ES. We may now for-
mulate the Hamiltonian normal form iteration in the spaces Ef for
appropriate choices of p and sg.

Definition 3.19. We will simplify notation slightly and write:

Tn '= Tot1/2n41 ° Eny1j2 — Enpa
for the maps that emulates the truncation [—]32111“, and similarly
On = Opni1y2 s By —> Efy)

for the map the emulates the tail-truncation [—|an+19 and j, for j.

We are given an arithmetic class C(a), depending on a sequence a = (a,,)
and, without loss of generality, we may assume that ap < 1. We also fix
an arbitrary a €]3/2,2].

We now list all the estimates which appear in the proof of the conver-
gence. The precise form of these estimates is irrelevant for the proof of
the convergence, since the absorption principle implies that these are
fulfilled for sufficiently small p. More precisely, according to Proposi-
tion [3.16] as the norm sequences |j|/(1 + |T), |7, |o| belong to P+,
we may find p such that for some constant R > 1 we have:

Rao(sl/g — 51)

(2) [gnl |7al Ran(Sni1/a = Sny1/2)
1+ 1T, — 2e(n+1) ’
R
3 o < —,
3) < 2
(4) |]n‘ Ran(sn—i-l/Q - Sn—H)
TR Iy
R%e—"
5 nl < ,
g ol < 2
R?e—"
6 n .n S P YR
©) oul i < A0

Note that (1) follows form the n = 0 case of (4) and that some estimates
are redundant. As Ay, By vanish at the origin, we may choose sy small
enough so that

(@) |4l <1,
(b) Bl <R,
(c) |By| < R2e/ (79,
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Clearly (c) is in general stronger than (b)! The estimates used in the
proof will be numbered by letters and numbers; for instance (1) means
that we use the estimates (1) and (b).

Theorem 3.20 ([14]). Consider an analytic Hamiltonian of the form

H = Z aipiqi + O(3) € C{p,q}

i=1
and put

d
Fo:=H + sz‘pz’%‘ = Ay + By
i=1
Assume that the frequency vector a € C(a)s, where a is a Bruno
sequence. Under the above assumptions on the sequence p and sg, the
iteration

An+1 = An + Sn+1

Bry1 = ¢(vn)An 4+ Y(v3)Snpa + €7 (0n(Bn — va(An)))
with

Sn—i—l = Tn(Bn - Un(An))7 Up = ]n(Bn) = ]an
and
b(z) = (1 +2) =1, p(z) = e —1
15 well-defined in the Banach space EY,, i.e. for alln € N we have:
i) A, By, Sy € EE.

ii) The sequence (B,,) converges quadratically to zero.
iii) The vector fields v, exponentiate to elements

on=e€ " € L(E,, Eyi1)
Moreover the composition

Q= Pn-1Pn-2-.. 010
converges to a Poisson morphism
o, € L(Eg, ES),

which reduces Fy to its Hamiltonian normal form.

Remark. It could happen that the real part of the set Z,, reduces
to the origin as the set R(a) might have density 0 at the point a € R%.
In this case, our statement would simply be empty. As we already
explained, this difficulty however can always be circumvented by an
appropriate choice of the sequence a. According to Proposition [3.6|
given a frequency vector o € R? satisfying the Bruno condition, we
can always find a Bruno sequence a < o(a), for which R(a)« has
density 1 at the point a. So the above pathology can be avoided easily
by an appropriate choice of the Bruno sequence a = (a,). This is a
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fundamental difference between KAM theory and Diophantine analysis,
where one is concerned with optimal bounds [15, 19, 20].

Proof. We start with
Fy = Ay + By,
and consider Ay and By as elements of E§. We have:
vo = Jo(Bo) € O7412
and, as Ty = 0, we get the estimate:

1) ol < ollBo| < 22tz =50,

According to the Borel lemma (Lemma , the linear map
e By 12— EY

is well-defined and moreover, as e is the Borel transform of 1/(1 — z),
we deduce from the previous estimate that:

1 J—
1—-1/2 2

le™] <

In the next step we get
Fy =e "k, € EY,
and Al = A(), Sl =0.

We show by induction the following estimates:

|Sn+1’ S R‘Bn’a

R? R* ..
Bn <_Bn2 —e Bna
[Buil € 5 |Bal? + e ™| Bl
|Bny1| < R

Assuming the validity of these estimates up to index n, we may conclude
that

®) Tl =D Skl <D ISk <R [Bil <.
k=1 k=1 k=1

In particular, we may simplify the estimates in which 1+ |T,,| is involved.
Note also that:

(@) Al < JAol + [Ta] <n+1.

As formal power series, the term S, is the difference of two terms

St = Tn(Bp = jn(Bn)(An)) = 7a(Bn) — Tn(Jn(Bn)(An)).

