
HAMILTONIAN NORMAL FORMS

MAURICIO GARAY AND DUCO VAN STRATEN

Abstract. We study a new type of normal form at a critical
point of an analytic Hamiltonian. Under a Bruno condition on the
frequency, we prove a convergence statement. Using this result, we
deduce the existence of a positive measure set of invariant tori near
the critical point.

To the memory of J.-C. Yoccoz.

Introduction

Investigations into normal forms of Hamiltonian systems can be traced
back the earliest beginnings of celestial mechanics and perturbation
theory in the works of Euler, Laplace, Delaunay, and others. The
Birkhoff normal form provides a practical way to extend the classical
theory of action-angle coordinates to critical points of Hamiltonians. As
a general rule, the map which reduces the Hamiltonian to normal form
is divergent, while under conditions of integrability it is convergent for
analytic Hamiltonians ([4, 9, 24, 39, 29, 32, 34, 35, 36, 37]).
On the other hand KAM theory always provides, under non-degeneracy
conditions, the existence of invariant tori. Since the appearance of
Kolmogorov’s original paper, the non-degeneracy conditions have been
weakened and even in case the system is degenerate, invariant tori are
known to exist ([1, 3, 5, 6, 17, 21, 27, 31, 33, 34]).
Here we present an iteration scheme that leads to a different type of
normal form that we call the Hamiltonian normal form. It appears to
be suited for the application of KAM theory near critical points of a
Hamiltonian. We explain its relation to the classical Birkhoff normal
form. From a formal perspective, the Hamiltonian normal form seems
to be a rather trivial variant of the usual one, but it has some important
technical advantages. The first advantage is that the Cantor set over
which we work is fixed during the iteration, whereas in the usual proofs
this set is constructed step by step and changes along the transforma-
tions of the iteration. A second advantage of the new iteration scheme
is the control over what we call the frequency space. As a consequence,
non-degeneracy conditions will be fulfilled automatically when passing
to the limit. For the readers acquainted with Arnold’s proof of the
KAM theorem, this corresponds to the fact that the UV-cutoff can
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2 MAURICIO GARAY AND DUCO VAN STRATEN

be chosen so that it involves only the terms that appear in the linear
approximation.

The structure of the paper is as follows: In §1, after setting up some
notations and a quick review of the classical Birkhoff normal form,
we introduce the frequency space associated to a non-resonant critical
point of a Hamiltonian. It is the space defined by the linear relations
between the components of the gradient of the Birkhoff normal form.
This space will play an important role and takes over the role of the
usual non-degeneracy conditions of KAM theory.
In §2 we describe in some detail the formal aspects of an iteration that
leads to our Hamiltonian normal form. The first important point is
that the normalising maps in the iteration preserve, in a precise sense,
the frequency space.
In §3 we state and prove, under a Bruno condition on the frequency,
the convergence of the iteration procedure over a Cantor-like set in
the complement of the resonance fractal. We introduce the relevant
function spaces and rewrite the iteration in this context. The estimates
we need are all simple applications of lemmas that are collected in an
appendix.
In §4 we give an application to invariant tori near an elliptic fixed
point. By our control of the frequency space, we can apply the arith-
metic density theorem from [15] and obtain a measure result for the
preimage under the frequency map. A conjecture formulated by M.
Herman [18] is an easy corollary. The setup chosen here represents a
significant improvement and simplification of the original arguments
used in [11, 13, 14].

At the background of our investigations is a more general theory of
normal forms based on a functional analytic theory of Banach space val-
ued functors that we are currently developing. The reader interested in
these lines of thought may take a look in the preliminary [8, 10, 13, 16].
From that perspective there appeared to be a certain incongruency
between the usual Birkhoff normal form and the general theory of nor-
mal forms. The Hamiltonian normal form presented here seems to be
the more natural one: the proof is from an abstract point of view in
complete congruence with that of the ordinary Kolmogorov theorem.
Nevertheless, for the convenience of the reader, we decided to keep the
paper self-contained and provide complete proofs of all results used, with
the exception of the arithmetical density result, which is taken from [15].

Acknowledgement. When we started to develop an abstract version of
KAM theory, J.-C. Yoccoz was among the few enthusiastic dynamicists,
eager to bridge the frontiers between algebra, topology and analysis.
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After two months of numerous exchanges, he was forced to stop due
to health problems. Yoccoz made several influential and motivating
remarks, and for this reason we dedicate this research to his memory.

1. The Birkhoff normal form and the frequency space

We will be concerned with the structure of an analytic Hamiltonian
system with d degrees of freedom near a critical point of the form

H =
d∑
i=1

αipiqi +O(3).

We assume that the frequency vector:

α := (α1, α2, . . . , αd) ∈ Cd

is non-resonant, i.e., its components αi are Q-linearly independent. We
can consider the Hamiltonian H as an element of the formal power
series ring

P := C[[q, p]] := C[[q1, . . . , qd, p1, . . . , pd]].

The Poisson bracket of f, g ∈ P , defined by

{f, g} =
d∑
i=1

∂qif∂pig − ∂pif∂qig,

makes P into a Poisson-algebra. An element h ∈ P is a power series
that can be written as

h :=
∑
a,b

Ca,bp
aqb, Ca,b ∈ C,

where we use the usual multi-index notation, so that

paqb := pa11 p
a2
2 . . . padd q

b1
1 q

b2
2 . . . qbdd ,

and so on. We will assign weight 1 to each of the variables, so that
the monomial paqb has weight |a| + |b|. We write h = O(k) if h only
contains monomials of degree ≥ k, and say that h has order k. If h is
analytic, it is represented by a convergent series, and our usage of the
O corresponds to its usual meaning.

1.1. Birkhoff normal form. A derivation v ∈ Der(P ) that preserves
the Poisson-bracket:

v({f, g}) = {v(f), g}+ {f, v(g)}
is called a Poisson-derivation and we denote by Θ(P ) the vector space
of all Poisson-derivations or Poisson vector fields. The map

P −→ Θ(P ), h 7→ {−, h}
associates to h the corresponding Poisson-derivation, usually called the
Hamiltonian vector field of h. If h = O(k) and f = O(l), then clearly
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{f, h} = O(k + l − 2), so the vector field v := {−, h} is said to be of
order k − 2, although the coefficients of the vector field v are O(k − 1).
In particular, if h = O(3), then one can exponentiate v and obtain a
Poisson automorphism of the ring P :

ev = Id+ {−, h}+
1

2!
{{−, h}, h}+ . . . ∈ Aut(P ).

If we let

h0 :=
d∑
i=1

αipiqi,

then
{h0, p

aqb} = (α, a− b)paqb,
where (−,−) denotes the standard euclidean scalar product. So if α
is non-resonant, then each monomial paqb with a 6= b appearing in
H = h0 +O(3) can be removed by an application of the derivation

v = j(paqb) := {−, 1

(α, a− b)
paqb}.

Hence, we can construct a sequence of automorphisms

ϕ0 := e−v0 , ϕ1 := e−v1 , ϕ2 := e−v2 , . . . ,∈ Aut(P )

that remove successively all monomials paqb, a 6= b of weight k+ 3 from
Hk, defined recursively by

H1 := ϕ0(H), H2 = ϕ1(H1), . . . ,

so that the automorphism

Φk := ϕk−1 . . . ϕ1ϕ0

maps H to Hk. The infinite composition

Φ := . . . ϕkϕk−1 . . . ϕ1ϕ0 ∈ Aut(P )

is a formal symplectic coordinate transformation that removes all mono-
mials paqb, a 6= b from our Hamiltonian H, so that

Φ(H) = BH ,

where BH is a series of the form

BH :=
∑
a∈Nd

Cap
aqa.

The series BH is called the Birkhoff normal form of H. There exist
several variants of this algorithm, which differ in details and notation.
For example, it is possible to remove certain terms at the same time.
These may lead to different normalising transformations Φ, but it is
known that these different choices lead to the same series BH . As in the
iteration process one has to divide by the quantity (α, a− b) to remove
the paqb-term, small denominators appear, which lead to convergence
problems for the formal series involved.
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C. L. Siegel has shown that for a generic critical point of a real analytic
Hamiltonian H with d ≥ 2 degrees of freedom, the series of the trans-
formation Φ is in fact divergent [35]. It is expected that in general the
series BH itself is also divergent, but no published proof is known to
us (see [29] for more details).

1.2. The Moser Extension. As the monomials piqi (i = 1, 2, . . . , d)
Poisson commute with the Birkhoff normal form BH , Birkhoff nor-
malisation implies that any non-resonant Hamiltonian H is formally
completely integrable. To express this fact more clearly, it is useful to
enlarge the ring P and consider

Q := C[[τ, q, p]] = C[[τ1, . . . , τd, q1, . . . , qd, p1, . . . , pd]]

with the extra τ -variables, introduced by Moser. With the same defini-
tion of the Poisson-bracket as before, Q becomes a Poisson algebra with
Poisson centre Q0 := C[[τ ]]. We will assign weight = 2 to the variables
τi, so that the d elements

fi := piqi − τi ∈ Q
are homogeneous of degree two. These elements Poisson commute,
{fi, fj} = 0, and we obtain a Poisson commuting sub-algebra

C[[τ, f ]] = C[[τ, f1, f2, . . . , fd]] = C[[τ, p1q1, . . . , pdqd]]

containing Q0. The f1, f2, . . . , fd also generate an ideal

I = (f1, f2, . . . , fd) ⊂ Q = C[[τ, q, p]]

and clearly, the canonical map

C[[τ, p, q]]−→C[[p, q]], pi 7→ pi, qi 7→ qi, τi 7→ piqi.

induces an isomorphism of the factor ring Q/I with our original ring P :

Q/I
∼−→ P.

Although fi maps to zero under this map, the derivation {−, fi} induces
the non-zero derivation {−, piqi} on P , so the map Q −→ P is not
a Poisson-morphism. The ideal I2 ⊂ Q is the square of the ideal I,
i.e. generated by the elements fifj, 1 ≤ i, j ≤ d, and plays a very
distinguished role in dynamics. The reason is that if T ∈ I2, then
{h, T} ⊂ I. As a consequence, H and H + T determine the same
Hamiltonian vector field on Q/I = P .
Extending the multi-index notation in an obvious way, we can write

paqa = (τ + f)a = τa +
d∑
i=1

∂τiτ
afi + I2.

The term τa is in the centre of Q, whereas the above remark implies that
paqa and

∑d
i=1 ∂τiτ

afi define the same derivation on the ring P = Q/I.
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We can consider the Birhoff normal form series B(pq) = BH(pq) as an
element of Q. When we write pq = τ + f , then we find:

B(τ + f) = B(τ) +
d∑
i=1

bi(τ)fi mod I2.

The first term B(τ) belongs to the Poisson centre Q0 and is dynamically
trivial, but gets mapped to the non-trivial element BH ∈ P . The
second term

∑d
i=1 bi(τ)fi carries the dynamical information in Q, but

is mapped by the canonical map Q −→ P to zero.
The formal power series b1, . . . , bd ∈ C[[τ ]] are obtained as partial
derivatives of B, considered as a series in the τi-variables:

b = (b1, . . . , bd) = ∇B(τ).

One has b(0) = α, and the higher order terms describe how the frequen-
cies change with τ and for this reason we call it the (formal) frequency
map. If the system happens to be integrable, then the series are con-
vergent and the vector b(τ) = (b1(τ), b2(τ), . . . , bd(τ)) is the frequency
of motion on the corresponding manifold defined by fi(τ, q, p) = 0,
i = 1, 2, . . . , d.
For a multi-index a ∈ Nd, we consider the vector

∇ab(0) :=
∂ab

∂τa
(0) ∈ Cd.

Definition 1.1. The frequency space of H is the vector space F (H) ⊂
Cd generated by the vectors ∇ab(0), |a| ≥ 1.

This vector space controls an important aspect of the non-degeneracy
conditions in KAM theory. The space F (H) = {0} if there are no
terms of degree > 2 in the Birkhoff normal form. This is the case
considered by Rüßmann [32], who proved, under arithmetic conditions
on the frequency vector α, that in this situation the transformation
Φ actually is convergent, so H is analytically completely integrable.
The classical non-degeneracy condition from KAM-theory lead to the
opposite case F (H) = Cd. Our main interest lies in the intermediate
cases. In §4 we will define in the real domain a C∞-map

β : W −→ α + F(H) ⊂ Rd,

defined in a neighbourhood W ⊂ Rd, F(H) := F (H) ∩ Rd and whose
Taylor series coincides with the above formal power series b.

2. The Hamiltonian normal form

We will now describe a variant of the Birkhoff normal form algorithm
that allows for a better control of the invariant tori. For this we have
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to introduce d further additional variables
ω1, ω2, . . . , ωd,

to which we assign weight zero. The iteration will take place in the
formal power series ring with 4d variables
R := C[[ω, τ, q, p]] = C[[ω1, ω2, . . . , ωd, τ1, . . . , τd, q1, . . . , qd, p1, . . . , pd]].

