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1. I n t r o d u c t i o n  

Using  combina to r i a l  dua l i t i es  for reflexive p o l y h e d r a  and  Gorens t e in  cones toge the r  wi th  

the  t h e o r y  of genera l ized  G K Z - h y p e r g e o m e t r i c  funct ions,  one can ex t end  the  ca lcu la t ion  

of t he  number  n d  of r a t iona l  curves of degree d on the  generic quint ic  th reefo ld  in p 4  

by  Candelas ,  de la Ossa,  Green  and Parkes  [10] to  the  case of C a l a b i - Y a u  comple te  

in tersec t ions  in tor ic  var ie t ies  [3], [4], [7], [9]. 
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Another class of examples which includes Calabi-Yau quintic 3-folds are Calabi-Yau 

complete intersections in homogeneous Fano varieties G/P where G is a semisimple Lie 

group and P is its parabolic subgroup. It is a priori not clear how to find an appropriate 

mirror family for these varieties, because G/P is not a toric variety in general. In [6], 

we described a mirror construction (compatible with [12]) for complete intersections in 

the Grassmannian G(k, n), which turned out to involve a degeneration of G(k, n) to a 

certain singular toric Fano variety P(k, n) introduced by Sturmfels in [28]. 

In this paper we consider the extension of our methods to the case of complete 

intersections in arbitrary partial flag manifolds and give complete proofs of statements 

from [6]. 

It turns out that  the Pliicker embedding of any such flag manifold F := F(nl,..., nl, n) 
admits a flat degeneration to a Gorenstein toric Fano variety P(nl, ...,n~, n). This de- 

formation has been studied recently by Gonciulea and Lakshmibai in [24], [18], [19]. 

The "mirror-dual" toric variety PA(nl ..... ~L,n) associated with a reflexive polyhedron 

A(nl,... ,nl,n) has a nice combinatorial description in terms of a certain graph F :=  

F(nl ,  ...,nl,n) that  was introduced by Givental for the case of the complete flag mani- 

folds [16]. The idea of toric degenerations has been discussed in a more general framework 

in [4]. 

Using the residue formula, we compute explicitly a series OF := OF (ql,-.-, qz) associ- 

ated with the graph F and conjecture that  O F gives a solution to the quantum :D-module 

associated with Gromov-Wit ten  classes and quantum cohomology of the partial flag 

manifold F.  We note that there is no essential difficulty in checking the conjecture in each 

particular case at hand, because it involves only calculations in the small quantum coho- 

mology ring of F,  for which explicit formulas are known [11], see also Remark 5.1.12 (ii). 

Applying the "trick with factorials" (see [6], or w below) to a Calabi Yau complete in- 

tersection in F,  we obtain O F a s  a specialization of the toric GKZ-hypergeometric series, 

from which the instanton numbers (i.e., the virtual numbers of rational curves on the 

Calabi-Yau) can be computed via the standard procedure (see e.g. [7]). As the validity of 

this trick was shown recently for general homogeneous spaces [23], this implies that  any 

instanton numbers computed via the usual "mirror symmetry method" are automatically 

proven to be correct in all cases for which our conjecture o n  �9 F holds. The series OF of 

complete flag manifolds has also been investigated by Schechtman [27]. 

The paper is organized as follows. In w we introduce main combinatorial no- 

tions used in the definition of a Gorenstein toric Fano variety P(nl,..., nt, n) associated 

with a given partial flag manifold F(nl,..., nz, n). In w we investigate singularities of 

P(nl, ..., nz, n) and show that  these singularities can be smoothed by a flat deformation 

to the partial flag manifold F(nl,..., nl,n). As a consequence of our results, we prove 
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a generalized version of a conjecture of Gonciulea and Lakshmibai about the singular 

locus of P(nl ,  ..., nz, n) [19]. In w we discuss quantum differential systems following 

ideas of Givental [15], [16], [17]. Finally, in w we explain the mirror construction for 

Calabi-Yau complete intersections in partial flag varieties F and the computations of the 

corresponding hypergeometric series ~F.  

Acknowledgement. We would like to thank A. Givental, S. Katz, S.-A. Strcmme, 

and E. Rcdland for helpful discussions, and the Mittag-Leffier Institute for hospitality. 

The second and third named authors have been supported by Mittag-Leffier Institute 

postdoctoral fellowships. 

2. Tor i c  va r i e t i e s  a s s o c i a t e d  w i t h  p a r t i a l  flag m a n i f o l d s  

In this section we explain how to associate to an arbitrary partial flag manifold 

F(nl,  ..., nz, n) certain combinatorial objects: a graph F(nl ,  ..., hi, n), a reflexive poly- 

tope A(n~, ..., nz, n) and a Gorenstein toric Fano variety P (n l ,  ..., nz, n). 

2.1. The  graph F ( n l ,  ..., hi,  n) 

Let kl, k2, ..., kl+l be a fixed sequence of positive integers. We set n0=0,  ni:=kl+.. .+ki  
( i=1 , . . . , l+1 )  and n:=nz+l .  Denote by F(nl , . . . ,nz ,n)  the partial flag manifold para- 

metrizing sequences of subspaces 

O C VI C V2 C ... c VI C C n, 

with d imV/=ni  ( i=1,  ..., l). Then 

l 

dim F ( n l ,  ..., nz, n) = E ( n i - n i - 1 ) ( n - n i ) .  
i = l  

To simplify notations, we shall often write F instead of F (n l ,  ..., nz, n), if there is no con- 

fusion about the numbers nl ,  ..., nt, n. By a classical result of Ehresmann ([13]), a natural 

basis for the integral cohomology of F is given by the Schubert classes. These are Poincar~ 

dual to the fundamental classes of the closed Schubert cells C~ C F,  parametrized by per- 

mutations wE Sn modulo the subgroup 

W(kl, . . . ,  kl+l) := & l  • ... • &,+l C & .  
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In particular, the Picard group of F,  which is isomorphic to H2(F ,Z) ,  is generated 

by l divisors C1, ..., Cz, corresponding to the simple transpositions 7i E Sn exchanging ni 

and ni + 1. 

