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1. INTRODUCTION

We will consider reduced space curve singularities XLC3. Associated to such a germ
X there are two distinct deformation theories.

f Def (X ) : one considers flat deformations of X, that is, one considers diagrams of the
form

where XPS is flat.
f ºnf (X ) : one considers unfoldings of a parametrisation of X. By this we mean the

following. Consider the normalisation map n :XI PX and the composition
f"i ° n :XI PC3. Now ºnf (X ) :"Def ( f ), that is, we consider deformations

fs :XI ]SPC3]S

of a parametrisation whose image is X. Note that the space XI is a disjoint union of
r smooth discs, where r is the number of branches.

Each of the two deformation theories has a miniversal object, unique up to (non-unique)
isomorphism. The miniversal base is smooth in both cases. For Def (X ) this is because X is
Cohen-Macaulay of codimension two, for ºnf (X ) it is because no constraints are placed on
deformations. The tangent space for Def (X ) is ¹1

X
+Ext1()1

X
, 0

X
) and for ºnf (X ) it is

¹1
f
+

f * (#C 3 )

d f (#
XI
)#f ~1(#C 3 )

.

The fibre over a generic point of the miniversal base is a smooth space curve in both cases.
Because in each case the versal base-space is smooth, it is not disconnected by the
discriminant, and thus the generic fibres are all diffeomorphic.

Nevertheless, these deformation theories for X are very different. Flat deformations of
X cannot in general be realised by deforming the parametrisation. Imagine a flat deforma-
tion, whose general fibre is smooth. The total space of such a smoothing is normal but not
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Fig. 1. Versal deformations of a nodal space curve: (i) unfolding and (ii) flat deformation.

smooth, and thus cannot be the image of any deformation of the parametrisation of the
original singular curve. Similarly, an arbitrary deformation of the parameterisation of
X will not induce a flat deformation of the image.s

The simplest example of this phenomenon is central to this paper: in an unfolding of the
parametrisation of a node on a space curve, the two branches of the node can be separated
(Fig. 1(i)), but this does not occur in a flat deformation; the fibre of any flat deformation of
a curve singularity is always connected ([2], 4.2.2).t

The generic fibre of the miniversal flat deformation of X is a piece of non-singular curve,
the Milnor fibre. The Milnor number k (X), the rank of the first homology group of the
Milnor fibre, is an important topological invariant of the singularity.

The image of the generic member of the miniversal unfolding of f : XI PX is topologi-
cally uninteresting — it is simply the image under a complex-analytic isomorphism of
a disjoint union of discs. However, it becomes interesting when we consider real curves:
those given by real equations, or, more restrictively, by real parameterisations. Now the
image has a well-defined knot-type, since the deformation is trivial on the boundary, and
thus the two ends of the curves can be joined by an arbitrary arc on the Milnor sphere.

This knot-type depends on the choice of perturbation. In fact, each component of the
complement of the bifurcation set in the base of the miniversal unfolding has associated to it
a knot type; moreover every knot type occurs in this way, as parametrised deformation of
a suitably chosen singularity, see for example [5]. The menagerie of knot-types sprouting
from a given real singularity seems to be an interesting invariant.

Example 1.1. The open trefoil knot (Fig. 2) occurs as the image of a deformation of the
parametrisation t > (t3, t4, t5 ) of the (3, 4, 5) curve.

s This is to be contrasted with the case of plane curves; the image of of an unfolding F : XI ]SP(C2, 0)]S of
a parametrisation f : XI P(C2, 0) of a plane curve singularity XL(C2, 0) is flat over the base S of the deformation,
since it is a hypersurface and so Cohen-Macaulay; but as soon as we look at curves in 3-space, this no longer holds
good.

t The right hand drawing is misleading: the two connected components of the real smooth fibre X
t
(R) (Fig. 1 (ii))

are joined in the complex fibre: the fact that b
0
(X

t
(R))'b

0
(X

t
(C)) is compensated by the fact that

b
1
(X

t
(R))(b

1
(X

t
(C)).
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Fig. 2. The open trefoil in an unfolding of the (3, 4, 5) curve.