Inside our Banach spaces, the second term

Jn(Bn) = Tn(jn(Bn)(An))
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can be estimated as follows. The map J,, is obtained as composition

evn,

c Jn c c Tn c
En n+1/4,n+1/2 ; n+1/2 ; En+1?
where the evaluation map ev, is defined by

ev,(v) = v(A,).

Note that by definition of the norm in @%+1/4 nt1/2> We have:
el A,
[v(An)| < :
an(Spt1/4 = Sny1/2)
Consequently:
, el Al R
(2 |Jul < Ldnl 7l <<
an(3n+1/4 - Sn+1/2) 2
(3) [Snt1| < (I7a] + [Jn])|Bal < R|Byl.
This proves the first step of the induction.
We can now form
An+1 = An + SnJrl € E7cl+17
and set as usual:
U, := Jn(Bnp).
Now:
. an(Snt1/2 = Snt1)  @n(Sni1/2 — Sny1)
(4b)  foal < 1l Bal < /8 < & ,

and therefore by the Borel lemma (Lemma [5.4), the linear map

—Un . c c
e "By g — En

n

is well-defined and, as e~* is the Borel transform of 1/(1 + z), we also
get that:
1

=2
1-1/2

le™™"] <

So we can form F, ., =e ™ F, € ;| and so indeed

By =F— A€ B

Let us now prove the announced central estimate of | B, 1|. The power-
series

e *(1+2)—1eC{z}

is the Borel transform of

22 2
—m €z (C{Z},
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which has radius of convergence equal to 1 and, choosing r < 1/2, we
get that:

1 1
< < 4.
‘(1+z)2 “(1-r2"—
We apply the Borel lemma (Lemma and obtain:
Gal 1Bl ' _ RIBAP
)) T4

(4) Iﬂhﬂmg4<

an(3n+1/2 — Sn+1
Similarly the series ¢(z) is the Borel transform of z/(1 — z) and, as
1

=2
1—1/2

1Ss1] < |Bal and

Y

the Borel estimate gives
[l | Bul [Snia| _ B Bnl”

(4) [ (n(Bn))Sns1| < 2an(3n+1/2 —Sng1) — 4

Finally we look at the remainder term e="" (0, (B, — jn(Bn)(An)):

1 n
(5) |€_vn0n(Bn)| < 2|0n||Bn| < Ze_a R2|Bn|7

o . ) R?e™"
(6) &7 (0 (Jn(Bn)(An)) < 2|on] [dn] [An] | Bn| < 1 | Byl
This proves the second step of the induction
R? R _ .
|Bpyi] < 7|Bn|2 + 76_a | Byl

The 'nmorm map’:

E* 3:|_|E5 — Ry, =]

reduces the issue of convergence to the analysis of some elementary
iterations of positive numbers.

So let us put z,, := |B,| so that
R

2 _
Tpe1 < 7%1 + 76 T,
where we have xy < R 2e1/(2-a),

We show that (x,,) converges quadratically to zero. To see this, consider
the real sequence (y,) defined by
R2 n n
Yo = R—Qe—l/(Q—a)’ Yn+1 = 7 (ea yi + e " yn) )

which clearly majorates the sequence (z,). It follows with an easy
induction that one has the inequality

yn Z 672(1" .
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Indeed, assuming the truth for vy, we get

2

R n n n n+1
Ynt1 = o> (673‘“ + e ) = R2e73" > g2

as 3/2 < a < 2 and R > 1. The inequality can also be written as:
ey < ey,

and therefore:

Ynt1 = R; (e yn + e yn) < R; (e yn + e yn) = %™y,
This shows that the sequence

20 = R 2e7 V() Znil = R26°‘nz3
majorates both (y,) and (x,). This sequence is easily integrated
Zp = R2n+1_265"z§n.

with

P IS L T L
Poi=2 1;(5) = e i
=0

Writing (z,) in the form

n 1-— 2)"
Zn = RT2(R*2)*", v, = —(oz/ ) )
2—«

The sequence 7, increases and is bounded by 1/(2 — «) thus:
() R 2y < R2eM =94 < 1,
thus the sequence (z,,) is decreasing and converges quadratically to zero.

This shows the quadratic convergence of (B,) and concludes the proof
of (b). The quadratic convergence for v, = j,(B,) follows from this
and the Composition Lemma (Lemma 5.3) implies (c). O

3.8. Regularity of the normal form. We formulated the iteration
scheme in terms of the sequence of Banach spaces E. Without much
difficulty one can formulate a version of the iteration in the spaces E¥.
Without going into all details, we state the following

Proposition 3.21 ([14]). Under the assumptions of Theorem|[3.20, the
iteration is well-defined in EF and the sequences (BF) and (vF) converge
quadratically to zero. Furthermore, the Poisson morphism P, maps
EY C E§ to EX C E§.