Again we retain the standard Poisson bracket, so now the Poisson
centre is the subring R0 := C[[ω, τ ]]. The following sub-algebra is of
importance for our discussion:

Definition 2.1. We let

M := C[[ω, τ, f ]] = C[[ω, τ, pq]] ⊂ R,

and call it the Moser-algebra of R.

We remark that M is a Poisson commutative sub-algebra of R and that
all monomials of M have even degree. We will also make use of the
projection

π : R −→M

that maps all monomials not in M to zero. Clearly, π ◦ i = IdM , where
i : M −→ R is the inclusion.

2.1. The homological equation. As before, we denote the vector
space of Poisson derivations of R by Θ(R), which has the structure of a
module over the Poisson centre R0. These derivations decompose into
Hamiltonian and non-exact parts:

Θ(R) = Ham (R)⊕Der (R0),

that is, an element of Θ(R) is of the form
v = {−, h}+ w

with

w =
d∑
i=1

Ai
∂

∂ωi
+Bi

∂

∂τi
, Ai, Bi ∈ R0.

Definition 2.2. Let F,m ∈ R and v ∈ Θ(R). If

v(F ) = m,

we say that v solves the homological equation for m on F .

We will now solve the homological equation for certain special elements.
The following function will play an important role in the paper.

Definition 2.3. The formal unfolding of h0 =
∑d

i=1 αipiqi is the ele-
ment

A0 :=
d∑
i=1

(αi + ωi)piqi ∈ R.
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So A0 is obtained from h0 by detuning the frequencies in the most
general way.
The infinitesimal action

Θ(R) −→ R, v 7→ v(A0)

on A0 takes a simple form in the monomial basis:

{A0, p
aqb} = (α + ω, a− b)paqb,

∂ωk
A0 = pkqk,

∂τkA0 = 0.

Definition 2.4. We define a C[[ω, τ ]]-linear map

L : R −→ Θ(R) = Ham (R)⊕Der (R0),m 7→ Lm

by setting for a 6= b:

Lpaqb := {−, 1

(α + ω, a− b)
paqb}.

For a = b, or more generally for a series

m = g(p1q1, p2q2 . . . , pdqd) = g(pq)

we set

Lm :=
d∑
i=1

∂g(τ)

∂τi
∂ωi
.

We note that the first case of the definition applies to the monomials
in the kernel of the projection map π, whereas the second part of the
definition applies to the elements of the Moser sub-algebra M .

Definition 2.5. For A = A0 + T, T ∈ I2 we define a linear map

jA : R −→ Θ(R)

in terms of L by the formula

jA : m 7→ Lm− L(Lm(T )) = L(m− Lm(T ))

Proposition 2.6. For any A = A0 + T ∈ A0 + I2, there exists
t ∈ R0 + I2 such that

jA(m)(A) = m+ t.

Proof. First, for A = A0 we have jA0 = L. For m = paqb with a 6= b we
have

jA0(m)(A0) = {A0,
1

(α + ω, a− b)
paqb} = paqb = m
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and for m = g(pq) we have, with gi = ∂τig,

jA0(m)(A0) =
d∑
i=1

gi(τ)
∂A0

∂ωi
=

n∑
i=1

gi(τ)piqi

=
d∑
i=1

gi(τ)fi modR0 = g(pq) modR0 + I2,

where we used the Taylor expansion

g(pq) = g(τ + f) = g(τ) +
d∑
i=1

gi(τ)fi mod I2.

This shows the correctness for T = 0. For the general case A = A0 + T ,
we get

jA(m)(A0 + T ) = Lm(A0) + Lm(T )− L(Lm(T ))A0 − L(Lm(T ))(T )

= m+ Lm(T )− Lm(T )− L(Lm(T ))(T ) modR0 + I2

= m+ L(Lm(T ))(T ) modR0 + I2.

Because T ∈ I2, it follows that Lm(T ) ∈ I. Furthermore, for any g ∈ I,
we have Lg(T ) ∈ I2. This can be seen by writing g as C[[ω, τ ]]-linear
combination of terms of the form paqbfi. If a 6= b, {T, paqbfi} ∈ I2,
whereas for a = b, we obtain a combination of terms ∂ωi

T , which is in
I2, as the generators fi = piqi − τi are independent of ωi. �

2.2. Hamiltonian normal form iteration. Our Hamiltonian nor-
mal form is obtained from the following basic iteration. Starting from
a Hamiltonian

H =
d∑
i=0

αipiqi +O(3),

we first form

F0 := H +
d∑
i=1

ωipiqi = A0 +O(3).

Solving the homological equation on A0 for the degree 3 part of F0

determines a Poisson derivation v0. The application of e−v0 to F0

produces F1, where this term is removed and we put A1 = A0. The
solution of the homological equation for the degree 4 and 5 part of
F1 on A1 defines v1. Then the application of e−v1 to F1 produces F2,
where now the terms of degree 4 and 5 are removed, modulo terms in
(R0 + I2) ∩M . These terms we add to A1 = A0 and obtain A2. Then
we solve the homological equation for the terms of degree 6, 7, 8, 9 of



10 MAURICIO GARAY AND DUCO VAN STRATEN

F2, but now on A2, etcetera. Thus we obtain a by iteration a sequence
of triples

(Fn, An, vn), n = 0, 1, 2, . . .

that we call the Hamiltonian normal form iteration and which we will
describe now in some detail. It is convenient to write

[h]ji

for the sum of terms of h of weight ≥ i and < j, so that [h]i+1
i represents

the part of h of pure weight i. When j = +∞ we omit the letter j,
when i = 0 we omit the letter i. In a similar way we can truncate a
vector field by truncating its coefficients, but taking the shift of grading
by 1 into account.
We begin with the initialisation step

F0 = H +
d∑
i=1

ωipiqi = A0 +O(3)

A0 =
d∑
i=1

(αi + ωi)piqi

v0 = [jA0

(
[F0]43

)
]2.

The next terms are determined by the iteration step:
From Fn, An we first compute

vn = [jAn([Fn]2
n+1+2

2n+2 )]2
n+1

.

and then obtain

Fn+1 = e−vnFn,

An+1 = An + [Fn − vn(Fn)]2
n+1

2n+2 .

Then compute

vn+1 := [jAn+1([Fn+1]2
n+2+2

2n+1+2)]2
n+2

etcetera. The extra truncation of vn is not needed for the arguments
here, but it will play a role in 2.6.
It is useful to define the increments

Sn+1 := [Fn − vn(Fn)]2
n+1+2

2n+2 ,

so that:
An+1 = An + Sn+1.

There are a few simple but important points to notice:
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Proposition 2.7.
(i) The derivation vn has order 2n, i.e. vn = [vn]2n = [vn]2

n+1

2n .
(ii) Fn = An +O(2n + 2).
(iii) Sn ∈ (R0 + I2) ∩M .

Proof. (i) From the recursive definition we see that vn is obtained by
solving the homological equation with the terms of degrees 2n + 2 up
to 2n+1 + 2 from Fn. Taking Poisson-bracket with a term of degree
2n + 2 shifts degrees by 2n, and similarly for the non-exact part of vn.
So indeed vn has order 2n.
(ii) This follows from an easy induction on n. By definition, the state-
ment holds for n = 0. Let us assume that

Fn = An +O(2n + 2)

From the definition of Fn+1 we have

Fn+1 = e−vnFn = Fn − vn(Fn) +
1

2
v2
n(Fn)− . . .

and as vn has order 2n, it follows that

v2
n(Fn) = O(2 + 2n + 2n) = O(2n+1 + 2).

So we have

Fn+1 = An + [Fn − vn(Fn)]2
n+1+2

2n+2 +O(2n+1 + 2) = An+1 +O(2n+1 + 2).

(iii) We use induction on n and assume that Sn ∈ (R0 + I2)∩M . From
(ii) we have

Fn = An +O(2n + 2).

The derivation vn = [jAn([Fn]2
n+1+2

2n+2 )]2
n+1

2n is constructed to solve the
homological equation up to terms of high order:

vn(An) = [Fn]2
n+1+2

2n+2 + t+O(2n+1 + 2), t ∈ (R0 + I2) ∩M
As we have

vn(Fn) = vn(An +O(2n + 2)) = vn(An) +O(2n+1 + 2),

we see that the increment

[Fn − vn(Fn)]2
n+1+2

2n+2 ∈ (R0 + I2) ∩M,

hence also Sn+1 ∈ (R0 + I2) ∩M . �

2.3. Quadratic and non-quadratic nature of the iteration. The
Hamiltonian normal form iteration produces a sequence (Fn, An, vn):
the series

F0 = H +
d∑
i=1

ωipiqi = A0 +O(3)

is transformed by
Φn := e−vn−1 . . . e−v0
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to a series of the form

Fn = An +O(2n + 2).

If we let n go to ∞, we obtain a formal Poisson automorphism

Φ∞ := . . . e−vn . . . e−v0 ∈ Aut(R),

and obtain

F∞ := Φ∞(F0) = A∞, A∞ ∈ A0 + (R0 + I2) ∩M

The automorphism Φ∞ transforms the perturbation F0 = A0 + O(3)
back to the normal form A0, plus terms that have no effect on the
dynamics.
For convenience of the reader we include the following diagram that
indicates the degrees of the quantities that appear in the iteration.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

F0 • × � � � � � � � � � � � � � � �
F1 • ◦ × × � � � � � � � � � � � � �
F2 • ◦ • ◦ × × × × � � � � � � � � �
F3 • ◦ • ◦ • ◦ • ◦ × × × × × × × × �
F4 • ◦ • ◦ • ◦ • ◦ • ◦ • ◦ • ◦ • ◦ ×

The bullets • and circles ◦ represent terms of An. They belong to
the R0 + I2 part of the Moser-algebra : the • terms are constant in
columns, the circles ◦ are zero, as the Moser-algebra only has terms of
even degree.
So • and ◦ represents the normal form range, consisting of terms of Fn
of degree

2 ≤ degree < 2n + 2

The crosses × represent the terms of Fn that determine the derivations
vn. These make up what we call the active range of degrees:

2n + 2 ≤ degree < 2n+1 + 2.

The black squares � represent the terms of Fn that of degree higher
than 2n+1 + 2 that do not directly influence the next iteration step, but
of course must be carried along.

We now rewrite the iteration in a form where this trichotomy in degrees
is manifest. Consider the decomposition

Fn := An +Mn + Un = •+×+ �,

where

An := [Fn]2
n+2, Mn := [Fn]2

n+1+2
2n+2 , Un := [Fn]2n+1+2,



HAMILTONIAN NORMAL FORMS 13

are the lower, middle and upper part of Fn. The middle term decom-
poses, by the construction of vn, as sum of two terms

(1) Mn = Sn+1 + [vn(An)]2
n+1+2

2n+2 ,

where
Sn+1 = [Fn − vn(Fn)]2

n+1+2
2n+2 ∈ (R0 + I2) ∩M,

where we also used

[vn(An)]2
n+1+2

2n+2 = [vn(Fn)]2
n+1+2

2n+2

The quantity vn(An) has only terms of middle and high degree:

(2) vn(An) = [vn(An)]2
n+1+2

2n+2 +Rn,

where
Rn := [vn(An)]2n+1+2.

represents a remainder part. We then have

Fn+1 = e−vnFn

= e−vn(An +Mn + Un)

1
= e−vn(An + Sn+1 + [vn(An)]2

n+1+2
2n+2 + Un)

2
= e−vn(An + Sn+1 + vn(An)) + e−vn(Un −Rn)

= An + Sn+1 + (e−vn − Id )(An + Sn+1) + e−vn(vn(An)) + e−vn(Un −Rn)

= An + Sn+1 + (e−vn(Id + vn)− Id )An + (e−vn − Id )(Sn+1) + e−vn(Un −Rn)

where we indicated the equations we used to establish the equalities.
The third and fourth equalities are just obtained by rearrangement of
the different terms.

Now, when we set

Bn := Mn + Un = [Fn]2n+2 = ×+ �,

we can formulate the KAM-form of the iteration in the formal setting:

Sn+1 = [Bn − vn(An)]2
n+1+2

2n+2 ,

An+1 = An + Sn+1,

Bn+1 = ψ(vn)Sn+1 + φ(vn)An + e−vn([Bn − vn(An)]2n+1+2)

with
ψ(z) = e−z − 1, φ(z) = e−z(1 + z)− 1
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and where we used the abbreviation:

vn = jnBn = [jAn(Bn)]2
n+1

2n .