The first assertion follows easily from the fact that the (3, 4, 5) curve deforms, both as
parametrised curve and as fibre of a flat family (see Example 4.1), to a curve with a single
ordinary triple point and then in one with two nodes. The three branches of the curve
passing through the triple point can be separated in a parametrised deformation, giving an
open trefoil knot.

Example 1.2. In contrast to this, every Milnor fibre occurring in a flat deformation of
the (3, 4, 5) curve is unknotted (Fig. 3).

In fact, we prove:

THEOREM 1.3. No curve of multiplicity 3 can have a knotted real Milnor fibre.

A proof will be given in Theorem 4.3.

Such experiments with curves of low multiplicity led us initially to the conjecture that
knotting could not occur in the real Milnor fibres of (real) space curves. This is incorrect; in
fact precisely the contrary is true:

THEOREM 1.4. Every knot-type occurs as the real Milnor fibre of a suitably chosen isolated
space-curve singularity.

Our proof is partially constructive. In particular, we recover the old theorem of Akbulut
and King [1] that every knot is algebraic, in a considerably strengthened form. The method
of Akbulut and King gives no control over the complexification of the real algebraic variety
whose intersection with the 3-sphere is the required knot, whereas we are placing a signifi-
cant constraint on this complexification.

CONJECTURE 1.5. Knotting does not occur in the real Milnor fbre of any space-curve
singularity with Milnor number less than 10.

Fig. 3. Smoothing the (3, 4, 5) curve in a flat family.
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2. d-CONSTANT DEFORMATIONS

The results of this paragraph hold for arbitrary reduced curve singularities XLCN and
can be found in [2, 4] and the forthcoming [3].

Recall that the d-invariant of a curve singularity X with normalisation n :XI PX is
defined by

d (X)"d (X, 0)"dimC (n
*
(0

X
I )/0

X
).

The rank of the first homology group of a smoothing of X is called the Milnor number,
and can be computed as

k (X)"2d (X)!r#1

where r denotes the number of branches of X [2].
A crucial role in the relation between the two deformation theories is played by the

so-called d-constant deformations. These form in some sense the intersection of the two
theories.

A flat deformation X
S
PS with fibre X

s
over s3S is called d-constant, if the function

s3S> +

x|Xs

d(X
s
, x)

is constant.
An unfolding f

S
: XI ]SPCN]S with image f

s
(XI ) at s3S is called d-constant, if the

function

s3S> +

x| fs (XI )

d ( f
s
(XI , x))

is constant.

PROPOSITION 2.1. ¸et S"(C, 0) be smooth one-dimensional. A family XPS is precisely
then d-constant if and only if it is of the form f

S
(XI ]S )PS, where

f
S
:XI ]SPCN]S

is a d-constant unfolding of

f :XI PXLPCN.

Proof. (sketch). Let t be a parameters on S, and let XPS be a d-constant deformation
of X. Let N:XI PX be the normalization of the surface X. We hve to show that the zero
fibre XI

0
is smooth, so that XI "XI ]S. But this follows from the d-constancy of XPS: from

the multiplication-by- t sequences and the snake lemma one concludes that the CMtN-
module N

*
(0XI )/0X is free of rank d (X)"dimC (n

*
(0XI

0
)/0X ). One concludes that XI "XI

0
.

Similarly, if f
S
: XI ]SPCN]S is a d-constant unfolding, let X :"f

S
(XI ]S) with a re-

duced structure. We have to show that the zero-fibre X
0

of XPS is isomorphic to X. The
d-constancy of the unfolding implies in a similar way the freeness of ( f

S
)
*
(0XI )/0X as

CMtN-module, from which it follows that 0
X0
P0

X
I is injective. Hence X

0
is reduced, and

hence must be equal to X. K

So the d-constant deformations of X over S"(C, 0) are precisely those which admit
simultaneous normalisation.
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2.1. Putting together flat families

Suppose that X
1
PS and X

2
PS are flat families of curves, with X

1
, X

2
-C3]S. We

will want on occasions to put together such families to construct a flat family X
1
XX

2
PS.

Given two curves C
1

and C
2

in 3-space, meeting at x, define an ‘‘intersection index’’
I
x
(C

1
, C

2
) by I

x
(C

2
, C

2
)"dimC (0C3,x

/I
1
#I

2
), where I

1
and I

2
are the (radical) ideals of

C
1

and C
2
. Then

LEMMA 2.2. ºnder these circumstances, we have

1. d (C
1
XC

2
, x)"d(C

1
,x)#d(C

2
,x)#I

x
(C

1
, C

2
).