Proof. This is a direct consequence of Poschel’s regularity lemma (j5.8]).
Indeed, the norms v = (1,) of the maps

c k
En EnJrl
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are bounded by a positive Bruno sequence. But the sequences of the
iteration converge to zero quadratically, so the multiplication by v has
no effect on the convergence. U

We remark that the Local Equivalence Lemma (Lemma[5.2] ) implies
that we can also formulate and prove quadratic convergence for the
iteration in (E").

4. APPLICATION TO INVARIANT TORI

We describe now an application of our theorem to the analysis of
invariant tori near elliptic critical points of analytic Hamiltonians, whose
frequency satisfies a Bruno condition. For this we have to consider the
appropriate real form of H and restrict to the real domain.

4.1. Hyperbolic and Elliptic fixed points. The dynamics of the
harmonic oscillator

d
1
H, == (p2 + g2
5 ;_lﬁ(pz +4q;)

describes quasi-periodic motions with frequency vector 5. All orbits are
bounded and the phase space is filled out by a d-parameter family of
invariant tori p? + ¢? = ¢;, on which the solutions spiral around. The
geometry of the situation is well-known: the fibres of the map

R* —RY, (¢,p) =" +¢ = (i + i, i+ q))
are tori, which are of real dimension d over the strictly positive orthant
RY,
In the real domain there is a big difference in the dynamical behaviour
between H. and its hyperbolic cousin

d
Hy, =Y cipigi,
i=1

for which all orbits are unbounded and there exist no invariant tori.
Yet when considered over C, the canonical coordinate transformation ¢
1 . 1 .
pj ﬁ(pj +ig), 4~ ﬁ(% +1p;)
maps Hy to H., when we put
b =1ia.

Another way of expressing the relation between Hj;, and H, is by saying
that the evolution for Hj, in purely imaginary time is equivalent to
the real time evolution of H, and vice versa. As a consequence of this

relation, we can immediately translate results about Hj into results
about H..
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4.2. The coordinate transformation. Consider an analytic hamil-
tonian of the form

1 d

H =2 oi(pi +4) +0(3) € Rip.q}.
i=1

and assume that the frequency vector a € R(a)s, where a is a Bruno

sequence. We can apply our theorem [3.20] so for appropriate choice of

the sequence p and radius sy, we find sets
Wo = Zy x Dy x D§,  Zy = B(sg), Dy:= D2

and
Weo = Zoo X Doo x D%, Dy, := D"

Soco?
such the sequence
AD7 Ala A?a s

which converges in the Banach space O°(W,,) to an element
A € 04(Wy)

and the sequence
n
—v —v —7 —v
Py =e"", P =e""e 0,...,<I>n:He k
0

converges in the operator norm to ®,, € L(0(W,), 0¢(Wx)). This
transformation maps, for any k, the subspace OF(Wj) to OF(Wy)
(Proposition . In particular, if the closed set Wy is chosen in-
side the holomorphy domain of Ay, then it is in particular C* on W,
and therefore belongs to OF(W,) for any k. The function A, is then
C*> on W, and for fixed w € Z, it is holomorphic.

Of course, in a sense we get a ’half-way theorem’, as we start with
a real Hamiltonian, but obtain a statement about its behaviour in
the complexified domain. But it is clear from the explicit form of the
description of the iteration that, starting from a real Hamiltonian, the
algorithm produces real vector fields v,, which exponentiate to real
analytic coordinate transformations ¢, = e~ ", etc. As a consequence
the limit transformation ®., is 'real’. Furthermore, we remark that it
follows from the construction of the vector fields v,, that the transfor-
mation ¢, maps the subspace F; = O%(V,), (V, = W, x D,) to F¢_,,
so that ®,, maps F§ to F, and by the regularity property Fy to F~.

The coordinate functions w, 7, ¢, p can be considered as elements of the
space O¢(Wy) and we write

W/ = (I)oo(w)y 7_/ = q)oo('r)a C]/ = (I)OO(Q)v p/ = (I)oo(p)
Note that 7/ = 7 and
W' € FF =08V,), forall keN,
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so is independent of ¢, p. These functions define a C'*°-map
¢ We — Wy, > ((2),7(2),d(2),p'(2)), = (w,T,q,Dp)

and for each g € O°(W,)) we have the relation

96/ () = Doclg) ().
The reality of ®,, implies that the map ¢’ maps the real part

Weoo i= Weo NR? to Wy := Wy NRY.
Thus we obtain a real C'*°-map
0 Wee — Wy

As the ¢ sends the (w, 7)-space to itself, the map is fibred over the
(w, 7)-space and we obtain a commutative diagram:

WOOL/)WO
VOOLVO

with ¢' = (', 7") and vertical maps in the diagram forget the coordinates
q,p-
Recall the following Whitney extension theorem:

Theorem 4.1 (|38]). Let X C R? be a compact subset. Any function
f € C®(X,R) is the restriction of a C*° function defined on R.