Note that the increments Sn+1 and the vector fields vn are auxiliary
quantities, which depend linearly on Bn. We see that the terms involving
φ and ψ are quadratic in Bn, whereas the third term is not. But that
term only depends on the higher order terms of the series.
In the classical Kolmogorov scheme, the convergence is ensured by
the quadraticity of the iteration, while in the Arnold-Nash-Moser case
there does appear such a remainder term from the classical UV cutoff
technique. However, one may hope that these terms will remain small,
as they involve terms of sufficiently high order.
As we will see, unlike the cases considered by these authors, in our
situation it is important to be very precise about the degrees in the
truncation, as otherwise we would loose control over the fields vn and
the convergence properties of the iteration could be spoiled.

2.4. Some further remarks on the iteration. Let us denote by

Ran := C{ω, τ, p, q}

the Poisson sub-algebra of R consisting of convergent power series.
Its Poisson centre is Ran

0 := C{ω, τ}. If v ∈ Θ(Ran) is an analytic
Poisson-derivation of order ≥ 1, then the exponential series ev converges
as an element of Aut(Ran). As a result, if we start with an analytic
Hamiltonian, the terms of iteration (Fk, Sk, vk) are are all analytic, but
of course the limit objects a priori are given by formal series.
The variable ω plays a very special role. From the definition of the
operation L, it follows that the iteration can be formulated in a much
smaller ring. We define the ring SDα of small denominators at α as the
subring of the field C(ω) of rational functions, defined by localisation
of C[ω] with respect with the multiplicative subset S generated by all
linear polynomials (α + ω, J), J ∈ Zn \ {0}:

SDα := C[ω]S := C[ω,
1

(α + ω, J)
, J ∈ Zn \ {0}] ⊂ C(ω).

Then the iteration makes sense in the Poisson-algebra

Ran ∩ SDα[[τ, p, q]],

but we will not make use of this fact in this paper.
In section 3 we will formulate a version of this iteration in appropriate
function spaces and study its convergence properties.



HAMILTONIAN NORMAL FORMS 15

2.5. Relation to the Birkhoff normal form. When we start from
an analytic Hamiltonian H(p, q), we first formed

F0(ω, p, q) = H(p, q) +
d∑
i=1

ωipiqi,

and the Hamiltonian normal form iteration produces a sequence of
Poisson derivations:

vn, n = 0, 1, 2, . . .

These exponentiate to Poisson-automorphisms ϕn := e−vn and the
compositions

Φn = ϕn−1ϕn−1 . . . ϕ1ϕ0, ϕn := e−vn ,

preserve the ring Ran ⊂ R of convergent series. We have

Φn(F0) = Fn ∈ C{ω, τ, p, q},
and the infinite composition is a Poisson automorphism of the formal
power series ring R:

Φ∞ = . . . ϕn−1ϕn−1 . . . ϕ1ϕ0 ∈ Aut(R),

and correspondingly

Φ∞(F0) = F∞ ∈ C[[ω, τ, p, q]].

Note that
F∞ = A∞ = A0 + T∞, T∞ ∈ R0 + I2.

From the construction of the vector fields vn we see that

Φn(τi) = τi, Φ∞(τi) = τi.

As any Poisson-automorphism, Φn and Φ∞ preserve the Poisson centre,
so we have

Φn(ωi) ∈ C{ω, τ}, Φ∞(ωi) ∈ C[[ω, τ ]].

As these element will play an important role in the sequel, will give the
them a fixed name:

Definition 2.8. We set

Rn,i := Φn(ωi) ∈ C{ω, τ},

R∞,i := Φ∞(ωi) ∈ C[[ω, τ ]].

To see what happens to the original Hamiltonian H(p, q) during the
iteration, we remark that

F0(ω = 0, τ, p, q) = H(p, q).

But during the iteration, the condition ωi = 0 is transformed into the
condition Rn,i(ω, τ) = 0:

Φn(F0) = F0(Rn(ω, τ), τ, Pn(ω, τ, p, q), Qn(ω, τ, p, q)) = Fn(ω, τ, p, q).
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So if we want to follow H(p, q) during these transformations, we will
need to solve for ω the equations

Rn,i(ω, τ) = 0, i = 1, 2, . . . , d,

and
R∞,i(ω, τ) = 0, i = 1, 2, . . . , d.

From the fact that vector fields vn have order 2n, we readily see that

R0,i = ωi, Rn,i = Rn−1,i +O(2n),

so the equations Rn,i(ω, τ) = 0 can be solved for the ωi and we obtain
convergent power series

ωn,i(τ) ∈ C{τ},
such that

Rn,i(ωn(τ), τ) = 0,

and similarly for n =∞, we find formal power series

ω∞,i(τ) ∈ C[[τ ]]

solving
R∞,i(ω∞(τ), τ) = 0.

So we then have

Φn(H(p, q)) = Fn(ωn(τ), τ, p, q) =: Hn(τ, p, q).

and is thus of the form

Hn = hn(τ) +
d∑
i=1

(αi + ωn,i(τ))fi +O(2n + 2) mod I2 ∩M

with fi = piqi − τi.
Comparing with the Taylor expansion of 1.2:

B(qp) = B(τ + f) = B(τ) +
d∑
i=1

bi(τ)fi mod I2,

we deduce that the coefficients bi(τ) of the frequency map are related
to the ωn,i(τ) by the congruence

αi + ωn,i(τ) = bi(τ) +O(2n + 2),

and that the constant term gives back the Birkhoff normal form of H:

hn(τ) = B(τ) +O(2n + 2).

One may be tempted to go one step further and use the projection
Q −→ P , where we eliminate the τ -variables using the relations fi = 0,
i = 1, 2, . . . , d, in order to create an iteration taking place in the ring
P . This certainly can be done, but the resulting formulas are much
more complicated and less revealing. The great advantage of working
with the Hamiltonian normal form iteration is that we avoid solving
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these implicit relations Rn,i(ω, τ) = 0 and fi = 0. This leads to a great
simplification of the setup.

2.6. Behaviour of the frequency space. We will now see that the
precise truncations that we made for the derivations vn allow us to
control some non degeneracy properties from the formal iteration.
We can find open subsets Un ⊂ C2d in the 2d-dimensional ω, τ space,
on which the power series Rn,i(ω, τ), ωk,i(τ), i = 1, 2, . . . , n converge.
They define d-dimensional complex analytic manifolds

Xn := {(τ, ω) ∈ Un | Rn,1(τ, ω) = · · · = Rn,d(τ, ω) = 0},
which are the graphs of the map

ωn = (ωn,1(τ), . . . , ωn,d(τ)).

Proposition 2.9. The manifolds Xn are contained in F (H) × Cd,
where F (H) denotes the frequency space of H.

Proof. We prove the statement by induction on n. Clearly, this is true
for X0, which reduces to the d-dimensional plane

ω1 = · · · = ωd = 0.

As Xn+1 is the image of Xn under the automorphism by ϕn = e−vn ,
it is sufficient show that the restriction of the vector field vn to Xn is
contained in the frequency space F (H).
To see this, decompose the field vn into Hamiltonian and non-Hamiltonian
part

vn =
d∑
i=1

vi,n(ω, τ)∂ωi
+ wn, wn ∈ Ham (Q).

Only the non-Hamiltonian part enters the computation of

ϕn(ωi) = ωi − vn,i(ω, τ) +O(2k + 2).

As the Rn,i(ω, 0) = ωi + O(2), we may apply Weierstrass division
and divide the coefficients vn,i successively by the Rn,j’s and get an
expression of the form:

vn,i = an,i(τ) +
d∑
j=1

Rn,j(ω, τ)bn,j(ω, τ).

By definition, the coefficients Rn,j(τ, ω) vanish on Xn. The Hamiltonian
Hn+1 = (Fn+1)|Xn+1 is in Birkhoff normal form up to order 2n+1 + 1 and
moreover a direct computation shows that:

Hn+1 = (An + vn(An))|Xn+1 +O(2n+1 + 2)

= (A0)|Xn+1 +
d∑
i=1

an,i(τ)piqi +O(2n+1 + 2) modR0 + I2
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Therefore by identification with the Birkhoff normal form, we get that

an,i(τ) = [bn,i(τ)]2
n+1

2n .

This shows that the vector field vn is tangent to the frequency space
along Xn. Thus its time one flow e−vn maps the analytic manifold
Xn ⊂ F (H)×Cd to an analytic submanifold Xn+1 ⊂ F (H)×Cd. This
proves the proposition. �

This simple proposition will turn out to be a fundamental property of
the formal Hamiltonian normal form iteration.

3. Convergence of the Hamiltonian normal form

We now proceed to the convergence properties of the iteration scheme
of the Hamiltonian normal form. Our strategy will be to transfer the
Hamiltonian normal form from power series rings to function spaces
and “replace” the ring R by a sequence of Banach spaces En, where the
En are certain spaces of functions on a shrinking sequence of sets

W0 ⊃ W1 ⊃ W2 ⊃ . . . ⊃ W∞,

so that there will be natural restriction mappings

E0 ↪−→ E1 ↪−→ E2 ↪−→ . . . ↪−→ E∞

of norm ≤ 1. The iteration step will construct from An, Bn ∈ En
elements An+1, Bn+1 ∈ En+1, using certain operators that emulate the
operators that appear in the iteration scheme of §2.
It is important to have a certain flexibility in the possible choices
of the spaces En. The maps occurring in the iteration will always
satisfy precise estimates. The resulting technical difficulties are just of
notational nature and largely irrelevant, as we shall see.

3.1. The resonance fractal. The ω-variables are crucial: we can
control the estimates only if we restrict the ω-domain over a sequence of
decreasing sets. In this way we obtain convergence over the remaining
Cantor-like set.
Let us denote by

Ξv := {β ∈ Cd | (β, v) = 0} ⊂ Cd

the hyperplane orthogonal to vector v ∈ Cd, v 6= 0, with respect to the
standard scalar product

(β, v) :=
d∑
i=1

βivi.

A vector β ∈ Cd is non-resonant precisely if for all J ∈ Zd \ {0}
(β, J) 6= 0.
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Definition 3.1. The complex resonance fractal is the set

Ξ :=
⋃

J∈Zd\{0}

ΞJ ,

The real resonance fractal is the set

X :=
⋃

J∈Zd\{0}

XJ ,

where XJ = Ξv ∩ Rd.

Proposition 3.2. i) The set Ξ ⊂ Cd is dense for d > 2.
ii) The set X ⊂ Rd is dense for d > 1.

Proof. We only prove the first assertion. The second one is similar, but
easier. As Q is dense in R, it follows that Ξ is dense in the set

S := {β ∈ Cd : ∃ v ∈ Rd \ {0}, (β, v) = 0},

consisting of all points the belong to the complexification of a real
hyperplane. Let us show that for d > 2, we have S = Cd. Let
z ∈ Cd = Rd + iRd and write

z = x+ iy, x, y ∈ Rd.

As d > 2, there exists a real hyperplane V ⊂ Rd containing the vectors
x, y ∈ Rd, so

z = x+ iy ∈ V ⊗ C.
This proves the statement. �

3.2. Arithmetical classes. In general, if β is non-resonant, the scalar
product (β, J), J ∈ Zd \ {0} is non-zero, but can become arbitrary
small. To quantify this, we consider the following.

Definition 3.3. The arithmetic sequence σ(β) = (σ(β)k) of a vector
β ∈ Cd is defined as

σ(β)k := min{|(β, J)| : J ∈ Zd \ {0}, ‖J‖ ≤ 2k}.

The precise nature of the falling sequence σ(β) encodes important
arithmetical properties of the vector β.

Definition 3.4. Let a = (ak) be any real positive decreasing sequence.
The complex arithmetic class associated to a is the set

C(a)∞ := ∩∞m=0C(a)m, where C(a)m := {β ∈ Cn : ∀k ≤ m σ(β)k ≥ ak}.

Similarly, the real arithmetic class associated to a is the set

R(a)∞ := ∩∞m=0R(a)m where R(a)m := {β ∈ Rd : ∀k ≤ m σ(β)k ≥ ak}.
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Note that
R(a)m = C(a)m ∩ Rd, ∀m ∈ N ∪ {∞}.

If a vector β belongs to C(a)∞, then |(β, J)| ≥ ak for all lattice vectors
0 6= ‖J‖ ≤ 2k, and thus small denominators are controlled by the
sequence a.
As we are dealing with a descending chain of closed sets C(a)m and
R(a)m, it follows that C(a)∞ and R(a)∞ are closed subsets. From the
above propositions we can conclude immediately:

Corollary 3.5. i) The set C(a)∞ has an empty interior for d > 2.
ii) The set R(a)∞ has an empty interior for d > 1.

So the case of two degrees of freedom is special. In this case, the
complex arithmetic classes C(a)∞ ⊂ C2 have a non-empty interior.
More precisely, if the frequency ratio is non-real,

β2/β1 /∈ R,

then it is an interior point of C2 \Ξ. This ensures a convergent Birkhoff
normalisation in two degrees of freedom. This peculiar fact was already
observed by Moser back in 1958 [25] (see also [28]).
Although we tautologically have

β ∈ R(σ(β))∞,

it might be an isolated point of that set.
Note however, that a ≥ a′ then C(a)∞ ⊂ C(a′)∞ and similarly R(a)∞ ⊂
R(a′). The following elementary but fundamental result shows that
although arithmetic classes may have an empty interior, after replacing
a by a slightly smaller sequence νa, they are big in the sense of measure
theory.