2. Given flat deformations X
1
PC and X

3
PC of the germs of C

1
and C

2
at x

0
, with

X
i
-C3]C for i"1, 2. ¹hen one has

+
x

I
x
(C

1, t
,C

2, t
))I

x0
(C

1
, C

2
).

with equality if and only if X
1
XX

2
PC is a flat deformation of C

1
XC

2
.

Proof. Consider the short exact sequence

0P0X
1
XX

2
P0X

1
=0X

2
P0X

1
WX

2
P0.

Multiplication by the parameter t on C defines a morphism of this sequence to itself; let
¹ denote the kernel of multiplication by t on 0X

1
WX

2
, so that we have an exact sequence

0P¹P0X
1
WX

2
t>P0X

1
WX

2
P0C3,x0

/(I
1
#I

2
)P0,

from which we see that

+
x

I
x
(C

1, t
, C

2, t
)"I

x0
(C

1
, C

2
)!dimC¹.

The associated exact sequence of kernels and cokernels (i.e. coming from the snake lemma)
reads

0P¹P0X
1
XX

2
/t0X

1
XX

2
P0

C1,x0
= 0

C2,x0
P0C3,x 0

/(I
1
#I

2
)P0.

Here we are using the fact that 0X
i
/t0X

i
"0

Ci
. It follows that 0X

1
XX

2
/t0X

1
XX

2
is reduced

if and only if ¹"0. That is, the fibre of X
1
XX

2
over 0 is equal to C

1
XC

2
if and only

if ¹"0. K

3. HIDDEN SCAFFOLDING AND HELPING CIRCLES

One way in which one might expect to be able to construct a knot is by realising a plane
projection of the given knot type as the real Milnor fibre of a plane algebraic curve, and then
simply lifting apart the nodes into over- and under-crossings as required. This is unfortu-
nately not flat, since the family then has simultaneous normalisation but does not have
d constant. However, the method of hidden scaffolding which we now describe provides
a means of circumventing this problem.

We now introduce the basic unit of the hidden scaffolding which we use to lift apart the
crossings of a plane curve in a flat family.
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Fig. 4. Basic unit of hidden scaffolding.

Example 3.1. Let N be the node M(z
1
, z

2
)3C2 Dz

1
z
2
"0N. Consider the space 2N, the

space in C4 defined by the real and imaginary part of the equation z
1
z
2
"0. It has

components

2N
1,1

"M(x
1
, x

2
, y

1
, y

2
)3C4 Dx

1
"y

1
"0N

2N
2,2

"M(x
1
, x

2
, y

1
, y

2
)3C4 Dx

2
"y

2
"0N

2N
1,2

"M(x
1
, x

2
, y

1
, y

2
)3C4 Dx

1
#iy

1
"0, x

2
!iy

2
"0N

2N
2,1

"M(x
1
, x

2
, y

1
, y

2
)3C4 Dx

1
!iy

1
"0, x

2
#iy

2
"0N.

The first two of these are real, the second two imaginary; note that the only real point of
2N

1,2
and 2N

2,1
is 0, and that 2N

1,1
and 2N

2,2
meet only at 0. Now take the section of 2N

by a hyperplane H
0

through 0. Provided H
0

contains none of the four 2-planes which make
up 2N, we obtain a space-curve singularity consisting of two real branches 2N

1,1
WH

0
and

2N
2,2

WH
0

and two imaginary branches 2N
1,2

WH
0

and 2N
2,1

WH
0
. The imaginary

branches each have the unique real point 0. Let H
0

have equation h, and let H
t
"h~1(t).