Invoking this theorem to the component functions w’, 7, ¢, p’ of ¢, we
obtain a C*°-maps

YR — R¥M R RY
We restrict 1) and ¢ to the preimages
Ve =9 (Vo) D Vo, We = HWy) D Wq,

and we arrive at a diagram

W, ——= W,

L,

V€—>VO

that extends the previous diagram. Obviously, the maps ¢ and ¢ are
not unique, but its restrictions to W, and V., are.

As the Taylor series of ¢ is given by the series @, which is Id + O(2),
@ is a diffeomorphism near the origin. Consequently, by restriction to
smaller polydiscs, we may and will assume that

(1) ¢ is a diffeomorphism between V, and Vy,
(2) ¢ is a diffeomorphism between W, and W,.
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As the map ¢ arose from the transformation @, it has the property
that after restriction to W, it transforms

d
1 2 | 2
F0:A0+H:§Zwi(pi +q;) + H(p,q)

i=1
to Iy = Ay. Furthermore

A = Ag+Ts, T € (Ro+ 1) NOFWL).
This means that for w € Z, one has

Fyop(w,7,q,p) = Asc(w, T, 4,Dp),

and moreover, for such a value, the map ¢(w, —) is an analytic Poisson
morphism in the variables (7, ¢, p).

4.3. Frequency maps. In this section we return to the complex situa-
tion and start to analyse the limit n — oo of the frequency manifolds
X,, that were considered in section 2. We need a more careful use of
the Whitney extension theorem.

We consider the extension diagram of neighbourhoods of the previous
section, but in the complex setting:

W —— W, —2= W,
Ve V. =V,

We consider
X, ={(w,7) eV, | Rui(lw,7) =+ = Ry q(w,7) =0},

where R, ; := ®,(w;) € OF(V,). We will have to take the degree of
differentiability £ > 1. For n = oo we have the functions

Roo,i = @m(wz) - Foko = Ok(Voo),

which are analytic in 7 and C* in w.

We can consider the limit set
Xoo ={(w,7) € Voo | Ro1(w,7) =+ = Roo g(w,7) =0}
and invoke the following theorem due to Fefferman :

Theorem 4.2 ([7]). Let X C CN be a compact subset and k € N.
There exists a bounded linear operator

T:C*X,C) — C*(CV,0),

which 1s right inverse to the restriction mapping.
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We consider the inclusion
Voo C Ve
with £ =1 and get an extension operator 7. We consider the functions
R, ;= Ry;lVi, n€N
and set
Tni = T(R,;), Tn:= (Tn1,--, Tna)-

As T is a bounded operator, we can conclude the existence of a limit

Teo = lim 7,
n——oo

By the implicit function theorem each manifold
Xne ={(w,7) € Voirp(w,7) =0}, ne NU{oo}
is, near the origin, the graph of a function

{w=fulr)}.

These functions can be constructed using Picard iteration, whose con-
vergence is controlled by a condition on the derivative dr,. Since (r,,)
converge in the C'-topology, we may find a common compact neigh-
bourhood of the origin for all these maps

fo:U—U".

So by possible shrinking of V, to the set U x U’ € C? x C% we can
express the manifolds X, . has graphs over a common neighbourhood.

Note that these functions converge pointwise to f.,. Indeed, take 7 € U,
as U’ is compact (f,(7)) admits converging subsequences. Let w be a
limit value of such a subsequence (f,, (7)). Passing to the limit in the
equality

Tnk(fnk (T)’ 7_) =0
we get that the point (7, w) belongs to the manifold X, . and therefore
w = foo(7). We will not use this fact.

The map
U—Ch 7 a+t folr).
will called a frequency map of our Hamiltonian system.

According to [2.5], the Taylor series of this map at the origin at order
k coincides with that of the formal frequency map b. Of course, the
process of extension is not unique, but the restriction to the preimage
of C(a)s is the same for any choice. The construction can done so that
the resulting frequency map restricts to a real map

B:U—RY 7 a+ folr).
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4.4. The non-degeneracy condition. We now wish to construct a
frequency map whose image lies inside o + F'(H). Later, this condition
will guarantee positive measure for the set of invariant tori. This
property depends on our choice of Whitney extension, but there is an
intrinsic underlying statement: Proposition [2.9|stating that all X,,’s are
contained in F'(H) x C? extends to n = oco.