Proposition 3.6 ([15]). Let a = (an) be a positive decreasing sequence
and β ∈ R(a)∞. Let ν = (νn) be another positive decreasing sequence
with νi ≤ 1 and

∑∞
i=1 νi <∞. Then the density of R(νa)∞ at β is equal

to 1:

lim
ε−→0

µ(B(β, ε) ∩ R(νa)∞)

µ(B(β, ε))
= 1

Here νa is the sequence with terms νnan and µ denotes the Lebesgue
measure, B(β, ε) the ball with radius ε, centred at β.

Definition 3.7. For a given vector β ∈ Rd, we say that a falling
sequence a = (an) is β-dense, if the set R(a)∞ has density 1 at the point
β:

lim
ε−→0

µ(B(β, ε) ∩ R(a)∞)

µ(B(β, ε))
= 1
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So the above proposition says we can always find a < σ(β) slightly
smaller, such that a is β-dense. Similar statements holds in the complex
case be we will not use it, as our range of applications is in the real
domain.

3.3. The sets Zn and Wn. We will have to study the set C(a)∞ in
the neighbourhood of a fixed frequency vector α. For this we consider
a decreasing sequence s = (sn) and converging to a positive limit s∞.
We denote by B(r) ⊂ Cd the ball of radius r centred at the origin.

Definition 3.8. For fixed decreasing sequences a and s we define the
closed set

Zn := Zn(α, a, s) := {ω ∈ B(sn) : ∀k ≤ n, σ(α + ω)k ≥ ak(s0 − sn)}

Note that Z0 = B(s0). As the sequence (sn) is decreasing we have

ak(s0 − sn+1) ≥ ak(s0 − sn),

so the sets (Zn) form a descending chain and can be considered as a local
variant of the chain (C(a)n). Moreover if s0 < 1 then ak > ak(s0 − sn)
for all n’s and therefore

B(sn) ∩ C(a)n ⊂ Zn

In the iteration, we will have to control the shrinking of the sets Zn.
To do so, given two open sets V ⊂ U ⊂ Cd, we denote by δ(U, V ) the
supremum of the real numbers ρ for which

V + ρB ⊂ U.

where B denotes the unit ball.

Lemma 3.9. The sequence (δ(Zn, Zn+1))n∈N satisfies the estimate

δ(Zn, Zn+1) ≥ 2−nan(sn − sn+1).

Proof. The proof is straightforward. Assume that ω ∈ Zn+1 and take
x ∈ Cd satisfying

‖x‖ ≤ 2−nan(sn − sn+1).

For k ≤ n and ‖J‖ < 2k, we have:

|(α + ω + x, J)| ≥ |(α + ω, J)| − |(x, J)|
≥ ak(s0 − sn+1)− ‖x‖ ‖J‖
≥ ak(s0 − sn+1)− an(sn − sn+1)

≥ ak(s0 − sn+1)− ak(sn − sn+1) = ak(s0 − sn).

This shows that ω + x ∈ Zn and thus proves the lemma. �

The sets Wn we will be working with, are defined as follows.
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Definition 3.10. For fixed decreasing sequences a and s we set

Wn := Zn ×Dd
sn ×D

2d
sn ⊂ Cd × Cd × C2d

where Dt ⊂ C denotes the closed disc of radius t. Furthermore, we put

Vn := Zn ×Dd
sn ⊂ Cd × Cd

The coordinates on Cd × Cd × C2d are

ω1, . . . , ωd, τ1, . . . , τd, q1, . . . , qd, p1, . . . , pd,

and there are projection maps

Wn −→ Vn, (ω, τ, q, p) 7→ (ω, τ).

3.4. The Banach spaces. The Banach spaces that we will use, consist
of functions that are holomorphic on the interior of the closed sets Wn

defined above. They come in different flavours: we may require that
they extend continuously to the boundary, or more generally be Whitney
Ck, or be square integrable.
For a closed subset X ⊂ Rd, we denote by

Ck(X,R)

the vector space of Ck-Whitney differentiable functions, k ∈ N, for
which the norm

‖f‖ = max
|I|≤k

sup
x∈X
|∂If(x)|

is finite and therefore defines a Banach space structure on it1.
There is a natural definition of a holomorphic function at a point x of a
closed subset X ⊂ Ck. Let us say that a vector v at x ∈ X is interior
if:

∃δ, |t| < δ =⇒ x+ tv ∈ X.
Then f is holomorphic at x ∈ X if for any interior vector v with the
property the limit

lim
t7→0

f(x+ tv)− f(x)

t
exists for complex values of t.
If x is an interior point this is equivalent to the standard definition. In
the general case it allows us to control analyticity of the function on the

1Recall that a function f : X −→ R defined on a closed subset X of Euclidean
space is called Whitney differentiable at x ∈ X, if there exists functions DIf(x)
called the Whitney derivatives of f at x such that:

f(y) =
∑
|I|≤m

DIf(x)

|I|!
(y − x)I + o(‖y − x‖m)

The sole difference that the Whitney definition bears is the uniformity of the limit
in the x, y variables.
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boundary of a set and also to avoid defining our spaces as topological
tensor products.
If f is defined in a closed polydisc D1 ×D2, to be holomorphic means
that

(1) f is holomorphic in the interior of the polydisc.
(2) f(x1,−) and f(−, x2) define holomorphic functions for any x1

and any x2.

It follows from Morera’s theorem that if f is continuous then the
first condition implies the second one. On the other extreme if f is
defined in X = {0} ×D2, then to be holomorphic means that f(0,−)
is holomorphic. In this case, the set X has an empty interior. In our
iteration the limit set over which the functions are defined, namely W∞
has indeed an empty interior while for finite n, the sets Wn are the
closures of their interior.

Definition 3.11. Given a closed subset X ⊂ Cd, we denote by Ok(X)
the Banach space of (bounded) Ck-Whitney function which are holomor-
phic in X:

Ok(X) = Ck(X,C) ∩ O(X)

For k = 0, we use the notation Oc instead of Ok.
We define similarly Oh(X) as the Hilbert space of square integrable
functions on X, holomorphic on the interior.

For our iteration scheme, we will use the following Banach spaces:

Definition 3.12.

Eb
n := Ob(Wn), b = h, c or k, n ∈ N ∪ {∞}.

Note that Eb
∞ is the subspace of Ob(W∞) consisting of functions for

which f(ω,−) is holomorphic for any ω ∈ Z∞:

Ek
∞ = {f ∈ Ck(W∞) : ∀ω ∈ Zn, f(ω,−) ∈ Ok(D3d

sn)}
That these subspaces are closed follows from Morera’s theorem.
Also the spaces of functions

F b
n := Ob(Vn)

do play a role. Note that Ob(Vn) ⊂ Ob(Wn), so F k
n can be identified

with the closed subspaces of Ek
n, consisting of those functions that do

not depend on q, p.
The restriction mappings induce injective mappings

(Eb
n, | · |n) −→ (Eb

m, | · |m), m > n,

and this holds also for m = ∞, since the image consists of Whitney
C∞ functions having analytic Taylor expansion. As the set Wn is
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connected, this expansion defines uniquely a holomorphic function in
this neighbourhood.
Usually there is no ambiguity to drop the n in |x|n; for x ∈ En the
notation |x| just means |x|n. Furthermore, if (xn) is a sequence with
xn ∈ En, then the notation |x| can be used for the sequence |xn| and be
called the norm sequence of x, etc.
We say that a sequence (xn), xn ∈ En is convergent, if the image
sequence in E∞ converges and that it converges quadratically, if there
is an estimate of the form

|x− xn|∞ ≤ Cq2n ,

for some q ∈]0, 1[ and C > 0.

3.5. Bruno sequences. We will make use of Bruno sequences in two
different ways. First, we will have to impose a Bruno-condition on
the frequency vector α and second, we will use a Bruno sequence ρ to
determine the sequence s of polyradii. This leads to a simple way to
control the small denominator estimates for the operators that will be
defined in the next section.

Definition 3.13 ([2]). A strictly monotone positive sequence a is called
a Bruno sequence if the infinite product

∞∏
k=0

a
1/2k

k

converges to a strictly positive number or equivalently if∑
k≥0

∣∣∣∣ log ak
2k

∣∣∣∣ < +∞.

Since their introduction in [2], these sequences have played a key role
in KAM-theory. We denote respectively by B+ and B− the set of
increasing and decreasing Bruno sequences. The set of Bruno sequences
some obvious multiplicative properties:

i) Taking the multiplicative inverse interchanges B+ and B−,
ii) The product of two elements in B± is again in B±.
iii) An element of B± raised to a positive power remains in B±.

Note also that any geometrical sequence an = qn, q 6= 1 is a Bruno
sequence, belonging to B− if q < 1, to B+ if q > 1. The sequence
an = e±α

n belongs to B± if and only if 1 < α < 2.

Definition 3.14. A vector α ∈ Cd is said to satisfy Bruno’s arithmeti-
cal condition if σ(α) ∈ B−.
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If (an) ∈ B+, a0 > 1, then from the convergence of the sum
∑ log an

2n
we

see that for any ε > 0, there is an N such that for n ≥ N we have

log an ≤ 2nε, an ≤ (eε)2n ,

so the sequence can not increase faster than a quadratic iteration

un+1 = u2
n, u0 > 1.

Similarly, for (an) ∈ B−, a0 < 1 we find an estimate

an ≥ (e−ε)2n for n ≥ N,

so that the sequence can not decrease too quickly.

Sequences of type P(a). We need to make a special choice of our
sequence s that determines the size of the sets Wn in terms of an
auxiliary Bruno sequence ρ = (ρn) ∈ B−.
We will always assume that ρ0 < 1 and that ρ converges to 0. For a
given s0 > 0, we define sn recursively by

sn+1 = (ρn)1/2nsn.

Because of the Bruno property of ρ, the sequence s = (sn) converges to
a positive limit s∞.

The sequence ρ will be taken small enough to counteract certain small
denominators of the form

aln(sn − sn+1)m = aln(1− ρ1/2n)msmn

that appear norm estimates.Therefore we define

Definition 3.15. Given a sequence a = (an) ∈ B−, we denote by
P = P(a) (resp. P+) the set of sequences depending on parameters
ρn > 0, n ∈ N, whose terms are majorated by Cρkna−ln (sn − sn+1)−m for
some C, k, l,m ≥ 0 (resp. k > 0):

un ≤
Cρkn

aln(sn − sn+1)m

The following lemma shows that an appropriate choice of ρ absorbs the
small denominators.

Proposition 3.16. For any falling Bruno sequence b ∈ B− and any
u ∈ P+(a), there exists values of the sequence ρ = ρ(a, b) and a constant
K ∈ R+ so that u < Kb and ρ ∈ B−.

Proof. We let
un < Cρkna

−l
n (sn − sn+1)−m,

and show that the falling Bruno sequence

ρn = 2(−n−1)m/kM−1/kal/kn b1/k
n with M = max(C, 2kal0b0)
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satisfies the condition.
For this choice, we have:

un < 2(−n−1)mbn(sn − sn+1)−m

By our choice of the sequence s = (sn) we have:

sn − sn+1 = (1− ρ1/2n

n )sn ≥ (1− ρ1/2n

n )s∞.

The constant M is defined so that the falling sequence ρ is bounded by
1/2 and hence:

(1− ρ1/2n

n ) ≥ (1− 2−1/2n) > 2(−n−1).

Thus we have the estimates

un < 2(−n−1)mbn(sn − sn+1)−m < bns
−m
∞ = Kbn.

This proves the proposition. �

So in the iteration process, small denominators aln(sn − sn+1)m can be
absorbed by the presence of such a sequence ρ in the numerator, and in
fact be pushed below any pre-given Bruno sequence.

3.6. The operators. The basic step in the iteration of §2 that deter-
mines An+1, Bn+1 form An, Bn depended on the truncation operators

[−]2
n+1+1

2n+1 , [−]2n+1+2

and the map jn, which came from a map jA : R −→ Θ(R), which
was defined as a composition of several other maps. If we want to lift
these operator in the Banach space context, we often need to shrink the
domain of definition slightly. For this reason it is convenient to define
Banach spaces En+ε between En and En+1, and set up things in such
a way that the iteration step brings us from En to En+1, using one or
more intermediate spaces En+ε, where 0 < ε < 1. We implement this
idea in the following simple way: we interpolate the sequence s = (sn)
by setting:

sn+ε = (ρn)ε/2
n

sn, ε ∈]0, 1[,

and then set
Wn+ε := Zn+ε ×Dd

sn+ε
×D2d

sn+ε
,

Eb
n+ε := Ob(Wn+ε),

where we put

Zn+ε = {ω ∈ Cd | ∀k ≤ n, σ(α + ω)k ≥ ak(s0 − sn+ε}.
One then has:

δ(Wn,Wn+ε) ≥
an
2n

(sn − sn+ε) ≥
an
2n

(1− ρε/2nn )s∞.