The family (2N, 0) hP (C, 0) is flat and has 2NWH
t
(with reduced structure) as fibre over t,

since 2N is Cohen—Macaulay. For real tO0, 2NWH
t
consists of two real skew lines, and

two imaginary skew lines. The family thus has simultaneous normalisation, and so must be
d-constant. A calculation shows d (2NWH

0
)"4; indeed we find that in 2NWH

t
, for tO0,

each of the imaginary lines meets each of the real lines in an imaginary point, as depicted
in Fig. 1. Thus, by keeping d constant by means of the ‘‘hidden scaffolding’’
(2N

1,2
WH

t
)X(2N

2,1
WH

t
) we have succeeded in separating the two real branches of

2NWH
0
. Indeed, as t passes through 0 the relative positions of the two real branches, with

respect to a height function defining the 2-plane spanned by 2N
1,1

WH and 2N
2,2

WH have
been exchanged.

Note that by 2.2 (1), the intersection index of the real part (2N
1,1

X2N
2,2

)WH
0

and the
imaginary part (2N

1,2
X2N

2,1
)WH

0
of the scaffolding unit is equal to two; for

d(2NWH
0
)"4, while the real part and the imaginary part each consists of a pair of lines

and thus has d"1. Figure 4 shows four intersection points, but of course the deformation of
2NWH

0
does not restrict to a flat deformation of its real and imaginary parts, so there is no

contradiction. Incidentally, calculating this intersection index directly is a little tricky, since
the ideal of (2N

1,1
X2N

2,2
)WH

0
is not equal to the sum of the ideal of H

0
and the ideal of

2N
1,1

X2N
2,2

.

First-proof of ¹heorem 1.4. Now to construct a curve having real Milnor fibre with the
required knot type, we proceed as follows:

f Step 1: Let h : S1PR2 parametrise a generic plane projection of the knot k. Then h is
a stable map, and since every neighborhood of h in C=(S1,R2) contains a polynomial
map (i.e. the restriction of a polynomial map R2PR2 to S1), by the old Weiersra{
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approximation theorem, we can replace h by a polynomial map having image
diffeomorphic to the image of h. This image will be an algebraic set given by an
equation f"0, with f3R[x, y]. The real part of f"0 may contain isolated points, in
addition to the nodal curve we want. To remove these, we add a small positive
multiple of a polynomial vanishing to high order at all of the nodes on the knot
projection, and taking positive values at the isolated real points of f"0. Hence we
see that any given generic knot projection is diffeomorphic to the real solution set of
a polynomial.

f Step 2: Now rotate the axes so that no parallel translate of the y-axis contains more
than one real double point. Choose a polynomial p (x) such that all nodes lie on the
graph of y"p (x). The polynomial diffeomorphism

g : (x, y)> (x, y!p (x))

takes all the double points onto the x-axis, and the compromise of f with the inverse
(x, y)> (x, y#p (x)) has zero set isotopic to the original knot projection and with all
its nodes on the x-axis. Now inversion in a suitable circle transforms this algebraic set
to one with all its nodes on a given circle. Hence, we see that any generic knot
projection is diffeomorphic to the zero set of an f3R[x, y] with the additional
property that all its real double points are on the circle of radius 1 with center at the
origin.

f Step 3: Now we assume we are in the situation of Step 2. Let
X(R)"M(x, y)3R2 D f (x, y)"0N be the knot projection. Write f"f

0
#f

1
#2#f

d
,

where f
i
is homogeneous of degree i. We can assume that f

d
is a product of distinct

linear factors. (If the knot diagram is compact, then all these factors will be invisible
over the reals.) Under the scaling deformation

f
t
(x, y)"td f

0
#td~1 f

1
#2#f

d

the set X
t
(R) :"M(x, y)3R2 D f

t
(x, y)"0N degenerates into the singularity X

0
(R) given

by the product of lines f
d
"0. Moreover, at tP0, the nodes stay on shrinking circles

x2#y2!t2. In the limit t"0, the circle degenerates into the imaginary line pair
x2#y2"0. As the angular distribution of the nodes on the circle does not change
during the degeneration, the tangent lines to the circle at these nodes have pairwise
distinct limiting positions.

f Step 4: The circle x2#y2"t2 is of course the intersection of the quadratic
Q

t
"Mx2#y2#z2"t2N with the plane Mz"0N. To the (complex) family

X
t
:"M f

t
(x, y)"0N add the family of lines constructed as follows: at each real node

p
t
of X

t
, take the intersection of the quadratic Q

t
with its affine tangent plane ¹

pt
Q

t
.