Definition 2.1.1. Denote by A : - A ( n l , . . . , n t , n )  the standard ladder diagram con- 

sisting of unit squares (the number of unit squares in A is equal to the dimension of F )  

corresponding to the Schubert cell of maximal dimension in the flag manifold F.  We 

place the ladder diagram A in the lower left corner of an (n • n)-square Q. The lower left 

corner of A (or of Q) will be denoted by O0. We denote by Oi ( ic{1,  ...,/}) the common 

vertex of the diagonal squares Qi of size ki x ki, and Qi+l of size ki+l x ki+l (Figure 1 

illustrates the case l=4).  

Definition 2.1.2. Let A=A(n l ,  ..., nl, n) be the above ladder diagram. We associate 

with A the following: 

(i) D = D ( n l ,  ..., nl, n), the set of centers of unit squares in A: we place a dot at the 

center of each unit square and call elements of D dots. 

(ii) S = S ( n l , . . . ,  nl, n), the set consisting of l+  1 stars: an element of S is obtained 
1 1 �9 by placing a star at the (~, 5)-shift of the lower left corner of each of the diagonal 

squares Q~ (iE{1, ..., l + l } ) .  

(iii) E = E ( n l ,  ..., nL, n), the set of oriented horizontal and vertical segments connect- 
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ing adjacent elements of DUS: the vertical segments are oriented downwards, and the 

horizontal segments are oriented to the right. 

Definition 2.1.3. F : = F ( n l , . . . , n t , n )  is the oriented graph whose set of vertices is 

DUS, and whose set of oriented edges is E.  

Such a graph F (without the orientation!) is shown in Figure 2. The edges of F are 

drawn with solid lines. 

Definition 2.1.4. We denote by L(D)~-Z IDI, L ( S ) ~ Z  Isl and L(E)~-Z IEI the free 

abelian groups (or lattices) generated by the sets D, S and E.  

We remark tha t  the lattices L(D)| and L(E) can be viewed as the groups of 

0-chains and l-chains of the graph F. Then the boundary map  in the chain complex is 

O: L(E) --+ L(D)| e ~-~ h(e)-t(e), 

where h, t: E--+Dt3S are the maps that  associate to an oriented edge eCE its head and 

its tail respectively. See Figure 3. 

Definition 2.1.5. A box b in F is a subset of 4 edges {e , f ,g ,h}CE which form 

together with their endpoints a connected subgraph FbCF such that  the topological 
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t(e) h(e) 

e 

t(e) 

h(e) 
Fig. 3 

space associated to Fb is homeomorphic to a circle. The set of boxes in F will be denoted 

byB.  

It  is easy to see that  

H0( r )  = Coker(0) ~ Z, Hi (F)  = Ker(0) ~ Z rBI. 

We also consider the projection Q: L(D)@L(S)-+L(D) and the composed map 

:= QoO: L(E) --+ L(D). 

Since one can regard the groups L(E) and L(D) together with the homomorphism (~ as 

the relative chain complex of the topological pair (F, S), we have 

H0(r, S) = Coker(~) = 0, Hi(r ,  S) = Ker(5) ~ Z IBl+l. 

Definition 2.1.6. A roof 7~, iC(1, 2, ..., l), is the set of ki+ki+l edges of F forming 

the oriented pa th  that  runs along the upper  right "boundary" of F between the i th  and 

the ( i + l ) s t  stars in S. 

Definition 2.1.7. The corner CD of a box b=(e , f ,g ,h )cB  is the pair of edges 

{e, f } c  b meeting at the lower left vertex of Fb. So a corner Cb contains one vertical 

edge e and one horizontal edge f such that  h(e)=t(f). 

The roofs and corners give a decomposition of the set E of edges of the graph F into 

a disjoint union of subsets: 

E:I~IU'-'U'T~'IU U Cb. 
bEB 

This decomposition is shown in Figure 4. 

Definition 2.1.8. The opposite corner C b of a box b--{e, f ,g ,h}eB is the pair of 

edges (g, h} C b meeting at the upper  right vertex of Fb. An opposite corner C b contains 

one vertical edge h and one horizontal edge g such tha t  h(g)=t(h). 

By elementary arguments one obtains: 
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P R O P O S I T I O N  2.1.9. The elements 

aOb:Ee--E e, 
eECb eEC.~ 

where b runs over the set B, form a natural Z-basis of Ker(O)cL(E). Moreover, the 

elements 

~i---- E e, i E {1, ..., I}, 
e E ~  

and 

~b= ~--~ e -  ~ e, 
eCCb eECb- 

form a natural Z-basis of Ker(~)CL(E). 

bC B, 

[] 

2.2. T h e  toric  variety  P ( n l ,  ..., nt, n) 

We denote again by 5 the R-scalar extension L(E)|174 of the homomorphism 

& L(E)--+ L(D). 

Definition 2.2.1. The polyhedron A : : A ( n l ,  ..., nl, n) associated to F is the convex 

hull of the set 

5(E) C L ( D ) Q R ,  

where the set E is identified with the standard basis of L(E)| IEI. 
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In order to describe the faces of the polyhedron A we introduce some further corn- 

binatorial objects associated to the ladder diagram A. 