The definition of P and P+ extend for a fixed ε as well as the absorption
principle.
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Restriction maps. First, there are the restriction operators Eb
n −→

Eb
m, n ≥ m. These have norm ≤ 1 and thus are completely harmless.

We will not mention or even give names to these maps. A different
matter is that we also have to use ’flavour changing’ restriction maps,
like the canonical map

rn,m : Eh
n −→ Ec

m, (n < m),

which arise by remarking that a square integrable holomorphic function
on Wn is continuous on the smaller set Wm. From the local equivalence
lemma (Lemma 5.2), it follows that the norm sequence of rn,n+ε belongs
to P. There is also a canonical map in : Ec

n −→ Eh
n, whose norm is

bounded by the volume of Wn and as these volumes form a falling
sequence, this norm sequence is also in P.

Truncation maps. For the power series ring we used the truncation
operations

[−]2
n+1+2

2n+2 , [−]2n+1+2,

that pick out some range of monomials from a series. Inside the Hilbert
spaces Eh

n the monomials form an orthogonal set on polydiscs, so these
truncations are just special orthogonal projectors. In this way we obtain
corresponding maps

τhn,m : Eh
n −→ Eh

m, (n < m),

and
σhn,m : Eh

n −→ Eh
m, (n < m).

Corresponding truncation operators on Ec-spaces can then be defined
as compositions

τ cn,m : Ec
n

in−→ Eh
n

τh
n,m′−→ Eh

m′
rm′,m−→ Ec

m,

where n < m′ < m. We can make the specific but arbitrary choice
m′ = (m+ n)/2.
The norm of these maps can be estimated directly from the Arnold-Moser
lemma (Lemma 5.6) and the conclusion is that the norm sequences for
τ bn,n+ε and σbn,n+ε (b ∈ {h, c} ) belong to P+ for b = h. Due to local
equivalence (Lemma 5.2), it also belongs to P+ for b = c.
More generally, one may define projectors for any subset S ⊂ N3d of
monomials paqbτ c. Such a subset generates a C[[ω]]-module MS in the
power series ring R. By the same method as above one can define the
projection maps for b ∈ {c, h}

πbS,n,m : Eb
n −→ Eb

m, (n < m),

on the space MS ∩ Eb
m ’spanned’ by the monomials in S. The corre-

sponding norm sequence (|πbS,n,n+ε|) belongs to P.
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Poisson derivations. We introduce the space of Poisson derivations

Θc
n,m = Θ(R) ∩ L(Ec

n, E
c
m).

The quantity

‖u‖ = sup
n<p<q<m

{(sp − sq)|u(x)|q/(e|x|p)}

is well-defined and defines a Banach space structure on Θc
n.m. (The

normalisation constant e ≈ 2.718 is purely conventional and serves to
simplify the estimates of the Borel lemma 5.4.)
The map Hn,m : Ec

n −→ Θc
n,m (n < m), which associates to a function

f its hamiltonian field {−, f} is well-defined, and the norm sequence
for Hn,n+1 belongs to P, again by Cauchy-Nagumo (Lemma 5.1).
Truncation maps for derivations factor:

Θc
n,n′

ev−→ (Eh
n′)

4d −→ (Eh
n′)

4d −→ Θc
m′,m, n < n′ < m′ < m

where ev is the map which evaluates derivations on the coordinates
τ, ω, q, p and the middle map of the diagram corresponds to the trunca-
tion

x 7→ [x]2
n+1+1

2n+1

Therefore the associated norm sequence for any choice of m = n + ε,
n′, m′ depending on n belongs to P+. We will denote this map also by
τn,m when n, n′,m′,m are at equal mutual distances.

The map Lc. Recall that in iteration scheme for the Hamiltonian
normal form of §2 used a specific C[[ω, τ ]]-linear map

L : R −→ Θ(R) = Ham (R)⊕Der (R0),m 7→ Lm

that was defined by setting for a 6= b:

Lpaqb := {−, 1

(α + ω, a− b)
paqb}, a 6= b.

and

Lg(qp) :=
d∑
i=1

∂g(τ)

∂τi
∂ωi
.

We have to realise this on the level of Banach spaces.
We will define for n < m′ < m′′ < m a map

Lcn,m′,m′′,m : Ec
n −→ Θm′,m

as a composition of five basic maps.
Inclusion step:

in : Ec
n −→ Eh

n.

Clearly, the norm sequence belongs to P.
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Truncation step:
τn,m′ : Eh

n −→ Eh
m′ .

As remarked before, its norm sequence belongs to P+.

Division step: We now use the map

divm′ −→ divm′ ,

where the map divn : Eh
n −→ Eh

n is defined as by

pIqJ 7→ 1

(α + ω, I − J)
pIqJ

on (Mh
n )⊥ and equal to the identity on Mh

n . As ω ∈ Zn, we have

| 1

(α + ω, I − J)
pIqJ |n ≤

1

an
|pIqJ |n.

As the monomials pIqJ are orthogonal, we deduce that the norm se-
quence of divn has its norm bounded by a−1 ∈ P.
Restriction step: After that, we use the restriction map

rm′,m′′ : Eh
m′ −→ Ec

m′′

As remarked above, the norm sequence of rm+ε,m+2ε belongs to P.
Poisson step: We use the map Dm′′,m, where the map

Dn,m : Ec
n −→ Θc

n,m

is defined on the level of monomials by{
DpIqJ = {−, pIqJ}, I 6= J,

Dg(pq) =
∑d

i=1
∂g(τ)
∂τi

∂ωi
.

As we are dealing with a projection and partial differential operators,
its norm is again in P.

So we define

Lcn,m′,m′′,m := Dm′′,m ◦ rm′,m′′ ◦ divm′ ◦ τm′,n ◦ in
as the composition of these five maps:

Ec
n

in
↪−→ Eh

n

τh
n,m′−→ Eh

m′
divm′−→ Eh

m′
rm′,m′′−→ Ec

m′′
Dm′′,m−→ Θc

m′′,m

We will make specific, but arbitrary choices for the intermediate points
by setting

m′ := n+ ε, m′′ := n+ 2ε, m = n+ 3ε, ε := (m− n)/3

and use the choices to define

Lcn,m := Lcn,m′,m′′,m

In our iteration we will use specifically Lcn,n+1/4 and Lcn+1/6,n+1/3.
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Lemma 3.17. The norm sequences |Lcn,n+1/4| and |Lcn+1/6,n+1/3| belong
to P+

Proof. The norm of the composition is at most the product of the norms,
which are all in P; the norm of truncation is in P+. Hence the result
follows. �

The map j. We proceed to the definition of the map j inside our
functional spaces. Recall that in §2 we defined it in term of L:

jA : R −→ Θ(R), m 7→ L(m− Lm(T )).

It is quite simple to realise this on the level of Banach spaces; as we
need to apply it to only to specific elements

An = A0 + Tn, Tn =
n∑
i=1

Sn,

we consider the map

Mn : Ec
n −→ Ec

n+1/4, m 7→ m− Lcn,n+1/4(m)Tn.

Note that the map

Lcn,n+1/4 : Ec
n −→ Θc

n+1/6,n+1/4,

so that Lcn,n+1/4(m) ∈ Θc
n+1/6,n+1/4 indeed can be applied to Tn ∈ Ec

n.
We can now define a map

jcn : Ec
n −→ Θc

n+1/3,n+1/2, x 7→ Lcn+1/4,n+1/2 ◦Mn(x)

that emulates the map

jn : x 7→ [jAn([x]2
n+2+2

2n+1+2)]2
n+1

2n = [jAn([x]2
n+2+2

2n+1+2)]2
n+1

.

defined in the formal KAM-iteration.
Note that by our implementation of L, we incorporated the truncation
step, which leads to a norm sequence in P+.

Lemma 3.18. We have |jc|
1+|T | ∈ P+.

Proof. By definition one has:

|jcn| ≤ |Lcn,n+1/4| |Lcn+1/4,n+1/2|(1 + |Tn|) ∈ (1 + |T |)P+.

�
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3.7. The iteration in the Banach spaces Ec
n. We may now for-

mulate the Hamiltonian normal form iteration in the spaces Ec
n for

appropriate choices of ρ and s0.

Definition 3.19. We will simplify notation slightly and write:

τn := τ cn+1/2,n+1 : Ec
n+1/2 −→ Ec

n+1

for the maps that emulates the truncation [−]2
n+1+1

2n+1 , and similarly

σn := σcn,n+1/2 : Ec
n −→ Ec

n+1/2

for the map the emulates the tail-truncation [−]2n+1+2 and jn for jcn.

We are given an arithmetic class C(a)∞ depending on a sequence a = (an)
and, without loss of generality, we may assume that a0 ≤ 1. We also fix
an arbitrary α ∈]3/2, 2[.

We now list all the estimates which appear in the proof of the conver-
gence. The precise form of these estimates is irrelevant for the proof of
the convergence, since the absorption principle implies that these are
fulfilled for sufficiently small ρ. More precisely, according to Proposi-
tion 3.16, as the norm sequences |j|/(1 + |T |), |τ |, |σ| belong to P+,
we may find ρ such that for some constant R ≥ 1 we have:

|j0| ≤
Ra0(s1/2 − s1)

2
,(1)

|jn| |τn|
1 + |Tn|

≤
Ran(sn+1/4 − sn+1/2)

2e(n+ 1)
,(2)

|τn| ≤
R

2
,(3)

|jn|
1 + |Tn|

≤
Ran(sn+1/2 − sn+1)

8(n+ 1)
,(4)

|σn| ≤
R2e−α

n

8
,(5)

|σn| |jn| ≤
R2e−α

n

8(n+ 1)
.(6)

Note that (1) follows form the n = 0 case of (4) and that some estimates
are redundant. As A0, B0 vanish at the origin, we may choose s0 small
enough so that

(a) |A0| ≤ 1,

(b) |B0| ≤ R−1,

(c) |B0| ≤ R−2e1/(2−α).
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Clearly (c) is in general stronger than (b)! The estimates used in the
proof will be numbered by letters and numbers; for instance (1b) means
that we use the estimates (1) and (b).

Theorem 3.20 ([14]). Consider an analytic Hamiltonian of the form

H =
n∑
i=1

αipiqi +O(3) ∈ C{p, q}

and put

F0 := H +
d∑
i=1

ωipiqi = A0 +B0

Assume that the frequency vector α ∈ C(a)∞, where a is a Bruno
sequence. Under the above assumptions on the sequence ρ and s0, the
iteration

An+1 = An + Sn+1

Bn+1 = φ(vn)An + ψ(vn)Sn+1 + e−vn(σn(Bn − vn(An)))

with
Sn+1 := τn(Bn − vn(An)), vn := jn(Bn) = jnBn

and
φ(z) = e−z(1 + z)− 1, ψ(z) = e−z − 1

is well-defined in the Banach space Ec
n, i.e. for all n ∈ N we have:

i) An, Bn, Sn ∈ Ec
n.

ii) The sequence (Bn) converges quadratically to zero.
iii) The vector fields vn exponentiate to elements

ϕn = e−vn ∈ L(En, En+1)

Moreover the composition

Φn = ϕn−1ϕn−2 . . . φ1φ0

converges to a Poisson morphism

Φ∞ ∈ L(Ec
0, E

c
∞),

which reduces F0 to its Hamiltonian normal form.

Remark. It could happen that the real part of the set Z∞ reduces
to the origin as the set R(a) might have density 0 at the point α ∈ Rd.
In this case, our statement would simply be empty. As we already
explained, this difficulty however can always be circumvented by an
appropriate choice of the sequence a. According to Proposition 3.6,
given a frequency vector α ∈ Rd satisfying the Bruno condition, we
can always find a Bruno sequence a < σ(α), for which R(a)∞ has
density 1 at the point α. So the above pathology can be avoided easily
by an appropriate choice of the Bruno sequence a = (an). This is a
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fundamental difference between KAM theory and Diophantine analysis,
where one is concerned with optimal bounds [15, 19, 20].

Proof. We start with
F0 = A0 +B0,

and consider A0 and B0 as elements of Ec
0. We have:

v0 = j0(B0) ∈ Θc
1/4,1/2

and, as T0 = 0, we get the estimate:

(1b) |v0| ≤ |j0||B0| ≤
a0(s1/2 − s1)

2
.

According to the Borel lemma (Lemma 5.4), the linear map

e−v0 : Ec
1/2 −→ Ec

1

is well-defined and moreover, as ez is the Borel transform of 1/(1− z),
we deduce from the previous estimate that:

|e−v0| ≤ 1

1− 1/2
= 2.