This intersection consists of a pair of conjugate complex lines, one in each of the two
rulings of the quadric. Denote the family of added lines by ¸

t
, and let ½

t
"X

t
X¸

t
.

We claim that the family ½
t
is flat, and ½

0
has isolated singularity. Evidently X

t
is

flat, and ¸
0

is the complete intersection singularity consisting of the intersection of
Q

0
with a union of planes passing through 0. Each of these planes contains the z-axis,

since the affine tangent space to Q
t
at any point lying in the plane Mz"0N contains the

vertical direction; it follows that the intersection of each plane with the quadratic
Q

0
consists of two distinct lines, and is thus reduced. All the planes are distinct, by our

assumption of the non-coincidence of the limiting directions in which the nodes
approach 0. Hence ¸

0
has isolated singularity at 0. Of course any deformation of an

ICIS is flat. In fact ¸
t
is a deformation with simultaneous normalisation, and thus

KNOTTED MILNOR FIBRES 921



Fig. 5. Hidden scaffolding lying on a ruled surface.

must have d constant. One calculates that d (¸
0
)"m2; on Q

t
, each line in one of the

rulings meets each line in the other ruling, and hence there are m2 nodes in ¸
t
. This

hidden scaffolding is represented schematically in Fig. 5, where in order to show the
lines ¸

t
we have drawn Q

t
as a hyperboloid instead of the sphere described in the

construction.
Thus to see that the space ½

t
is a flat deformation of ½

0
, it is necessary only to

show that

+

p|Lt
WXt

I
p
(¸

t
,X

t
)"I

0
(¸

0
, X

0
).

The left-hand side of this sum is equal, by construction, to m, the number of nodes
on X

t
(R), multiplied by the intersection number, equal to 2, of the real and imaginary

parts of the scaffolding unit 2NWH
0

of Example 3.1. On the other hand,

I
0
(¸

0
,X

0
)"dim

0C3,0
( <m

i/1
l
i
, x2#y2#z2, z, f

0
)

where l
i
(x, y, z)"a

i
x#b

i
y is the equation of the i’th plane, i"1,2 , m. Since l

i
is

not a factor of x2#y2 for any i"1,2 ,m,

dim
0C3,0

( <m
i/1

l
i
, x2#y2#z2, z, )

"2m

and thus I
0
(¸

0
,X

0
))2m. Since d cannot go up in a deformation and we have already

seen that +
p

I
p
(¸

t
,X

t
)"2m, it follows that I

0
(¸

0
, X

0
)"2m (and incidentally that

f
0
3( <m

i/1
l
i
,x2#y2) ) and thus that d is constant and the family ½

t
"¸

t
XX

t
is flat.

f Step 5: The structure of ½
t
at each of the nodes of the original curve X

t
is isomorphic

to the structure of the scaffolding unit 2NWH
0
. It follows that the same deformations

are available; in other words, at each node the two real branches can be separated into
an over- or an under-crossing, and the imaginary nodes that appear (as seen in Fig. 5)
can then be smoothed by an arbitrarily small deformation which will leave the real
part (which is now smooth and thus stable) topologically unchanged. By openness of
versality, these deformations can be realised independently of one another in a versal
deformation of the curve ½

0
. Hence, every knot type arising from the plane diagram
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X
t
(R) by specifying over- and under-crossings, arises as real Milnor fibre of X

0
. This

completes the proof. K

In this construction one has d(¸
0
)"m2, and I

0
(¸

0
,X

0
)"2m, so d(X

0
X¸

0
)"

d(X
0
)#m(m#2) and k (½

0
)"k(X

0
)#r!1#2m(m#2)!2m!r#1"k (X

0
)#

2m (m#1).
If the knot projection is given by a polynomial of degree d, then X

0
consist of d lines, so

k(X
0
)"(d!1)23 and hence

k (½
0
)"(d!1)2#2m (m#1).