Definition 2.2.2. (i) A positive path ~r in the diagram A is a path obtained by starting 

at one of the points O~ (i=1,  ..., l) and moving either downwards, or to the left along 

some n edges of A, until the lower left corner O0 is reached (see Figure 5). We denote 

by II the set of positive paths, and by Hi the set of positive paths connecting Oi and O0, 

so that  

II = H1U...UIIl. 

Note that  the number of elements in H/ is 

N i - -  ( n )  " ni 

(ii) A meander is a collection of positive paths {?rl, ..., ?rl } (lr~ E IIi), with the property 

that  the union 

:TiU... U?T/ 

is a tree with endpoints O0, 01,  ..., O1. 

The set of all meanders is denoted by A/L 

THEOREM 2.2.3. There is a natural bijection between the codimension-1 faces of A 

and the set .A4 of meanders. 

Proof. Since every face O of A is given by its supporting hyperplane, it follows from 

the exact sequence 

0 -+ Ker(5) -+ L(E) |  ~+ L(D) |  --+ 0 
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that  this hyperplane can be described by a linear function 

A: L ( E ) |  R 

which vanishes on Ker(5) and satisfies the conditions 

A(v) ~< 1, for all vcL(E)|  with 5 (v)EA,  

and 

(f(v) e O  if and only if A ( v ) = l a n d ( i ( v ) e A .  

Let us show that  every meander m = { ~ I , . . . , ~ } E M  defines such a linear func- 

tion A,~. We define the value of A,~ on e C E by the formula 

Am(e) := 1- E In~l- 
{i:~ne#o} 

(1) 

It follows that  Am(e)=l  if the meander m does not intersect e, and Am(e) is negative 

if m intersects e. Now we show that  the linear function Am satisfies the requirement 

~miKer(5)=0. By Proposition 2.1.9, it suffices to prove that  

for all iE{1,2,  ...,/}, and 

E ),m(e) = 0, (2) 
eET~ 

= E (3) 

 X (ed := 1-1n l <0. 

On the other hand, A(e)=l  for each eET~i, e r  It follows that  

Am(e)=0 for all ie(1,2, . . . , l} .  
eE~.~ 

Now let b~B be an arbitrary box. Since the positive paths of the meander m form a 

tree, only the following three cases can occur: 

Case 1. The meander m does not intersect edges in b. Then Am(e)=1 for all 4 edges 

of b, and hence (3) holds. 

eECb eEC~- 

for all b E B. 

We remark first that  every roof T~i, iC{1, 2, ..., l}, contains exactly one edge eiCE 

intersecting the positive path ~i Cm, for which 
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Case 2. The meander m intersects exactly two edges in b. Then m intersects exactly 

one edge e~E b belonging to Cb and exactly one edge e"c  b belonging to C b . By the formula 

(1) for -kin, we have Am(e ' )=) ,m(e")  So again the relation (3) holds. 

Case 3. The meander m intersects exactly three edges in b. Then m intersects both  

edges e', e"Eb belonging to C{ and exactly one edge e'"Eb belonging to Cb. By (1), 

= 

Again the relation (3) holds. 

Therefore, by Proposition 2.1.9, "~mIZer(~)=0. 

Let Om be the face of A defined by the supporting affine hyperplane & m ( ' )= l .  We 

claim that  O,~ has codimension 1. Since O,,~ is the convex hull of the lattice points in A 

corresponding to the edges e E E  on which -~m takes the value 1, it is sufficient to show 

that  any linear function A' satisfying ~'lK~r(~)=0 and ~ ' (v )= l  for all vcL(E) |  with 

6(v) E 0,~ must coincide with A,~. Indeed, by Proposition 2.1.9, the value of such a linear 

function ~' is uniquely determined on each edge e of each roof 7~i (1 <~i<~l): 

A,(e) = { 1-lre~l if rqAe r e ,  

1 otherwise. 

Next we remark that  if for some box bEB we have shown that  

holds for all eECb, then, by Proposition 2.1.9 and (3), we obtain 

Z E  m(e/ 
eECb eECb 

and therefore 

)~'(e) =ikm(e) for all eCCD, 

since only one edge eCCb can be intersected by m (see Cases 1-3). Since we have 

established the equality )t'(e)=.~m(e) for all eETEIU...U7r the above arguments imply 

the equality ,V(e)=~,~(e) for all eeE. 
Now we prove that  any codimension-1 face O of A can be obtained from some 

meander mEA/I. For this purpose, it suffices to show that  if a supporting linear function 

A defines a face @ c A ,  then there exists a meander mCA/l with @COm. The latter is 

equivalent to the condition )~(e)<l for all edges eEE such that  eMra#o. 
First we remark that the linear function A cannot at tain the value 1 on all edges 

of the roof T~I, because A vanishes on the element Q1CKer(~) (see Proposition 2.1.9). 
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Now star t  a positive pa th  7rl at O1 whose first nonempty intersection with edges of the 

opposite corner C b of some box bEB occurs on an edge elCT~l with )~(el)<l .  Since 

E E 
eEC:b eCC b 

the value of )~ on at least one of the two edges of Cb has to be strictly less than  1. We 

prolong our pa th  through that  edge and enter a next box, where the same reasoning 

applies. Continuing this, we complete a positive pa th  7rl from O1 to O0 crossing only 

edges where A is strictly less than  1. Now we repeat  this construction for each of the Oi 

in subsequent order, start ing at O2, etc. If in the process of constructing a positive pa th  

7ri we collide with some already constructed positive pa th  7rj ( j < i ) ,  we just  follow from 

this point the path  7rj. In the end, we produce a meander with the required property. 