In the next step we get

F1 = e−v0F0 ∈ Ec
1,

and A1 = A0, S1 = 0.
We show by induction the following estimates:

|Sn+1| ≤ R|Bn|,

|Bn+1| ≤
R2

2
|Bn|2 +

R2

2
e−α

n|Bn|,

|Bn+1| < R−1.

Assuming the validity of these estimates up to index n, we may conclude
that

(b) |Tn| = |
n∑
k=1

Sk| ≤
n∑
k=1

|Sk| ≤ R
n∑
k=1

|Bk| ≤ n.

In particular, we may simplify the estimates in which 1+ |Tn| is involved.
Note also that:

(a) |An| ≤ |A0|+ |Tn| ≤ n+ 1.

As formal power series, the term Sn+1 is the difference of two terms

Sn+1 = τn(Bn − jn(Bn)(An)) = τn(Bn)− τn(jn(Bn)(An)).

Inside our Banach spaces, the second term

Jn(Bn) := τn(jn(Bn)(An))
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can be estimated as follows. The map Jn is obtained as composition

Ec
n

jn−→ Θc
n+1/4,n+1/2

evn−→ Ec
n+1/2

τn−→ Ec
n+1,

where the evaluation map evn is defined by

evn(v) = v(An).

Note that by definition of the norm in Θc
n+1/4,n+1/2, we have:

|v(An)| ≤ e|An|
an(sn+1/4 − sn+1/2)

.

Consequently:

(2) |Jn| ≤ |jn| |τn|
e|An|

an(sn+1/4 − sn+1/2)
≤ R

2
,

(3) |Sn+1| ≤ (|τn|+ |Jn|)|Bn| ≤ R|Bn|.

This proves the first step of the induction.

We can now form

An+1 = An + Sn+1 ∈ Ec
n+1,

and set as usual:
vn := jn(Bn).

Now:

(4b) |vn| ≤ |jn||Bn| ≤
an(sn+1/2 − sn+1)

8
<
an(sn+1/2 − sn+1)

2
,

and therefore by the Borel lemma (Lemma 5.4), the linear map

e−vn : Ec
n+1/2 −→ Ec

n+1

is well-defined and, as e−z is the Borel transform of 1/(1 + z), we also
get that:

|e−vn| ≤ 1

1− 1/2
= 2.

So we can form Fn+1 = e−vnFn ∈ Ec
n+1 and so indeed

Bn+1 = Fn+1 − An+1 ∈ Ec
n+1.

Let us now prove the announced central estimate of |Bn+1|. The power-
series

e−z(1 + z)− 1 ∈ C{z}
is the Borel transform of

− z2

(1 + z)2
∈ z2C{z},
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which has radius of convergence equal to 1 and, choosing r ≤ 1/2, we
get that: ∣∣∣∣ 1

(1 + z)2

∣∣∣∣ ≤ 1

(1− r)2
≤ 4.

We apply the Borel lemma (Lemma 5.4) and obtain:

(4) |φ(jnBn)| ≤ 4

(
|jn| |Bn|

an(sn+1/2 − sn+1)

)2

≤ R2|Bn|2

4
.

Similarly the series ψ(z) is the Borel transform of z/(1− z) and, as

|Sn+1| < |Bn| and
1

1− 1/2
= 2,

the Borel estimate gives

(4) |ψ(jn(Bn))Sn+1| ≤ 2
|jn| |Bn| |Sn+1|

an(sn+1/2 − sn+1)
≤ R2|Bn|2

4
.

Finally we look at the remainder term e−vn(σn(Bn − jn(Bn)(An)):

(5) |e−vnσn(Bn)| ≤ 2|σn||Bn| ≤
1

4
e−α

n

R2|Bn|,

(6) |e−vn(σn(jn(Bn)(An)) ≤ 2|σn| |jn| |An| |Bn| ≤
R2e−α

n

4
|Bn|.

This proves the second step of the induction

|Bn+1| ≤
R2

2
|Bn|2 +

R2

2
e−α

n|Bn|.

The ’norm map’:

Ec :=
⊔
n

Ec
n −→ R+, η 7→ |η|

reduces the issue of convergence to the analysis of some elementary
iterations of positive numbers.
So let us put xn := |Bn| so that

xn+1 ≤
R2

2
x2
n +

R2

2
e−α

n

xn,

where we have x0 ≤ R−2e−1/(2−α).
We show that (xn) converges quadratically to zero. To see this, consider
the real sequence (yn) defined by

y0 = R−2e−1/(2−α), yn+1 =
R2

2

(
eα

n

y2
n + e−α

n

yn
)
,

which clearly majorates the sequence (xn). It follows with an easy
induction that one has the inequality

yn ≥ e−2αn

.
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Indeed, assuming the truth for yn, we get

yn+1 ≥
R2

2

(
e−3αn

+ e−3αn)
= R2e−3αn ≥ e−2αn+1

,

as 3/2 < α < 2 and R > 1. The inequality can also be written as:

e−α
n

yn < eα
n

y2
n,

and therefore:

yn+1 =
R2

2

(
eα

n

y2
n + e−α

n

yn
)
<
R2

2

(
eα

n

y2
n + eα

n

y2
n

)
= R2eα

n

y2
n.

This shows that the sequence

z0 = R−2e−1/(2−α), zn+1 = R2eα
n

z2
n

majorates both (yn) and (xn). This sequence is easily integrated

zn = R2n+1−2eβnz2n

0 .

with

βn := 2n−1

n−1∑
k=0

(α
2

)k
= 2n−1 1− (α/2)n

1− (α/2)
∼ 2n

1

2− α
.

Writing (zn) in the form

zn = R−2(R2eγnz0)2n , γn :=
1− (α/2)n

2− α
.

The sequence γn increases and is bounded by 1/(2− α) thus:

(c) R2eγnz0 ≤ R2e1/(2−α)z0 < 1,

thus the sequence (zn) is decreasing and converges quadratically to zero.
This shows the quadratic convergence of (Bn) and concludes the proof
of (b). The quadratic convergence for vn = jn(Bn) follows from this
and the Composition Lemma (Lemma 5.3) implies (c). �

3.8. Regularity of the normal form. We formulated the iteration
scheme in terms of the sequence of Banach spaces Ec

n. Without much
difficulty one can formulate a version of the iteration in the spaces Ek

n.
Without going into all details, we state the following

Proposition 3.21 ([14]). Under the assumptions of Theorem 3.20, the
iteration is well-defined in Ek

n and the sequences (Bk
n) and (vkn) converge

quadratically to zero. Furthermore, the Poisson morphism Φ∞ maps
Ek

0 ⊂ Ec
0 to Ek

∞ ⊂ Ec
0.

Proof. This is a direct consequence of Pöschel’s regularity lemma (5.8).
Indeed, the norms ν = (νn) of the maps

Ec
n −→ Ek

n+1
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are bounded by a positive Bruno sequence. But the sequences of the
iteration converge to zero quadratically, so the multiplication by ν has
no effect on the convergence. �

We remark that the Local Equivalence Lemma (Lemma 5.2 ) implies
that we can also formulate and prove quadratic convergence for the
iteration in (Eh

n).

4. Application to invariant tori

We describe now an application of our theorem to the analysis of
invariant tori near elliptic critical points of analytic Hamiltonians, whose
frequency satisfies a Bruno condition. For this we have to consider the
appropriate real form of H and restrict to the real domain.

4.1. Hyperbolic and Elliptic fixed points. The dynamics of the
harmonic oscillator

He =
1

2

d∑
i=1

βi(p
2
i + q2

i )

describes quasi-periodic motions with frequency vector β. All orbits are
bounded and the phase space is filled out by a d-parameter family of
invariant tori p2

i + q2
i = ti, on which the solutions spiral around. The

geometry of the situation is well-known: the fibres of the map

R2d −→ Rd
>0, (q, p) 7→ p2 + q2 := (p2

1 + q2
1, . . . , p

2
d + q2

d)

are tori, which are of real dimension d over the strictly positive orthant
Rd
>0.

In the real domain there is a big difference in the dynamical behaviour
between He and its hyperbolic cousin

Hh =
d∑
i=1

αipiqi,

for which all orbits are unbounded and there exist no invariant tori.
Yet when considered over C, the canonical coordinate transformation φ

pj 7→
1√
2

(pj + iqi), qj 7→
1√
2

(qj + ipj)

maps Hh to He, when we put

β = iα.

Another way of expressing the relation between Hh and He is by saying
that the evolution for Hh in purely imaginary time is equivalent to
the real time evolution of He and vice versa. As a consequence of this
relation, we can immediately translate results about Hh into results
about He.
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4.2. The coordinate transformation. Consider an analytic hamil-
tonian of the form

H =
1

2

d∑
i=1

αi(p
2
i + q2

i ) +O(3) ∈ R{p, q}.

and assume that the frequency vector α ∈ R(a)∞, where a is a Bruno
sequence. We can apply our theorem 3.20, so for appropriate choice of
the sequence ρ and radius s0, we find sets

W0 = Z0 ×D0 ×D2
0, Z0 = B(s0), D0 := Dd

s0

and
W∞ = Z∞ ×D∞ ×D2

∞, D∞ := Dd
s∞ ,

such the sequence
A0, A1, A2, . . .

which converges in the Banach space Oc(W∞) to an element

A∞ ∈ Oc(W∞)

and the sequence

Φ0 = e−v0 , Φ1 = e−v1e−v0 , . . . ,Φn =
n∏
i=0

e−vk ,

converges in the operator norm to Φ∞ ∈ L(Oc(W0),O
c(W∞)). This

transformation maps, for any k, the subspace Ok(W0) to Ok(W∞)
(Proposition 3.21). In particular, if the closed set W0 is chosen in-
side the holomorphy domain of A0, then it is in particular C∞ on W0

and therefore belongs to Ok(W0) for any k. The function A∞ is then
C∞ on W∞ and for fixed ω ∈ Z∞ it is holomorphic.
Of course, in a sense we get a ’half-way theorem’, as we start with
a real Hamiltonian, but obtain a statement about its behaviour in
the complexified domain. But it is clear from the explicit form of the
description of the iteration that, starting from a real Hamiltonian, the
algorithm produces real vector fields vn, which exponentiate to real
analytic coordinate transformations ϕn = e−vn , etc. As a consequence
the limit transformation Φ∞ is ’real’. Furthermore, we remark that it
follows from the construction of the vector fields vn that the transfor-
mation ϕn maps the subspace F c

n = Oc(Vn), (Vn = Wn ×Dn) to F c
n+1,

so that Φ∞ maps F c
0 to F c

∞ and by the regularity property F k
0 to F k

∞.
The coordinate functions ω, τ, q, p can be considered as elements of the
space Oc(W0) and we write

ω′ = Φ∞(ω), τ ′ = Φ∞(τ), q′ = Φ∞(q), p′ = Φ∞(p).

Note that τ ′ = τ and

ω′ ∈ F k
∞ = Ok(V∞), for all k ∈ N,
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so is independent of q, p. These functions define a C∞-map

φ′ : W∞ −→ W0, x 7→ (ω′(x), τ ′(x), q′(x), p′(x)), x = (ω, τ, q, p)

and for each g ∈ Oc(W0) we have the relation

g(φ′(x)) = Φ∞(g)(x).

The reality of Φ∞ implies that the map φ′ maps the real part

W∞ := W∞ ∩ Rd to W0 := W0 ∩ Rd.

Thus we obtain a real C∞-map

ϕ′ : W∞ −→W0.

As the ϕ′ sends the (ω, τ)-space to itself, the map is fibred over the
(ω, τ)-space and we obtain a commutative diagram:

W∞
ϕ′ //

��

W0

��
V∞

ψ′ // V0

with ψ′ = (ω′, τ ′) and vertical maps in the diagram forget the coordinates
q, p.
Recall the following Whitney extension theorem:

Theorem 4.1 ([38]). Let X ⊂ Rd be a compact subset. Any function
f ∈ C∞(X,R) is the restriction of a C∞ function defined on Rd.

Invoking this theorem to the component functions ω′, τ ′, q′, p′ of ϕ′, we
obtain a C∞-maps

ψ : R2d −→ R2d, ϕ : R4d −→ R4d.

We restrict ψ and ϕ to the preimages

Ve := ψ−1(V0) ⊃ V∞, We := ϕ−1(W0) ⊃W∞,

and we arrive at a diagram

We
ϕ //

��

W0

��
Ve

ψ // V0

that extends the previous diagram. Obviously, the maps ϕ and ψ are
not unique, but its restrictions to W∞ and V∞ are.
As the Taylor series of ϕ is given by the series Φ∞, which is Id+O(2),
ϕ is a diffeomorphism near the origin. Consequently, by restriction to
smaller polydiscs, we may and will assume that

(1) ψ is a diffeomorphism between Ve and V0,
(2) ϕ is a diffeomorphism between We and W0.
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As the map ϕ arose from the transformation Φ∞, it has the property
that after restriction to W∞, it transforms

F0 = A0 +H =
1

2

d∑
i=1

ωi(p
2
i + q2

i ) +H(p, q)

to F∞ = A∞. Furthermore

A∞ = A0 + T∞, T∞ ∈ (R0 + I2) ∩ Ok(W∞).