Proposition 4.3. The limit set X, satisfies the same non-degeneracy
condition as the manifolds X,,:

X, C F(H) x C“

Proof. Consider a unit vector n € C? normal to the frequency space
F(H) induces, via the Euclidean scalar product, a linear form

w:C* — C,x+ (z,n), F(H) C Keru

Assume that there exists a point zy = (wp, 79) € X which does not lie
inside the frequency space:

u(zo) # 0 and Roo(z9) = 0.

The point zy = (wp, 7o) remains at distance K = |u(xg)| from the
hyperplane Ker u. By Proposition [2.9] the manifolds X, are contained
inside the frequency space therefore the point (w,7) remains also at
distance K from all the manifolds

X, ={(w,7) € V.: Ry(w, ) =0}.
We consider the Whitney extensions:
Xn,e = {<w77-> S ‘/e : 7ﬁn<w?7—) = O}

and as both manifolds intersected with C(a) x C? are the same the
points of

(XneN{w =wo}) = (X, N{w =wp})
are also at distance at least K from the point zy € X.
Now let the parameter 7 vary and define the functions
P i(T) = Tni(wo, 7), n € NU {+00}.
By definition of our functional spaces, as wy € C(a), these functions are
holomorphic in 7 even for n = +oc.

At least one of the functions h..; is not constant for some ¢ =1,...,d,
otherwise this common constant will necessarily be zero and xy will be
the origin, contradicting the assumption zq ¢ F(H) x C%.

Now choose a complex line L C C¢ containing zy along which the
function he; is not constant. By restriction to this line we get a
sequence of one variable holomorphic functions

gn: LNVe — C 2 — hyi(2)

which has the following properties:



HAMILTONIAN NORMAL FORMS 43

1) goo(xo) = 0.
2) ||z — x| < K = gn(x) # 0 for any n € N.
3) the sequence (g,) converges to g, in the C''-norm.

Condition 2) 3) are in obvious contradiction with 1). Indeed The
number of zeroes Z,, ; counted with multiplicities contained inside the
disk D C L centred at x, of radius K /2 is given by the integral formula

1 n,i(2

ng — o g’—()dz

2 Jop gni(2)
for any n € NU {oo}. We know that for n € N, Z,,; = 0, thus passing
to the limit gives Z,; = 0. This contradicts 1) and concludes the proof
of the proposition. O

As we know that X, is contained inside F'(H) x C¢, we can improve
our previous construction of a frequency map. First we restrict the
functions R ; to
Voo N (F(H) x C)
Now we use Whitney C*°-extension to and obtain functions
Sools - -1 Sc0d € C>(C*, C)

whose common zero set, when restricted to F/(H) x U, can be written
as a graph of a map:

b:U— o+ F(H)cCC,
and similarly in the real case
B:U— a+TF(H) CRL

In this way, we construct frequency maps b satisfy the non degeneracy
condition which will be needed to prove positive measure of invariant
tori: the partial derivatives of the frequency map evaluated at the origin
generate the frequency space. Moreover as the condition is open, we
may assume, up to a possible shrinking of U, that the condition holds
not only at the origin, but at any point of U.

4.5. The elliptic normal form Theorem. Using the coordinate
transformation and the frequency map, we may sum up our results in
the following way:

Theorem 4.4 ([11, 12]). Let a = (a,) be a sequence satisfying the
Bruno condition and o € R(a)s. Let H € R{q,p} be a real analytic
function with an elliptic fized point:

d
1 2 2
H = 5;0%(1% +qi) +O<3)-
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Then there exists an open neighbourhood of the origin U C C¢, V c C*
with real parts U,V and C*°-maps

ﬁ:U—>a+3"(H)C]R{d,

UxV U x R

\/

such that for any T € 7R (a)oo), one has:

i) The Taylor series expansion of B at the origin is equal to VB(H).
ii) The map V is a fibred diffeomorphism over its image.
iii) The map ¥(r, —) is an analytic symplectomorphism.
iv) HoW(r,q,p) = 5> iy Bi(T) (0 + ¢7) + Too(7, 4, D)
) Too(7,—) € I? + C, where I C O%(V) is the ideal generated by the
pl + C]Z2 — T; ’s

A%

The map V¥ of the theorem is defined in terms of the map ¢ and the
map 7 — w(7) of the previous section by the relation

V(7. q,p) = ¢(W(T), 7, 4,p)-
We note that in the extremal case where F(H) = {0}, the frequency
map [ is constant, and the condition 5(7) € R(a) is always satisfied.
In this case the map W is therefore analytic, because ¢ is analytic in
the 7-variables. So the theorem implies that H is integrable, and thus
we recover a classical result of Riifmann [32].