Second proof of ¹heorem 1.4. We choose a plane projection of the given knot type with
all its nodes on a line, and realise this is the set X

t
(R) of real zeroes of a deformation f

t
of

a function with isolated singularity. We suppose that all nodes lie on the line Mx"0N. Let
their y-coordinate be y

1
(t) ,2 , y

m
(t). We include the xy-plane in 3-space, so that now X

t
(R)

is the set of real points of the curve defined by the ideal (z, f
t
(x, y)). Now let

g
t
(y, z)"Az!i

m
<
j/1

(y!p
j
(t))B Az#i

m
<
j/1

(y!p
j
(t) )B.

Thus, g
t
is a deformation of the A

2m~1
(Fig. 6) singularity g

0
(t)"z2#y2m. Let S

t
be the

curve defined by the ideal (g
t
, x). Note that the real points of g

t
"0 are just the points

(0, p
j
(t), 0) for j"1,2 ,m. In the neighbourhood of each point (0, p

j
(t), 0), the curve

½
t
:"X

t
XS

t
is isomorphic to the scaffolding unit 2NWH

0
. It follows once again that the

two real branches of ½
t
through each node can be separated in a flat deformation, and thus

that we can obtain any knot or link type having X
t
(R) as a plane projection.

It remains only to show that ½
t
is a flat deformation of ½

0
. Since X

t
and S

t
are flat

deformations of X
0

and S
0
, respectively, flatness of ½

t
is equivalent to conservation of the

intersection number I
t
"+

p|Xt
WSt

I
p
(X

t
, S

t
). Now X

t
and S

t
meet precisely at the points p

i
,

Fig. 6. Threading an imaginary A
2m~1

through the nodes.
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and I
pi
(X

t
, S

t
)"2. Hence, we must show that I

0
(X

0
, S

0
)"2m. In fact

I
0
(X

0
, S

0
)"dimC

0C3,0
(z, f

0
(x, y))#(x, z2#y2m)

)dimC

0C3,0
(z, x, z2#y2m)

"2m.

Once again, semi-continuity of the intersection index guarantees that this number is
equal to 2m, completing the proof that our deformation is flat. K

We remark that in this construction, we have

d (X
0
XS

0
)"d (X

0
)#d (S

0
)#2m"d (X

0
)#3m.

Since d (X
0
)"(k (X

0
)#r!1)/2, this gives

k (X
0
XS

0
)"k (X

0
)#6m!2.

It will be clear by now that these constructions allow for many variations and one
should choose a method that fits most easily with the knot projection.

3.1. Helping circles

Let C
t
"M f

t
(x, y)"z"0N and D

t
"Mg

t
(z, y)"x"0N be smoothings of plane curve

singularities, and suppose that C
0
XD

0
is an isolated singularity. The next proposition

shows that if C
t
XD

t
is a flat family and C

t
(R)XD

t
(R) is smooth then C

t
(R) and D

t
(R) cannot

be linked. Thus, the standard link consisting of two linked circles lying in different planes
cannot arise in this way.

PROPOSITION 3.2. If C
t
XD

t
is a flat deformation of C

0
XD

0
, then C

t
(R) and D

t
(R) cannot

be linked.

Proof. Flatness of C
t
XD

t
implies conservation of the intersection index. Suppose that

p"(0, y
0
, 0)3C

t
WD

t
. Then

I
p
(C

t
, D

t
)"dimC

0C3,p
(x, z, f

t
, g

t
)
"minMOrd

y0
( f (0, y) ), Ord

y0
(g(y, 0)N

"minMI
p
(C

t
,¸), I

p
(D

t
,¸ )N

where ¸ is the y-axis. Suppose that I
0
(C

0
,¸))I

0
(D

0
,¸). Since the intersection multiplicity

of C
t
and ¸ is conserved, we have

+
p|Ct

WL

I
p
(C

t
,¸)"I

0
(C

0
,¸).

By assumption, I
0
(C

0
,¸)"I

0
(C

0
,D

0
); both C

t
and D

t
are flat deformations, so by

2.2(2), flatness of C
t
XD

t
implies that the intersection multiplicity of C

t
and D

t
is conserved.

Thus

+

p|Ct
WL

I
p
(C

t
,¸)" +

p|Ct
WDt

I
p
(C

t
,D

t
)" +

p|Ct
WDt

minMI
p
(C

t
,¸), I

p
(D

t
, ¸ )N.
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Fig. 7. (i) Singular link with helping circles and (ii) non-singular link obtained by smoothing (i).