This means that for ω ∈ Z∞ one has

F0 ◦ ϕ(ω, τ, q, p) = A∞(ω, τ, q, p),

and moreover, for such a value, the map ϕ(ω,−) is an analytic Poisson
morphism in the variables (τ, q, p).

4.3. Frequency maps. In this section we return to the complex situa-
tion and start to analyse the limit n −→∞ of the frequency manifolds
Xn that were considered in section 2. We need a more careful use of
the Whitney extension theorem.
We consider the extension diagram of neighbourhoods of the previous
section, but in the complex setting:

W∞ //

��

We
φ //

��

W0

��
V∞ // Ve

Ψ // V0

We consider

Xn = {(ω, τ) ∈ Vn | Rn,1(ω, τ) = · · · = Rn,d(ω, τ) = 0},

where Rn,i := Φn(ωi) ∈ Ok(Vn). We will have to take the degree of
differentiability k ≥ 1. For n =∞ we have the functions

R∞,i = Φ∞(ωi) ∈ F k
∞ = Ok(V∞),

which are analytic in τ and Ck in ω.
We can consider the limit set

X∞ := {(ω, τ) ∈ V∞ | R∞,1(ω, τ) = · · · = R∞,d(ω, τ) = 0}

and invoke the following theorem due to Fefferman :

Theorem 4.2 ([7]). Let X ⊂ CN be a compact subset and k ∈ N.
There exists a bounded linear operator

T : Ck(X,C) −→ Ck(CN ,C),

which is right inverse to the restriction mapping.
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We consider the inclusion
V∞ ⊂ Ve

with k = 1 and get an extension operator T . We consider the functions

R′n,i := Rn,i|V∞, n ∈ N

and set
rn,i := T (R′n,i), rn := (rn,1, . . . , rn,d).

As T is a bounded operator, we can conclude the existence of a limit

r∞ = lim
n−→∞

rn

By the implicit function theorem each manifold

Xn,e := {(ω, τ) ∈ Ve : rn(ω, τ) = 0}, n ∈ N ∪ {∞}

is, near the origin, the graph of a function

{ω = fn(τ)}.

These functions can be constructed using Picard iteration, whose con-
vergence is controlled by a condition on the derivative drn. Since (rn)
converge in the C1-topology, we may find a common compact neigh-
bourhood of the origin for all these maps

fn : U −→ U ′.

So by possible shrinking of Ve to the set U × U ′ ⊂ Cd × Cd we can
express the manifolds Xn,e has graphs over a common neighbourhood.
Note that these functions converge pointwise to f∞. Indeed, take τ ∈ U ,
as U ′ is compact (fn(τ)) admits converging subsequences. Let ω be a
limit value of such a subsequence (fnk

(τ)). Passing to the limit in the
equality

rnk
(fnk

(τ), τ) = 0

we get that the point (τ, ω) belongs to the manifold X∞,e and therefore
ω = f∞(τ). We will not use this fact.
The map

U −→ Cd, τ 7→ α + f∞(τ).

will called a frequency map of our Hamiltonian system.
According to 2.5, the Taylor series of this map at the origin at order
k coincides with that of the formal frequency map b. Of course, the
process of extension is not unique, but the restriction to the preimage
of C(a)∞ is the same for any choice. The construction can done so that
the resulting frequency map restricts to a real map

β : U −→ Rd, τ 7→ α + f∞(τ).
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4.4. The non-degeneracy condition. We now wish to construct a
frequency map whose image lies inside α+ F (H). Later, this condition
will guarantee positive measure for the set of invariant tori. This
property depends on our choice of Whitney extension, but there is an
intrinsic underlying statement: Proposition 2.9 stating that all Xn’s are
contained in F (H)× Cd extends to n =∞.

Proposition 4.3. The limit set X∞ satisfies the same non-degeneracy
condition as the manifolds Xn:

X∞ ⊂ F (H)× Cd.

Proof. Consider a unit vector n ∈ Cd normal to the frequency space
F (H) induces, via the Euclidean scalar product, a linear form

u : C2d −→ C, x 7→ (x, n), F (H) ⊂ Keru

Assume that there exists a point x0 = (ω0, τ0) ∈ X∞ which does not lie
inside the frequency space:

u(x0) 6= 0 and R∞(x0) = 0.

The point x0 = (ω0, τ0) remains at distance K = |u(x0)| from the
hyperplane Keru. By Proposition 2.9, the manifolds Xn are contained
inside the frequency space therefore the point (ω, τ) remains also at
distance K from all the manifolds

Xn = {(ω, τ) ∈ Ve : Rn(ω, τ) = 0}.
We consider the Whitney extensions:

Xn,e = {(ω, τ) ∈ Ve : rn(ω, τ) = 0}
and as both manifolds intersected with C(a) × Cd are the same the
points of

(Xn,e ∩ {ω = ω0}) = (Xn ∩ {ω = ω0})
are also at distance at least K from the point x0 ∈ X∞.
Now let the parameter τ vary and define the functions

hn,i(τ) = rn,i(ω0, τ), n ∈ N ∪ {+∞}.
By definition of our functional spaces, as ω0 ∈ C(a), these functions are
holomorphic in τ even for n = +∞.
At least one of the functions h∞,i is not constant for some i = 1, . . . , d,
otherwise this common constant will necessarily be zero and x0 will be
the origin, contradicting the assumption x0 /∈ F (H)× Cd.
Now choose a complex line L ⊂ Cd containing x0 along which the
function h∞,i is not constant. By restriction to this line we get a
sequence of one variable holomorphic functions

gn : L ∩ Ve −→ C, z 7→ hn,i(z)

which has the following properties:
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1) g∞(x0) = 0.
2) ‖x− x0‖ < K =⇒ gn(x) 6= 0 for any n ∈ N.
3) the sequence (gn) converges to g∞ in the C1-norm.

Condition 2) 3) are in obvious contradiction with 1). Indeed The
number of zeroes Zn,i counted with multiplicities contained inside the
disk D ⊂ L centred at x0 of radius K/2 is given by the integral formula

Zn,i =
1

2iπ

∫
∂D

g′n,i(z)

gn,i(z)
dz

for any n ∈ N ∪ {∞}. We know that for n ∈ N, Zn,i = 0, thus passing
to the limit gives Z∞,i = 0. This contradicts 1) and concludes the proof
of the proposition. �

As we know that X∞ is contained inside F (H)× Cd, we can improve
our previous construction of a frequency map. First we restrict the
functions R∞,i to

V∞ ∩
(
F (H)× Cd

)
Now we use Whitney C∞-extension to and obtain functions

s∞,1, . . . , s∞,d ∈ C∞(C2d,C)

whose common zero set, when restricted to F (H)× U , can be written
as a graph of a map:

b : U −→ α + F (H) ⊂ Cd,

and similarly in the real case

β : U −→ α + F(H) ⊂ Rd.

In this way, we construct frequency maps b satisfy the non degeneracy
condition which will be needed to prove positive measure of invariant
tori: the partial derivatives of the frequency map evaluated at the origin
generate the frequency space. Moreover as the condition is open, we
may assume, up to a possible shrinking of U, that the condition holds
not only at the origin, but at any point of U.

4.5. The elliptic normal form Theorem. Using the coordinate
transformation and the frequency map, we may sum up our results in
the following way:

Theorem 4.4 ([11, 12]). Let a = (an) be a sequence satisfying the
Bruno condition and α ∈ R(a)∞. Let H ∈ R{q, p} be a real analytic
function with an elliptic fixed point:

H =
1

2

d∑
i=1

αi(p
2
i + q2

i ) +O(3).
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Then there exists an open neighbourhood of the origin U ⊂ Cd, V ⊂ C2d

with real parts U,V and C∞-maps

β : U −→ α + F(H) ⊂ Rd,

U× V
Ψ //

""

U× R2d

{{
U

such that for any τ ∈ β−1(R(a)∞), one has:

i) The Taylor series expansion of β at the origin is equal to ∇B(H).
ii) The map Ψ is a fibred diffeomorphism over its image.
iii) The map Ψ(τ,−) is an analytic symplectomorphism.
iv) H ◦Ψ(τ, q, p) = 1

2

∑n
i=1 βi(τ)(p2

i + q2
i ) + T∞(τ, q, p)

v) T∞(τ,−) ∈ I2 + C, where I ⊂ Oc(V ) is the ideal generated by the
p2
i + q2

i − τi’s.

The map Ψ of the theorem is defined in terms of the map ϕ and the
map τ 7→ ω(τ) of the previous section by the relation

Ψ(τ, q, p) = ϕ(ω(τ), τ, q, p).

We note that in the extremal case where F(H) = {0}, the frequency
map β is constant, and the condition β(τ) ∈ R(a)∞ is always satisfied.
In this case the map Ψ is therefore analytic, because ϕ is analytic in
the τ -variables. So the theorem implies that H is integrable, and thus
we recover a classical result of Rüßmann [32].
In the general case, our iteration produces a C∞ function β, whose
Taylor expansion at the origin is the formal frequency map given by the
Birkhoff normal form. In a similar way, our construction shows that
the sequence (hn) of 2.5 converges to a limit h∞. This limit function
being the constant term in the expression

T∞(τ, q, p) = h∞(τ) +
∑
i,j

tij(q, p)fifj

with τ ∈ β−1(R(a)∞).
The Taylor expansion of h∞ at the origin is the Birkhoff normal form
and the map β can then be chosen to be the gradient of h∞. In analogy
with Pöschel terminology [30], we might say that the situation is similar
to that of the Birkhoff normal form but over a Cantor set. But we will
not use this fact in the sequel.
Eliasson posed the question whether the frequency map β is analytic
or not [4, 29]. We do not have an answer, but we remark that the
frequency map β is constructed out of the frequency manifolds Xn and
more precisely by the Malgrange-Mather division theorem [22, 23]:

R∞(ω, τ) = A(ω, τ)(ω − β(τ)).
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We only know that the function R∞ is analytic in τ and Eliasson’s
question concerns the map β. So the mystery remains...

4.6. A big set of invariant tori. A direct corollary of the elliptic
normal form theorem is the following.

Corollary 4.5. For τ ∈ β−1(R(a)∞), the image under Ψ(τ,−) of the
torus

Tτ : p2
1 + q2

1 = τ1, . . . , p
2
1 + q2

1 = τn

is invariant under the Hamiltonian flow of H. The motion on this torus
is quasi-periodic with frequency β(τ).

So we get a collection of invariant tori in our hamiltonian system,
parametrised by the inverse image of R(a)∞ by the frequency map

β : U −→ α + F(H) ⊂ Rd.

As pointed out in remark 3.7, we may and will suppose that a is chosen
so that the set R(a)∞ is α-dense. But without further precautions, the
inverse image under β might still be a very small set, maybe reduced
to an half line. We know however that our frequency map β is non-
degenerate in the frequency space α + F(H). The following arithmetic
density theorem then can be used to control the density of the inverse
image of R(a)∞ with n = d.

Theorem 4.6 ([15]). Consider a real positive decreasing sequence σ =
(σk) and let ν = (νk) be a real positive sequence such that the sequence

(2knν
1/dl
k )

is summable and νk < 1 for all k’s. Consider a mapping

f = (f1, . . . , fd) : Rd ⊃ U −→ Rn

such that f(U) is contained in an affine space spanned by the partial
derivatives of f up to order l. Then the density of the set f−1(R(νσ)∞)
at the origin is equal to 1.

So the logic of our argument is the following: we fix a vector α ∈ Rd

and assume that σ(α) ∈ B−. We consider the sequences

νk = (2−(k+1)d2l), a = νσ(α).

Note that

ν ∈ B− and σ(α) ∈ B− =⇒ a = vσ(α) ∈ B−.

Now the elliptic normal form theorem 4.4 applies. By Proposition 4.3,
the frequency mapping β we construct satisfies the assumption of the
arithmetic density theorem. Consequently the set β−1(R(a)∞) has den-
sity one at the origin and is, in particular, a set of positive measure.
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We will now see how these tori fit together in a neighbourhood of the
origin of our original Hamiltonian H(p, q). The map

Ψ : U× V −→ U× R2d

of the previous theorem has an inverse Γ = Ψ−1 over a sufficiently small
neighbourhood of the origin of the form U×B, B ⊂ R2d:

Γ : U×B −→ U× V; (τ, p, q) 7→ (τ, P (τ, p, q), Q(τ, p, q))

So we have the relation

H(p, q) = A0(ω(τ), P (τ, p, q), Q(τ, p, q)) + T∞ ◦ Γ(τ, p, q).