We conclude that  Om (mEA4) are all the codimension-1 faces of A. [] 

COROLLARY 2.2.4. A(n l , . . . , n l ,  n) is a reflexive polyhedron. 

Proof. The s ta tement  follows immediately from Theorem 2.2.3 and from the inte- 

grality of the supporting linear function Am (see Definition 4.1.5 in [3]). [] 

Definition 2.2.5. The complete rational polyhedral fan E = E ( n l ,  ..., nz, n) is the fan 

defined as the collection of cones over all faces of A. The toric variety P z  associated to 

the fan E will be denoted by P = P ( n l ,  ..., nl, n). 

Using one of the equivalent characterizations of reflexive polyhedra (see Theorem 

4.1.9 in [3]), we obtain from Corollary 2.2.4: 

PROPOSITION 2.2.6. P(n l  , ..., nt, n) is a Gorenstein toric Fano variety. [] 

3. F u r t h e r  p r o p e r t i e s  o f  P ( n l ,  ..., n~, n )  

3.1. S i n g u l a r  locus  
A 

Definition 3.1.1. Define P = P ( n l , . . . , n z , n )  to be the toric variety P ~  associated to 

the fan E, obtained by refining the fan E to a simplicial one, whose one-dimensional 

cones are the same as the ones of E (i.e., they are generated by the lattice vectors 

((~(e), eEE}  c L(D))  and whose combinatorial  s tructure is given by the following IBl+l 

primitive collections: 

~1 ,  T~2, ..., T~ and Cb, b c B .  

In other words, the cones of maximal dimension of the fan ~, are defined by taking all 

edges e c E except one from each roof and from each corner. 
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PROPOSITION 3.1.2. The variety P is a small toric desingularization of P. 

Proof. We have to show tha t  each cone of E is contained in a cone of E, and each 

cone of E is generated by a part  of a basis. It  suffices to prove the above properties for 

cones of E of maximal dimension. 

Choose an edge ei in each roof T4i (i--1, ..., l) and an edge fb in each corner Cb, bCB. 

This choice determines a IDi-dimensional cone a in E. For each i=l ,  ..., l there exists a 

unique positive pa th  from O4 to O0 with the following two properties: 

(i) 7ri crosses the edge e~; 

(ii) if ~h enters a box b, then it crosses the edge lb. 

It  is easy to see that  the union ~IU...U~I of these paths is a meander. Indeed, if a union 

of positive paths as above is not a tree, then there must exist a box bEB with both  edges 

of the corner Cb intersecting the union of positive paths. This contradicts the second of 

the above conditions. Therefore the set of edges {e~}U{fb} defines uniquely a meander 

inCA4, and the cone a is contained in the cone over the face O m c A .  On the other hand, 

the elements (Q~}i=l ..... l and {Qb}beB together with the set 

Ga := E\({ei}i=l ..... I U{/b}beB) 

form a Z-basis of L(E). By Proposit ion 2.1.9, the set of generators of a (i.e., the (f-image 

of G~) is a Z-basis of L(D). 

The desingularization morphism P- -+P  induced by the refinement E of E is small 

(i.e., contracts no divisor), because the sets of 1-dimensional cones in E and E are the 

same. [] 

There is another way to describe P,  namely as an i terated toric fibration over p l :  

One starts  with the product of projective spaces 

pIT~x I - 1  x ... x p I n ~ l - 1  

corresponding to the roofs. Then one chooses a c o r n e r  C b of a box bEB whose opposite 

corner C b belongs to a roof. This choice allows us to define a toric bundle over p1 with 

the fibre P l n l l - l •  Then one adds a new corner Cb, of a box bIcB whose 

opposite corner d~ is contained in the union of roofs and rib, etc. At each stage of this 

process one gets a toric fibre bundle over p1, with fibre the space constructed in the 

previous step. Using this description of /~ ,  one obtains an alternative proof of the fact 

that  the anticanonical divisor on P is Cartier and ample, i.e., tha t  the polyhedron A is 

reflexive. 

Definition 3.1.3. Let bEB be an arbi t rary box. Define WbCP to be the closure of 

the torus orbit in P corresponding to the 3-dimensional cone c% generated by the (f-image 

of the 4-element set b. 
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THEOREM 3.1.4. The singular locus of P consists of codimension-3 strata Wb, 
bcB. These are conifold strata, i.e., transverse to a generic point of Wb the variety P 
has an ordinary double point. 

Proof. Since the desingularization morphism ~: P - + P  is small, P is smooth in codi- 

mension 2. Moreover, the singular locus of P is precisely the union of toric s trata  in P 

over which the morphism ~ is not bijective. According to the main result of [26], the 

exceptional locus Ex(~)CP (i.e., ~-1 (Sing(P))) is the union of toric strata covered by 

rational curves contracted by ~. On the other hand, since P is an iterated toric bundle, 

the Mori cone NE(P) is a simplicial cone generated by the classes of the primitive rela- 

tions 

and 

*(e )  = 0, i = 1 , . . . ,  l, 
eET~i 

* (e )=  ~ *(e), bEB,  

eEgb eEOC- 

(see w167 2 and 4 in [2]). Since the morphism W is defined by the semiample anticanonical 

class of P,  it contracts exactly the extremal rays in NE(P) defined by the primitive 

relations corresponding to the boxes bCB. The rational curves representing each such 

class cover the codimension-2 strata  Wb, bcB, corresponding to the 2-dimensional cones 

in ~ spanned by the *-images of the edges forming the opposite corner C b. These s trata  

are contracted, with Pl-fibres, to the codimension-3 strata  Wb in P corresponding to 

the 3-dimensional cones ab~Z over the quadrilateral faces Ob of A whose vertices are 

*-images of the edges in b (bEB). It follows that  UbeB Wb is exactly the singular locus 

of P.  [] 

3.2. C a n o n i c a l  f lat  s m o o t h i n g  

Let F=F(nl,  ..., nz, n) be a partial flag manifold. The semiample line bundles 

o(61),  ..., o(c ) 

associated to the Schubert divisors C1, ..., Cl define the Pliicker embedding of F into a 

product of projective spaces: 

r yl-1, where N i = ( n )  " n i  

We will always consider F as a smooth projective variety together with this embedding. 