In the general case, our iteration produces a C'*° function [, whose
Taylor expansion at the origin is the formal frequency map given by the
Birkhoff normal form. In a similar way, our construction shows that
the sequence (h,) of converges to a limit h.,. This limit function
being the constant term in the expression

Too<7-7 q, p) = hoo(T) + Z tij (q> p)flf]
1,

with 7 € 871 R(a)wo)-

The Taylor expansion of h., at the origin is the Birkhoff normal form
and the map S can then be chosen to be the gradient of h.,. In analogy
with Poschel terminology [30], we might say that the situation is similar
to that of the Birkhoff normal form but over a Cantor set. But we will
not use this fact in the sequel.

Eliasson posed the question whether the frequency map [ is analytic
or not [4, 29]. We do not have an answer, but we remark that the
frequency map [ is constructed out of the frequency manifolds X, and
more precisely by the Malgrange-Mather division theorem [22] 23]:

Roo(w, 7) = Aw, 7)(w = B(7)).
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We only know that the function R, is analytic in 7 and Eliasson’s
question concerns the map 5. So the mystery remains...

4.6. A big set of invariant tori. A direct corollary of the elliptic
normal form theorem is the following.

Corollary 4.5. For 7 € 371(R(a)s), the image under W(r, —) of the
torus

Tr:p%—{_q%:Tla---?p%_l_Q%:Tn
15 tnvariant under the Hamiltonian flow of H. The motion on this torus
is quasi-periodic with frequency ().

So we get a collection of invariant tori in our hamiltonian system,
parametrised by the inverse image of R(a)s by the frequency map

B:U— a+F(H) C R

As pointed out in remark [3.7, we may and will suppose that a is chosen
so that the set R(a)y is a-dense. But without further precautions, the
inverse image under [ might still be a very small set, maybe reduced
to an half line. We know however that our frequency map [ is non-
degenerate in the frequency space a + F(H). The following arithmetic
density theorem then can be used to control the density of the inverse
image of R(a)« with n = d.

Theorem 4.6 ([15]). Consider a real positive decreasing sequence o =
(ox) and let v = (vy) be a real positive sequence such that the sequence

(anyli/dl)
1s summable and v, < 1 for all k’s. Consider a mapping
f:<f1>"'7fd):]RdD U—>Rn

such that f(U) is contained in an affine space spanned by the partial
derivatives of f up to order l. Then the density of the set f~H(R(v0)s)
at the origin is equal to 1.

So the logic of our argument is the following: we fix a vector o € R?
and assume that o(a) € B~. We consider the sequences

v, = (270N G = po(a).
Note that
veB and o(a) € B- = a=vo(a) € B".

Now the elliptic normal form theorem [4.4] applies. By Proposition [4.3]
the frequency mapping 5 we construct satisfies the assumption of the
arithmetic density theorem. Consequently the set 57!(R(a)s,) has den-
sity one at the origin and is, in particular, a set of positive measure.
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We will now see how these tori fit together in a neighbourhood of the
origin of our original Hamiltonian H(p,q). The map

U:UxV— Ux R

of the previous theorem has an inverse I' = ¥~! over a sufficiently small
neighbourhood of the origin of the form U x B, B C R

I:UxB—UxV;(r,p,q) — (1, P(1,p,q), Q(7,p,q))

So we have the relation
H(p,q) = Ao(w(7), P(7,p,q),Q(7,p,q)) + To o I'(7,p, q).

We can, in principle, eliminate the variables 71, 7o, ..., 74 from the right
hand side by solving the implicit equations

Pi(7,p,q)* + Qi(t.p,q)* =7, i=1,2,....,d,
which produces a map
T:B—W (pg)+ (n(p,q),---,7a(p,q))-
As one has
7i(p.q) = P} + ¢¢ + O(3),

the map T is generically a submersion. In fact, it is a submersion on
B\ C, C:=T71(A), where A C U is the set of critical values of T.

One now obtains a diagram

B (o + F(H)) x V

T l/ﬂ
B

u a+F(H)

S ——= (a+F(H)) NR(a)w
related to our normal forms as follows.

On the right hand side we have the standard Hamiltonian
d

1 2 2
Ao =3 > (s +w) (v} + ),

i=1
defined on (o + F(H)) x V, where the map
T (w,q,p) = a+tw
gives the frequency of motion.

On the left hand side we have a neighbourhood B, on which the original
Hamiltonian H(p,q) is defined. The vertical map on the left is the
7-map T'(p, q) defined above.
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The horizontal map v stems from coordinate transformation I':
v:B— (a+TF(H)) xV
(¢,p) = (B(T'(p, ), P(T(p. q),p,0), Q(T'(p, ), p: q))

The horizontal map in the middle is the frequency map [, which is
non-degenerate in the affine sub-space a + F(H). The inverse image
S := 71 (R(a)s) under B parametrises invariant tori for H in the
neighbourhood B. As T is a submersion outside A, which by Sard’s
theorem has measure zero, the set T71(S\ A) C B yields a set of
positive measure consisting of invariant tori in the neighbourhood B of
elliptic critical point, as conjectured by Herman [I§].