We can, in principle, eliminate the variables τ1, τ2, . . . , τd from the right
hand side by solving the implicit equations

Pi(τ, p, q)
2 +Qi(τ, p, q)

2 = τi, i = 1, 2, . . . , d,

which produces a map

T : B −→ U; (p, q) 7→ (τ1(p, q), . . . , τd(p, q)).

As one has
τi(p, q) = p2

i + q2
i +O(3),

the map T is generically a submersion. In fact, it is a submersion on
B \ C, C := T−1(∆), where ∆ ⊂ U is the set of critical values of T .
One now obtains a diagram

B

T

��

γ // (α + F(H))× V

π

��
U

β // α + F(H)

S
?�

OO

// (α + F(H)) ∩ R(a)∞
?�

OO

related to our normal forms as follows.
On the right hand side we have the standard Hamiltonian

A0 =
1

2

d∑
i=1

(αi + ωi)(p
2
i + q2

i ),

defined on (α + F(H))× V, where the map

π : (ω, q, p) 7→ α + ω

gives the frequency of motion.
On the left hand side we have a neighbourhood B, on which the original
Hamiltonian H(p, q) is defined. The vertical map on the left is the
τ -map T (p, q) defined above.
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The horizontal map γ stems from coordinate transformation Γ:

γ : B −→ (α + F(H))× V

(q, p) 7→ (β(T (p, q)), P (T (p, q), p, q), Q(T (p, q), p, q))

The horizontal map in the middle is the frequency map β, which is
non-degenerate in the affine sub-space α + F(H). The inverse image
S := β−1(R(a)∞) under β parametrises invariant tori for H in the
neighbourhood B. As T is a submersion outside ∆, which by Sard’s
theorem has measure zero, the set T−1(S \ ∆) ⊂ B yields a set of
positive measure consisting of invariant tori in the neighbourhood B of
elliptic critical point, as conjectured by Herman [18].

5. Appendix: Lemmas from the hall of fame

In this appendix we collect some fundamental lemmas of great use in
the type of analysis we are pursuing here. We include proofs, as these
are usually elementary.

Given two open sets V ⊂ U ⊂ Cn, we denote by r = d(U, V ) the
supremum of the real numbers ρ for which

V + ρD ⊂ U.

where D denotes the unit polydisc.

5.1. Cauchy-Nagumo lemma. Let U be an open set in Cn and V ⊂
U with d(U, V ) = r > 0. For a differential operator

P =
∑
|J |≤k

aJ∂
J ∈ L(Oc(U),Oc(V ))

of order k we have:

‖P‖ ≤ C
k!

rk

where C = sup|J |≤ak |aJ |.

Proof. If z ∈ V and f ∈ Oc(U), then one has

f(z) =
1

(2πi)d

∫
γz

f(ξ)∏d
i=1(ξi − zi)

dξ1 ∧ · · · ∧ dξd,

where γz denotes the cycle defined by |ξi − zi| = r. We write it
symbolically as

f(z) =
1

(2πi)d

∫
γz

f(ξ)

(ξ − z)
dξ,
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Differentiation under the integral sign leads to

∂If(z) =
I!

(2πi)d

∫
γz

f(ξ)

(ξ − z)1+I
dξ.

We parametrise γz by:

θ 7→ ξ(θ) := z + re〈2πi,θ〉

and thus
dξ = (2πir)de〈2πi,θ〉dθ,

so that

∂If(z) =
I!

r|I|

∫ 1

0

f(ξ(θ))

e2πiθ
dθ,

so finally

|∂If | ≤ I!

r|I|
|f |.

From this the lemma follows. �

For the special case of Hamiltonian derivations, we deduce that the
norm of the map

Oc(U) −→ L(Oc(U),Oc(V )), h 7→ {h,−}

is bounded by d/r2.

5.2. Local equivalence lemma. Let V ⊂ U ⊂ Cd be such that
d(V, U) = r > 0. Then the restriction mapping

ρhc : Oh(U) −→ Oc(V )

has norm smaller than π−d/2r−d Furthermore, the canonical map

ρch : Oc(U) −→ Oh(U)

has its norm bounded by Vol(U).

Proof. Let f ∈ Oh(U) and w ∈ V . The Taylor expansion of f at a point
w

f(z) =
∑
J∈Nd

aJ(z − w)J , aJ ∈ C.

The polydisc Dw centred at w with radius r is contained in U . We have∫
Dw

|f |2 =
∑
J∈Nd

C(J)|aJ |2r2|J |+2n, C(I) =
d∏

k=1

π

jk + 1
.

So we obtain

C(0)|a0|2r2n ≤
∫
Dw

|f |2 ≤
∫
U

|f |2 = |f |2.
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This shows that

|f(w)| = |a0| ≤
c

rd
|f |, c :=

√
1

C(0)
= π−d/2.

As the point w ∈ V was general the result follows. �

5.3. Composition lemma. Consider the family of polydiscs Ut = {z ∈
Cn | |zi| < t} and the Banach spaces Oc(Ut). Often linear operators
require an arbitrary small shrinking of domain and we end up with
linear maps

u(t, s) ∈ L(Oc(Ut),O
c(Us))

defined only for s < t. If such a collection u = (u(t, s), t > s) of linear
operators is compatible with the restrictions Oc(Ut′) −→ Oc(Ut) (t′ ≥ t)
and Oc(Us) −→ Oc(Us′) (s ≥ s′), we say that u is a horizontal section.
The composition lemma says:

The composition of horizontal sections u and v defined by

uv(t, s) = u(t,
t+ s

2
)v(

t+ s

2
, s)

is again horizontal and satisfies

‖uv(t, s)‖ ≤ ‖u(t,
t+ s

2
)‖ ‖v(

t+ s

2
, s)‖

The proof is immediate. Often one has estimates for u(t, s) and v(t, s)
involving only the difference (t− s). The fact that we take the midpoint
then leads to powers of 2 in the estimate of the composition. However,
to define the composition one could take any point between t and s. For
example, the them-fold composition of horizontal sections u1, u2, . . . , um
could be defined by repeated composition of two factors, but is more
conveniently defined as

u1u2 · · ·um(t, s) := u1

(
t,

(m− 1)t+ s

m

)
· · ·um

(
t+ (m− 1)s

m
, s

)
,

which often leads to powers of m in estimates, as can be observed for
example in the next lemma.

5.4. Borel lemma. If for t > s we have linear operators u(t, s) ∈
L(Oc(Ut),O

c(Us)) that define a horizontal section u = (u(t, s), t > s) in
the sense described above. The sections for which the quantity

‖u‖ = sup
s<q<p<t

{(p− q)|u(x)|q/(e|x|p)}

is well-defined and finite are called 1-local. They form a Banach space.
The normalising constant e ≈ 2.718 is purely conventional.
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By composition we can form horizontal sections u2, u3, u4, . . .. So one
may try to develop a functional calculus for 1-local operators. For this
to work one has to invoke a Borel transform.

If f =
∑

n≥0 anz
n ∈ C{z} is an analytic series, we define its Borel

transform as

Bf :=
∑
n≥0

an
n!
zn,

and absolute value as
|f | =

∑
n≥0

|an|zn.

Let f =
∑

n≥0 anz
n ∈ C{z} a power series with R as radius of conver-

gence and u = (u(t, s), t > s) a 1-local horizontal section.
If ‖u‖ < R(t− s), then the series Bf(u)(t, s) converges in the operator
norm and one has the estimate

‖Bf(u(t, s))‖ ≤ |f |
(
‖u‖
t− s

)
.

Proof. From the composition lemma we find

‖un(t, s)‖ ≤ ‖u‖ne−nnn(t− s)n ≤ (‖u‖nn!(t− s)n,

where we used the standard inequality nn ≤ enn! and therefore

‖
∑
n≥0

an
n!
un(t, s)‖ ≤

∑
n≥0

|an|
(
‖u‖

(t− s)

)n
.

This proves the lemma. �

5.5. Product lemma. Let En be an increasing Banach scale and
(t := t0, t1, t2, . . .) a decreasing sequence converging to s > 0. For any
sequence (un) of 1-local operators un ∈ L(En, En+1), such that

i) ‖un‖ < tn − tn+1,
ii) σ :=

∑
n≥0 ||un||/(tn − tn+1) < +∞,

the sequence
g0 = eu0 , g1 = eu1eu0 ,

gn := euneun−1 · · · eu0

converges to an element g in the Banach space L(Et0 , Es) (with operator
norm). Furthermore, we have the estimate:

|g| < 1

1− σ/(t− s)
.
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Proof. We have seen that eui exists as a section and thus defines elements
of the Banach space L(Eti , Eti+1

) as long as ‖ui‖ ≤ ti − ti+1, which
holds by the first assumption. As a consequence the compositions

eu0 , eu1eu0 , . . . , eun . . . eu1eu0 , . . .

are well defined. Furthermore, the Borel estimate gives

|eui | ≤ 1

1− νi
, νi := ‖ui‖/(ti − ti+1).

As
1

1− x
× 1

1− y
<

1

1− (x+ y)

for x, y ∈]0, 1[, we get for the composition eui+1eui

|eui+1eui | ≤ 1

1− (νi + νi+1)
.

By a straighforward induction (and the fact that restrictions have norm
≤ 1), we obtain the estimate

|gn| ≤
1

1− (
∑n

i=0 νi)
.

Therefore
|gn+1 − gn| ≤

|eun+1 − Id |
1− (

∑n
i=0 νi)

Using again the Borel estimate

|eun+1 − 1| ≤ νn+1

1− νn+1

we get
|gn+1 − gn| ≤

νn+1

1− (
∑n+1

i=0 νi)
.

From this it follows that the sequence gn converges in the Banach space
L(Et, Es) with operator norm. �

5.6. Arnold-Moser lemma. Let, as before, Ut denote the open poly-
disc of radius t and let

ρ(t, s) : Oh(Ut) −→ Oh(Us)

be the restriction mappings.
The following simple result appears in [1] and [26] and is of great use:
Let f ∈ Oh(Ut) be such that its Taylor series expansions starts at order
N :

f(z) :=
∑
|I|≥N

aIz
I .

then:
|ρ(t, s)f | ≤

(s
t

)d+N

|f |.
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Proof. The monomials zI form an orthogonal basis of Oh(Us) with norms

|zI | = C(I)1/2sd+|I|, C(I) :=
πd∏d

k=1(1 + ik)
.

By the Pythagorean theorem, for f ∈ Oh(Ut), we have:

|ρ(t, s)f |2 =
∑
|I|≥N

|aI |2C(I)s2d+2|I|

=
∑
|I|≥N

|aI |2C(I)
s2d+2|I|

t2d+2|I| t
2d+2|I|

≤ s2d+2N

t2d+2N
|f |2.

�

5.7. Approximation lemma. A simple consequence of the Arnold-
Moser lemma is the the following: Let a sequence (fN) converge to f
in Oh(Ut). Consider the polynomials pN obtained by truncating fN at
degree N as analytic functions in Ut. Then the sequence of polynomial
(pN) converges on any smaller polydisc to the the same limit as the
restriction of f .

Proof.

‖ρ(t, s)(pN − f)‖ ≤ ‖ρ(t, s)(pN − fN)‖+ ‖ρ(t, s)(fN − f)‖

≤
(s
t

)n+N

‖fN‖+ ‖ρ(t, s)(fN − f)‖ −−−−−→
N−→+∞

0

�

5.8. Pöschel’s lemma. For an increasing Banach scale indexed by
n ∈ N ∪ {+∞}

E1 ↪−→ E2 ↪−→ . . . En −→ . . . ↪−→ E∞,

we say that a sequence (fn), fn ∈ En is convergent, if it maps to a
converging sequence in the Banach space E∞. A decreasing sequences
of open sets

U1 ⊃ U2 ⊃ . . . ⊃ Un ⊃ . . . ⊃ U∞ := ∩nUn
gives such a Banach scale with

En := Ok(Un),

where Ok(U) is the Banach space function of complex valued Ck-function
on U , with bounded Ck norm which are holomorphic on the interior of
U . Consider a second such decreasing sequence

V1 ⊃ V2 ⊃ . . . ⊃ Vn ⊃ . . . ⊃ V∞ := ∩nVn
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with Vn ⊂ Un. The following result goes back to [30]:

Let d(Un, Vn) > rn. If a sequence (fn), fn ∈ Oc(Un) converges to a
limit f in Oc(U∞) faster than (rkn), then the sequence of restrictions
ρn(fn) ∈ Oc(Vn) converge to the restriction of f in Ok(V∞)

Proof. By the Cauchy-Nagumo lemma, the restriction maps

ρn : Oc(Un) −→ Ok(Vn)

satisfy the estimate

‖ρn‖ ≤
k!

rkn
.

Therefore
‖ρ∞(fn − f)‖ ≤ k!‖fn − f‖

rkn
.

Consequently the condition (for fixed k):

‖fn − f‖ = o(rkn)

implies the convergence of ρn(fn). �
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