We describe now an embedding of P in the same product of projective spaces. 
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Definition 3.2.1. For each eEE, let He be the toric Weil divisor on P determined 

by the l-dimensional cone of E spanned by the vector (~(e). 

For every edge eEU~=ITQ which is part of a roof, denote by U(e) the subset of E 

consisting of the edge e, together with all edges f E E  which are either directly below e 

in the graph F, if e is horizontal, or directly to the left of e, if e is vertical. 

Fix l<.i<.l. For eET~i consider the Weil divisor ~ Ieu(~)HS"  

LEMMA 3.2.2. For each eE~i, the Well divisor ~ I e u ( ~ ) H s  is Cartier. Moreover, 
if e'E~i is another edge in the same roof, then the associated divisor ~I ,Eu( r  is 
linearly equivalent to ~Seu(~) HI" 

Proof. To each edge eET~i, and each positive path ~rEIIi joining Oi with Oo, we 

associate a linear function 7r[e]: L ( E ) - + Z  defined by 

and 

0 

0 

= - 1  

1 

if 7rng = ~ and g ~ U(e), 

if 7rNg # O and g E U(e), 

if 7rNg = o and g E U(e), 

if 7 rMg#~ and g~U(e). 

It is an elementary exercise to check that  Ir[e] vanishes on the elements 

0 J=  E g' j C {1, ..., I}, 
gETgj 

O b = E g - - E  g, bEB. 
gECb gEC~ 

It follows from Proposition 2.1.9 that  7r[e] descends to a linear function on L(D). 
To show that  ~ S e v ( ~ ) H f  is Cartier, it suffices to construct for each maximal- 

dimensional cone a in E an integral linear function 

~:  L(E) --+ Z 

which vanishes on ker(~) and satisfies 

(i) A~(g)=0, for all gEE such that  5(g)Ea and g~U(e); 
(ii) A ~ ( g ) = - l ,  for all gEE such that  5(g)Ea and gEU(e). 

By Theorem 2.2.3, every maximal cone a is determined by a meander rn=(Trl, 7r2, ..., ~rt), 

and 5(g)Ea if and only if the meander does not intersect the edge g (cf. the proof of 

Theorem 2.2.3). It follows that  

 i[e] 
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satisfies the above conditions, where 7q is the positive path in m which joins O~ with O0. 

Hence ~-]/cu(,) H / i s  Cartier. Note that  the functional )~ defined above does not depend 

on the positive paths 7rj ( j#i)  in m that  do not intersect the roof T~i. 

To prove the second part of the lemma, define an integral linear function #: L(E)~  Z 
by 

- 1  if g�9 
# ( g ) =  1 i fg�9 

0 otherwise. 

As above, one can easily check that  # vanishes on ker(5), and hence it descends to a 

linear function on L(D). The descended linear function defines a rational function on P,  

whose divisor is ~ / ~ u ( r  This finishes the proof of the lemma. [] 

Definition 3.2.3. For each i=1,  2, ..., l, the line bundle associated to the roof ~ i  is 

for some edge e �9 

It follows from Lemma 3.2.2 that  L:i does not depend on the choice of the edge e E ~ i .  

We note that  for each maximal-dimensional cone a the linear function )~ defined 

in the proof of Lemma 3.2.2 satisfies A~(g)~>0 for all gCE such that  g~cr. This implies 

that  the line bundle ( 9 ( ~ / E u ( ~ ) H / )  is generated by global sections (eft [14, p. 68]). We 

will now identify the space of global sections. 

The Cartier divisor ~ f e v ( ~ ) H /  determines a rational convex polyhedron A[e] in 

the dual vector space L(D)* |  given by 

A[e] = {~ �9 L(D)*| ~(~(g)) ~> - 1  Vg �9 U(e), ~(~(g)) >~ 0 Vg �9 E\U(e)}. 

The space of global sections of the line bundle O(E/eu(r has a natural basis, 

indexed by the lattice points in A[e]. By its very definition, for each positive path 7rCIIi, 

the linear function 7r[e] introduced in the proof of Lemma 3.2.2 gives such a lattice point. 

PROPOSITION 3.2.4. For each i=1 ,  2, ...,l, the space of global sections of s has a 
natural basis parametrized by the set Hi of positive paths connecting Oi and 0o. 

Proof. Choose an edge e�9162 We have to show that  the only lattice points in Ale] 

are the ones given by ~r[e], ~r�9 Let ~: L(E)--+Z be any linear function vanishing on 

ker(5), and such that  the descended linear function is in A[e]. 