5. APPENDIX: LEMMAS FROM THE HALL OF FAME

In this appendix we collect some fundamental lemmas of great use in
the type of analysis we are pursuing here. We include proofs, as these
are usually elementary.

Given two open sets V. C U C C", we denote by r = d(U,V) the
supremum of the real numbers p for which

V+pD CU.
where D denotes the unit polydisc.

5.1. Cauchy-Nagumo lemma. Let U be an open set in C" and V' C
U with d(U, V) =r > 0. For a differential operator

P =" a,0" € L(0°(U),0%V))
|J|<k

of order k we have:
k!

rk

Pl <C

where C' = sup, 1<, la|.

Proof. If z € V and f € O°(U), then one has
_ 1 f€)
f(Z) - (271_2)11 . Hle(fl - Zi) d§1 ARERNA d§d7

where v, denotes the cycle defined by |§; — 2z;| = r. We write it

symbolically as
a1 [
1) = e | =57




48 MAURICIO GARAY AND DUCO VAN STRATEN

Differentiation under the integral sign leads to

N 7)
af“”‘@mwlxs—AHﬂé

We parametrise v, by:
0 £(0) := z 4 re?m0)

and thus

d¢ = (2mir)de? 0 dp,
so that

I [ o)
T
9 f(z) = TT/O o2 do,
so finally
I I!
0" f] < m\f |

From this the lemma follows. O

For the special case of Hamiltonian derivations, we deduce that the
norm of the map

0°(U) — L(O°(U),0%V)), h+— {h,—}
is bounded by d/r?.

5.2. Local equivalence lemma. Let V C U C C¢ be such that
d(V,U) =r > 0. Then the restriction mapping
P oMUY — 0%(V)
has norm smaller than 7=%?r=¢ Furthermore, the canonical map
P O4(U) — OMU)
has its norm bounded by Vol(U).

Proof. Let f € O"(U) and w € V. The Taylor expansion of f at a point
w

f(z)= Z as(z—w)’, ay € C.
JeNd
The polydisc D,, centred at w with radius r is contained in U. We have

d

_ |71 +2n _ i
/Dw 117 = 2 COlasPPr? 2, o) = [ -+

JeNd k=1

So we obtain

mw%W%sLLWvaﬁzm?
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This shows that

¢ . 1 —d/2
)] = lool < G171 =g ="
As the point w € V was general the result follows. 0

5.3. Composition lemma. Consider the family of polydiscs U, = {z €
C" | |z < t} and the Banach spaces O¢(U;). Often linear operators
require an arbitrary small shrinking of domain and we end up with
linear maps
u(t,s) € L(O°(Uy), O°(Us))

defined only for s < t. If such a collection u = (u(t, s),t > s) of linear
operators is compatible with the restrictions O¢(Uy) — O°(Uy) (' > t)
and O°(Us) — 0°(Uy) (s > §'), we say that u is a horizontal section.
The composition lemma says:

The composition of horizontal sections u and v defined by

t+s t+ s
,5)

wo(t, s) = u(t, 5 Jo( 5

1s again horizontal and satisfies

t+ s t+ s
(e, ) < lut, =2 o(—= )1

The proof is immediate. Often one has estimates for u(t, s) and v(t, s)
involving only the difference (¢t — s). The fact that we take the midpoint
then leads to powers of 2 in the estimate of the composition. However,
to define the composition one could take any point between t and s. For
example, the the m-fold composition of horizontal sections uy, us, . . ., U,
could be defined by repeated composition of two factors, but is more
conveniently defined as

ity (£, 5) = 11 (t, w) o, (Ms) |

m m

which often leads to powers of m in estimates, as can be observed for
example in the next lemma.

5.4. Borel lemma. If for ¢ > s we have linear operators u(t,s) €
L(O¢(Uy), 0¢(Uy)) that define a horizontal section u = (u(t, s),t > s) in
the sense described above. The sections for which the quantity

lull = suw_{(p = a)lul@)la/(clz])}

s<g<p

is well-defined and finite are called 1-local. They form a Banach space.
The normalising constant e ~ 2.718 is purely conventional.
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By composition we can form horizontal sections u2, u?, u?,.... So one

may try to develop a functional calculus for 1-local operators. For this
to work one has to invoke a Borel transform.

If f =723 ,50a.2" € C{z} is an analytic series, we define its Borel

transform as
a
Bf = E iy
n!
n>0

and absolute value as

‘fl = Z |an|zn

n>0

Let f =3 ,0an2" € C{z} a power series with R as radius of conver-
gence and v = (u(t,s),t > s) a 1-local horizontal section.