But C
t
WD

t
"(C

t
W¸)W(D

t
W¸), so this equation forces D

t
W¸MC

t
W¸ and I

p
(D

t
,¸)*

I
p
(C

t
,¸) at each point p3C

t
W¸.

Thus every point of C
t
W¸ is a singular point of C

t
XD

t
. Since C

t
(R) must cross ¸ in

order for C
t
(R) and D

t
(R) to be linked, the conclusion follows. K

In order to produce examples of linking beginning with a curve of this type, at least one
of the curves has to leave its plane.

Example 3.3. Consider the curves

C
t
"GA

8

7
x2#Ay#

t

6B
2
!A

t

6B
2

B (x2#y2!t2)"z"0H
D

t
"GA

8

7
z2#Ay!

7

6
tB

2
!A

t

6B
2

B (z2#(y!t2)!t2)"x"0H.
For t'0, C

t
(R)XD

t
(R) is shown in Fig. 7(i). The two singular points of C

t
XD

t
are ordinary

nodes; smoothing them as in Fig. 7(ii) gives a pair of linked curves. A calculation shows that
d(C

0
XD

0
)"6#6#4"16, and hence k (C

0
XD

0
)"32!8#1"25.

Notice that each of the nodes in Fig. 7(i) can be smoothed in two different ways, giving
a total of four different but diffeomorphic links. Hence if the complement of the discriminant
of C

0
(R)XD

0
(R) is simply connected then it has (at least) four connected components over

which there are linked real Milnor fibres.

4. EXAMPLES

Example 4.1. The open trefoil in an unfolding of t> (t3, t4, t5), and in a flat deformation
of the (3, 4, 5) curve together with hidden scaffolding.

Let X be the (3, 4, 5) curve, image of f (t)"(t3, t4, t5 ). We have d(X)"d (triple
point)"2; so a flat deformation of X to a curve with triple point can also be realised in an
unfolding of f. The semi-universal deformation of X with parameters a, b, c, d, e has total
space defined by the minors of the matrix

A
½#a

X

Z#b

½

X2#c#dX#e½

Z B
we get a triple point where all of the entries vanish simultaneously, and this forces
a"b"c"0. Provided dO0Oe, the curve is as shown in the centre of Fig. 2.
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Fig. 8. Separation of the triple point using hidden scaffolding.

In an unfolding of f, this triple point can of course be separated, and the appropriate
separation produces the open trefoil, as shown in Fig. 2. Such a deformation of the curve is
not flat, since it has simultaneous normalisation but d is not constant.

In order to construct a flat deformation having the same real part, we must use hidden
scaffolding. First we do this for the triple point. The configuration is shown in Fig. 8; solid
lines indicate real branches, dotted lines indicated purely imaginary branches, and in Fig.
8 one sees a configuration with d"6, since each pair of real lines is joined by two imaginary
lines. This configuration can be realised as a d-constant deformation of the union of the
triple point X with a plane A

1
singularity A, in such way that no three of the lines are

coplanar. By 2.2 (1),

d"d (X)#d (A)#I(X, A)

"2#1#dim
0C3,0

(x
1
x
2
, x

2
x
3
,x

3
x
1
)#(ax

1
#bx

2
#cx

3
,x2

1
#x2

2
x2
3
)
"6.

We see one can indeed separate the real branches of the triple point as follows: to the flat
deformation of Example 3.1, we add an extra real line, joining two conjugate imaginary
points on the two skew imaginary lines. By appropriate choice of these points, we can
ensure that as we specialise, no three of the lines become coplanar. For example, if we take
the family of hyperplane sections x

1
#y

1
#x

2
#y

2
"t of 2N (see 3.1), where

X"Mz
1
z
2
"0N, and our additional real line joins the point (1, i, (it#1!i )/(1#i )) (which

lies on 2X
1,2

WH
t
) to its complex conjugate, then the limiting direction vectors of the five

lines in the configuration are (0, 0, 1), (1, !1, 0), (0, 2, !1), (i, !1, 1) and (!i, !1, 1).
Thus, we have arranged a deformation of real triple point in whcih the three real branches
are separated.