Since on the one hand A vanishes on every 

QJ---- E g' j � 9  
gET~.j 
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and on the other hand A can be negative only on edges in U(e), there are exactly two 

possibilities: 
l (I) A(g)=0 for all geUj=lT~j; 

(II))~(e)=-l, there exists an edge h in the i th  roof T~i with A(h )=I ,  and A(g)=0 

for all geUj#iT~j\ {e, f}. 
If (I) holds, then we start  a positive pa th  ~ at Oi that  intersects the roof ~ i  at the 

edge e. Let b be the box containing e in its opposite corner and let f be the other edge 

in U(e) contained in this box. If A ( f ) - 0 ,  we prolong the pa th  through the edge f ,  and 

enter a next box b', where we have the same situation as before (i.e., there is another  

edge f'EV(e), and if A ( f ' ) = 0 ,  then we prolong the pa th  through f ' ,  etc.). So we may 

assume that  A ( f ) = - l .  The edge f is par t  of the corner Cb of b. Let f "  be the other 

edge in Cb. Since A vanishes on all elements 

Qb= E g-- E g, bE B, 
gCCb gCCb 

A(f r') must be strictly positive (hence at least 1). We prolong the pa th  ~r through the 

edge f ,  and enter a next box b ~', for which f" is part  of the opposite corner. Now A is 

nonnegative on all four edges of b', and )~(f)~> 1. It follows that  there must be an edge 

f "  in the corner Cb,,, with )~(f')~> 1. We prolong the pa th  through this edge, and enter 

a next box, where the same reasoning applies. Continuing this, we complete eventually 

a positive pa th  ~. Consider the linear function , :=A-Tr[e]  on LiE ). By construction, 

and the definition of tie], the functional v is nonnegative on all edges gEE. On the 

other hand, ~ vanishes on the generators of ker(5) described in Proposit ion 2.1.9, since 

both )~ and ~r[e] do. We claim that  t, is identically zero on L ( E ) |  Indeed, since ~ is 

nonnegative and L , (~ gen  j g ) = 0  for j = l ,  2, ..., l, it follows t h a t ,  takes the value zero on 

each edge in the union of all roofs. Similarly, if v vanishes on each of the edges of the 

opposite corner gb of some box, then it must vanish on each of the edges of the corner 

Cb as well. From these two facts, one obtains inductively that  ~ takes the value zero on 

every gEE. Hence )~=7~[e]. 
Assume now tha t  (II) holds. In this case, we start  a positive pa th  ~ at O~ tha t  

intersects the roof T~i at the edge h. A reasoning entirely similar to tha t  in case (I) 

shows tha t  the pa th  ~ can be completed such tha t  the functional )~-~[e] is nonnegative 

on every edge. Hence we obtain again A--~[e]. [] 

Definition 3.2.5. The (]D] +/)-dimensional  cone C=C(nl,..., n~, n) associated to the 

flag manifold F is the convex polyhedral cone in the space I m ( 0 ) |  spanned by the 

vectors 

0(e) E Im(69)~R ~ R [D]+lSl-1 
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with eCE. We denote by C* the dual cone in the dual space Im(0)* |  

Definition 3.2.6. Let rcCH be any positive path rtEII. We associate to I r a  linear 

function 

~ :  L(E) --~ Z 

by setting s  if the path 7r crosses the edge e, and X. (e )=0  if it does not. 

Remark 3.2.7. If the path 7r enters a box bcB, then it does so by crossing an 

edge which is part  of the opposite corner Cb, and it has to leave b by crossing an edge 

which is part of the corner C b. It follows that  the corresponding functional ~ is zero 

on Ker (0 )=HI (F) ,  and hence it descends to a functional on i(E)/Ker(O)=Im(O), still 

denoted by ~ .  By definition, ~ is a lattice point in the dual cone C*CIm(O)*| 

THEOREM 3.2.8. The semigroup of lattice points in C* is minimally generated by 

the set of all ~ ,  where ~ runs over the set H of positive paths. 

Proof. Let X:L(E) -+Z with )~lSer(0)=0 and $(e)~>0 for all eEE. We define the 

weight of ~ to be 
= 

e c E  

It is clear that  w(A)>~0, and that  w(A)--0 if and only if A--0. Note also that  w(A~)=n 

for all ~ ~ II. 

The statement of the theorem will be proved if we show that  w(A)~>n for all nonzero 

integral linear functions A: L(E)-+Z with A]K~r(0)=0 and A(e)>/0 for all eEE, and, more- 

over, any such )~ is a nonnegative integral linear combination of A~ (~EH). 

By Proposition 2.1.9, the requirement AlK~r(0)=0 is equivalent to A(Qb)=0 for all 

bEB, or 

E A(e)= E A(e) for all bEB. 
e6Cb eEgb 

As in the proof of Proposition 3.2.4, the above condition implies that  if A#0, then 

there exists a roof 7Z~ containing an edge e on which A is nonzero (hence A(e)>~ 1). We 

start to construct a positive path =i from Oi by choosing its edges in such a way that  

e is the first edge of the graph F intersected by 7ri. Let b6B be a box containing e in 

its opposite corner (i.e., e6C~). Since A(Qb)=0, there must be an edge fcCb such that  

A( f )>0  (hence A(f)>~I). We prolong the path ~r~ through f and enter a next box b', for 

which fcC~.  Again there must exist an edge g6Cb, such that  A(g)>~I, etc. Continuing 

this process, we eventually obtain a positive path 7ri, which only crosses edges e of F 

having the property A(e)/> 1. This shows that  A' : = A -  A=~ is again an integral nonnegative 

linear functional on C. On the other hand, 
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Fig. 6 

Since w(A')~>0, this shows that  w(A)>~n. By induction on w(A), we can assume that  A' 

is already a nonnegative integral linear combination of A~, and hence so is A=A~+A~. [] 

Definition 3.2.9. We define a partial ordering on the set II of positive paths by 

declaring that  ~r~>~r ~ if the path ~r runs above the path 7r ~. See Figure 6. 