If ||u|| < R(t — s), then the series B f(u)(t,s) converges in the operator
norm and one has the estimate

1B (ult, )]l < |f ( i )

Proof. From the composition lemma we find
[u (¢, s)|| < llull"e™"n"(t —s)" < ([Jul"ni(t - 5)",
where we used the standard inequality n™ < e"n! and therefore

I ts|<2\n|( )

n>0

This proves the lemma. O

5.5. Product lemma. Let F, be an increasing Banach scale and
(t := to,t1,12,...) a decreasing sequence converging to s > 0. For any
sequence (u,) of 1-local operators u,, € L(E,, E,1), such that

D) unll < tn = toga,

ii) o= ano [wnll/(tn = tns1) < +00,
the sequence
go =€, g1 =e"e”,
uo

gn = eu"leun_l ceee

converges to an element g in the Banach space L(FE;,, Es) (with operator
norm). Furthermore, we have the estimate:

1
C gy
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Proof. We have seen that " exists as a section and thus defines elements
of the Banach space L(Ey,, Ey,,,) as long as ||w;|| < t; — t;41, which
holds by the first assumption. As a consequence the compositions

uo ul LU0

el0, etteto, .. e,

coetteto L,

are well defined. Furthermore, the Borel estimate gives

1
vl < i = il /(t = tiga).
) < T v ol = )
As
1 o 1 < 1
l—z 1—y 1—(z+y)
for z,y €]0, 1], we get for the composition e%i+1e%
, . 1
‘eu'rkleuz <

T 1= (vitvia)
By a straighforward induction (and the fact that restrictions have norm
<'1), we obtain the estimate

1
gn| < — =
I (Zi:() v;)
Therefore
| < e —d]
In+1 — 9n| > T —=n
I (Zz‘:o Vi)

Using again the Borel estimate
|6Un+1 _ 1| < Vnt1
11— Vnt1
we get

(Gns — gal < —H—
n n| = T1 .
1— (3250 v)
From this it follows that the sequence g, converges in the Banach space
L(E,, E;) with operator norm. O

5.6. Arnold-Moser lemma. Let, as before, U; denote the open poly-
disc of radius t and let

p(t,s) : O"U,) — O"U)

be the restriction mappings.
The following simple result appears in [I] and [26] and is of great use:

Let f € O"(Uy) be such that its Taylor series expansions starts at order
N:
f(z):= Z arz’.

[I|>N
then:

o)< (3) 05



52 MAURICIO GARAY AND DUCO VAN STRATEN

Proof. The monomials 2! form an orthogonal basis of O"(U,) with norms

7.‘.d

HZ:1(1 + Zk) .
By the Pythagorean theorem, for f € O"(U,), we have:

ot )17 =Y lasPC(I)s* 2

2| = C(n)2s™H, o(1) =

[I[>N
g2d+2/1] el
2d+2|T
}: |a[| c )t2d+2|1|t
1|>N
2d+2N

S 2
Smm-

g

5.7. Approximation lemma. A simple consequence of the Arnold-
Moser lemma is the the following: Let a sequence (fn) converge to f
in O"(Uy). Consider the polynomials py obtained by truncating fy at
degree N as analytic functions in U;. Then the sequence of polynomial
(pn) converges on any smaller polydisc to the the same limit as the
restriction of f.

Proof.
o, s)(px = P < Nlot, s) oy = fn)ll + ot s) (v = £

S n+N
< (3)" ewl + et 5) (i = Nl ——— 0
U

5.8. Poschel’s lemma. For an increasing Banach scale indexed by
n € NU {+oo}

EFi—FE—. .. . E,—...—FE,,

we say that a sequence (f,,), f. € E, is convergent, if it maps to a
converging sequence in the Banach space E,,. A decreasing sequences
of open sets

UO00U,2...0U,D...0Usx :=n,U,
gives such a Banach scale with
E, = 0"U,),

where OF(U) is the Banach space function of complex valued C*-function
on U, with bounded C* norm which are holomorphic on the interior of
U. Consider a second such decreasing sequence

VioWv,d...2V,D...o V=N, Vs,
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with V,, C U,,. The following result goes back to [30]:

Let d(U,,V,) > r,. If a sequence (f,), fn € O%U,) converges to a
limit f in O°(Uy) faster than (rk), then the sequence of restrictions
pn(fn) € O¢(V,) converge to the restriction of f in OF(V,)

Proof. By the Cauchy-Nagumo lemma, the restriction maps

w O%(U,) — OF (V)

satisfy the estimate

k!
< —.
ol < 5

Therefore

lowlh — £ < B2

Consequently the condition (for fixed k):

1 fu = £l = o(ry)

implies the convergence of p,(fy)- O

0.

11.
2.

13.
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