To incorporate this into a deformation of the (3, 4, 5) curve, it is enough to check that by
adding two generic lines (i.e. an A

1
singularity) to the germ of the (3, 4, 5), we obtain

a singularity with d"6. Evidently d (3, 4, 5)"2, d (A
1
)"1, and since the two curves have
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Fig. 9. Deformation of E
6
.

ideals (xy!z2, yz!x3, x2y!z2) and (ax#by#cz, x2#y2#z2), the intersection
number I is

dim
0C3,0

(xy!z2, yz!x3, x2y!z2)#(ax#by#cz, x2#y2#z2)
"3.

It follows that k (X)"2d!r#1"10.

Example 4.2. The open trefoil can also be obtained by the method of hidden scaffolding
described in the first proof of Theorem 1.4 from a deformation of E

6
, Mx4!y3"0N. To see

this, consider the following 1-parameter deformation

(t, s)> (t3!s2t, t4!3
2

s2t2)

of the parameterisation t> (t3, t4).
For generic sO0, the image curve looks like the one in Fig. 9 below. (The double points

are located at (1
4

J2s3, !1
4

s4 ), (!1
4

J2s3, !1
4

s4) and (0 !1
2

s4).) Any three lines at s"0
can be lifted by parallel translation to lines going through the nodes for general s. This can

Fig. 10. The standard three nodal quartic.
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even be done in such a way that the whole configuration is invariant under x>!x, as
indicated by the dashed lines in Fig. 9. Furthermore, by symmetry, there exist a conic
C

s
tangent (dotted in Fig. 9) to the three lines and passing through the nodes. We insist that

the conic be tangent to these three lines in order to force the tangent lines to the conic at the
nodes to remain separate in the limit as s goes to 0. Now a slight variation to the first
construction (in which the role of Q

s
is played by a sphere intersecting the xy plane in the

conic C
s
) gives a space curve with k"k (E

6
)#2)3(3#1)"30, much higher than the curve

in Example 4.1.
The closed trefoil can be obtained from the first construction, using the standard three

nodal quartic appearing in a deformation of x4#y4:

The Milnor number is 9#2)3(3#1)"33, which is rather high.
We conclude by proving a no-knotting theorem.

THEOREM 4.3. No curve with multiplicity 3 can have knotted real Milnor fibre.

Proof. Let X
t
be a Milnor fibre of X. As X has multiplicity 3, there is an open set in the

Grassmannian of planes in 3-space, consisting of planes P for which PWX
t
consists of

3 points. Let P be any such plane, and consider the fat point P
0
WX, where P

0
is a parallel

translate of P passing through the singular point of X. This is either a complete intersection
of a line and a cubic, or is not a complete intersection. In the first case, the curve X is a plane
curve, and its Milnor fibres are plane curves, and therefore not knotted.

If XWP
0

is not a complete intersection, then it is isomorphic to the fat point defined by
the ideal (X2, X½, ½2). This has semi-universal deformation on parameters s, t, u, v with
total space defined by the 2]2 minors of the matrix

A
X ½#s v

u X#t ½B .

In particular, all three equations are conics in X, ½, Z, and thus the three points of
a smoothing of XWP

0
, if distinct, can never be collinear.

We claim that this prevents X
t
(R) from being knotted (even after its two extremities are

joined on the Milnor sphere). For by varying P in a parallel family, we obtain something
like a braid representation of the knot type of X

t
(R) (through there are only two loose ends,

to be joined by an arc on the Milnor sphere); since the three points generating the braid are
never collinear, the braid cannot represent a knot. K

Given a knot or link, one can ask for the smallest Milnor number of singularity that has
the given knot or link as a real Milnor fibre. We conclude the paper by giving a small list of
the simplest knots and links and the lowest Milnor numbers we were able to realize for
them. Probably the last entry can be improved a lot.

Knot/Link k Construction

two skew lines 5 scaffolding
three skew lines 8 scaffolding
line#circle 10 help circle
circle#circle 25 help circle
open trefoil 10 scaffolding
trefoil 33 scaffolding
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