Remark 3.2.10. It is easy to see that  the set H of positive paths together with the 

above partial ordering is a distributive lattice. The maximum max(Tr, 7r') for any two 

paths 7r and 7r ~ is the path bounding the union of the regions under 7r and ld; similarly, 

min(~r, ~r') bounds the intersection of these regions. 

Definition 3.2.11. Consider the partit ion of the set of independent variables {z~ }~e n 

into l disjoint subsets 

{z~}~e~ ,  i = 1, . . . , l ,  

and define X=X(n],..., nl, n) to be the subvariety of 

p N 1 - 1  X p N 2 - 1  • ... • p N t - 1  

given by the/-homogeneous quadratic equations 

Z~rZTr, --Zmin(Tr,Tr,)Zrnax(Trdr, ) = 0, (4) 

for all pairs of noncomparable elements 7r, ~r~E II. 

The variety X has been investigated by N. Gonciulea and V. Lakshmibai in the 

papers [18], [19], where the following result has been proved: 
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THEOREM 3.2.12. (i) X(nl , . . . ,n l ,n)  is a IDI-dimensional, irreducible, normal, 

toric variety. 

(ii) There exists a fiat deformation 

6: A' -+ Spec(C[t]) 

such that 6 -1(0) =X(nl , . . . ,  n~, n) and 6 -1 (t)--F(nl,. . . ,  nt, n) for all tr 

The next theorem describes an isomorphism 

X(nl, . . . ,  nl, n) ~- P(nt,. . . ,  hi, n). 

THEOREM 3.2.13. Let P=P(n l ,  . . . ,nt ,n)  be the toric variety associated with a par- 

tial flag manifold F=F(n l ,  ..., n~, n). The line bundles ~i (i=1, ..., l) define an embedding 

r  p ~_~ pN~ -1  • p N 2 - 1  • ... • p N 1 - 1 ,  

whose image coincides with the toric variety X(nl ,  ...,n~,n). 

Proof. We have X=Proj(C[z~;  7rEH]/Z), with Z the ideal generated by the qua- 

dratic polynomials in (4), and Proj is taken with respect to the ZCgrading given by 

i 
deg(z~) = (0, ..., 0, 1, 0, ..., 0), if rr e Hi. 

If we identify YI with the set {A~,TrEH}CIm(0)*, then Z is the toric ideal (see the 

definition in [28, p. 31]) associated to this set (this is a standard fact about the ideals 

associated to distributive lattices; see for example Theorem 4.3 in [18] for a proof). Let Y 

be the affine toric variety Spec(C[z~; ~rEII]/Z). By Theorem 3.2.8 and Proposition 13.5 

in [28], Y coincides with the affine toric variety defined by the cone C C I m ( 0 ) |  i.e., 

C[z~; 7r~II]/Z can be identified with the ring C[Sc] determined by the semigroup Sc of 

lattice points in the dual cone C*. 

Pick an edge eiE7r for each l ~ i ~ l ,  and identify the line bundle s with 

O ( ~ f ~ v ( ~  ) HI). For each l<~i<.l, let A[ei]CL(D)*|  be the supporting polyhedron 

for the global sections of the line bundle s (cf. Proposition 3.2.4); recall that  the lattice 

points in A[e~] are given by the linear functions 7r[e~] (~rEII~) defined in the proof of 

Lemma 3.2.2. Define now for each i a linear function v[e~]: L(E)--+Z by 

1 if f e U ( e ) ,  

v[ei](f)= 0 otherwise. 

It is clear that  v[ei] descends to a functional on Im(O), and that  for every path rrEIIi 

the functional A,~ in Definition 3.2.6 coincides with rr[e~]+v[e~]. For each l<~i<~l, let 
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a iCIm(0)* |  be the cone over the translated polyhedron v[ei]+A[ei]. Then the Min- 

kowski sum a:=al+.. .+al of these cones coincides with the cone C*, since both ~ and 

C* are generated by the vectors {A~, 7rCII}. It follows that  P~Pro j (C[Sc] ) ,  where Proj 

is taken with respect to the natural Zt-grading induced by the decomposition of C* into 

the Minkowski sum of the ai. 

For each l<~i~l, choose an ordering {~i,l,~i,2,-..,Tri,N~} of the set Hi. Let s~. jE 

H~ s denote the section determined by ~i,j (i--= 1, ..., l, j = l ,  ..., Ni). The line bundles 

s ..., s define a morphism 

r p_+ pNl - l •215215  

x ( I s , 1  l ( x ) :  . . .  : s , , , N , ( x ) ] ,  . . . ,  . . .  : s , , , , , ( x ) ] ) .  

By the above arguments, ~b is the isomorphism 

Proj (C[Sc]) --+ Proj (C[z.; 7c e II]/Z),  

and the theorem is proved. 

From Theorems 3.2.12 and 3.2.13 we obtain 

COROLLARY 3.2.14. There exists a fiat defo~vnation 

[] 

6: X --+ Spec(C[t]) 

such that Q-I(o)-=P(nl,..., nt, n) and Q-l(t) =F(n l , . . . ,  nt, n) for all tr 

Remark 3.2.15. A description of the singular locus of P was conjectured by N. Gon- 

ciulea and V. Lakshmibai in the case when F is a Grassmannian (see [19]). Our The- 

orem 3.1.4 proves this conjecture and its generalization for arbitrary partial flag mani- 

folds F.  

4. Q u a n t u m  di f fe ren t ia l  s y s t e m s  

4.1. Q u a n t u m  :D-module  

In order to explain our mirror construction, we give a short overview of the quantum 

cohomology :D-module. The reader is referred to [15], [23] for details. 

Let Y be a smooth projective variety. Denote by {Ta}~ and {T~}a two homogeneous 

bases of H*(V, Q), dual with respect to the Poincar5 pairing, i.e., such that  

(Ta, T b) = 5a,b. 
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We will consider only the even-degree part of H*(V, Q) and will assume that  H2(V, Z) 

and H2(V, Z) are torsion-free. We denote by 1 the fundamental class of V. 

To simplify the exposition, suppose that  there is a basis {p~, i=1,  2, ..., l} of H2(V, Z) 

consisting of nef-divisors. Let NE(V) be the Mori cone of V. 

Introduce formal parameters q~, i=1,  ..., l, and let Q[[qt, ..., ql]] be the ring of formal 

power series. The small quantum cohomology ring of V will be denoted by QH*(V). 
This is the free Q[[ql, ..., qz]]-module H*(V, Q)| ..., ql]], together with a new mul- 

tiplication given by 

l 

TaOTb= ~ Ilq}P"~)(~c Iv3'~(TaTbTc)TC)' 
~ C N E ( V )  i = l  

with I~,z(TaTbTc) the 3-point, genus-O, Gromov-Witten invariants of V. 

Remark 4.1.1. For the case of a partial flag manifold, the small quantum cohomology 

ring is well understood. A presentation of this ring is known ([1], [20], [21]), as well as 

explicit formulas for quantum multiplication ([11]). 

The operators of quantum multiplication with the generators pi give the quantum 
differential system, a consistent first-order partial differential system (see e.g. [15]): 

ho~iS=pioS , i=l,...,1, 

h--~ 
Oto 

where S is an H*(V, Q)-valued function in formal variables to and ti=logq~, i=1,  ...,l. 

Here h is an additional parameter. 

Remarkably, a complete set of solutions to this system can be written down explicitly 

in terms of the so-called gravitational descendants [15]: 

. a Z E N E ( V ) - - O  b , h - - e  " 

Here M0,2(V, ~) is Kontsevich's space of stable maps, with evaluation morphisms el, e2: 

Mo,2(V,Z)--+V at the two marked points, [M0,2(V, Z)] is the virtual fundamental class 
([8], [25]), and c is the first Chern class of the line bundle over M02(V, Z) given by the 

cotangent line at the first marked point. Finally, pt and q{P,fl) are shorthand notations 

for ~ i  piti and ~ i  ~/i ' respectively. 

The quantum 7)-module of V is the / ) -module  generated by the functions (S, 1) for 

all solutions S to the above differential system. 

A general conjecture about the structure of quantum 7)-modules is Giventat's version 

of the mirror conjecture [16]: 
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CONJECTURE 4.1.2. There exists a family (Mq,~'q,O)q) of (possibly noncompact) 
complex manifolds Mq, having the same dimension as V, together with holomorphic 
functions .Tq and holomorphic volume forms wq such that the D-module generated by 
integrals 

~ C M q e ( ' T ' q + t ~  

where 7 are suitable Morse-theoretic middle-dimension cycles of the function Re(~-q), is 
equivalent to the quantum D-module of V. 

4.2. C o m p l e t e  i n t e r s e c t i o n s  

Now assume that  V is Fano. Let X be the zero-locus of a generic section of a decompos- 

able rank-r vector bundle 

$= + L j ,  
j = l  

such that  each Lj is generated by global sections. In such a situation one can also define 

a quantum ring QH*(s over the coefficient ring Q[[ql,...,ql]] which encodes some of 

the enumerative geometry of rational curves on the complete intersection X. This leads 

to a quantum differential system for (V, s (see [171, [23]). We define degrees of qi's by 

requiring that  

cl(TV)-cl(g) = E (deg qi)Pi. 

Furthermore, we suppose that  all degrees of qi are nonnegative (this is equivalent to the 

condition that  - K x  is nef). One can write down a similar complete set of solutions to 

the quantum differential system for (V, g) [17]: 

~E ~to/h( ~b f~o e~(ePt/hTa) ) Sa :=~ ept/hTa+ E q(P'Z> Tb Ue~(Tb)UE~ 
~cNE(V)-o ,2(V,~)] h-c  ' 

where E~ is the Euler class of the vector bundle on Mo,2(V,/3) whose fibre over a point 

(C, #; Xl, x2) is the subspace of H~163  consisting of sections vanishing at x2, and the 

rest of the notations are as above. 

Consider the cohomology-valued functions 

Sv:= E ~v < a ,I>T 
a 

and 

a 

a 
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These functions are given explicitly by the expressions 

and 

13ENE(V)--O 

13ENE(V)--O 

' is the Euler class of the vector bundle on M0,2(V,r whose fibre over a where now E 3 

point (C, p; xi ,  x2) is the subspace of H~ consisting of sections vanishing at Xl. 

Remark 4.2.1. If we view X as an abstract variety, the general theory in w gives 

an H*(X,Q)-valued function Sx.  The functions Sx  and Sc are closely related. For 

example, if i*: H2(V, Z)Z+H2(X, Z), where i: X'--~V is the inclusion, then i . (Sx)=SE.  

Now consider a new cohomology-valued function 

(~(Ls),~) 

~eNE(V)--O j m=O 

In general it is very hard to compute Sx  or Sr explicitly. However, note that  Ic can 

be computed directly from the function Sv associated to the ambient manifold, which 

in many cases turns out to be more tractable. It is therefore extremely useful to have a 

result relating SE and Iv. Extending ideas of Givental, B. Kim [23] has recently proved 

the following theorem, which applies to the cases considered in this paper: 

THEOREM 4.2.2. If  V is a homogeneous space and X c V  is the zero-locus of a 

generic section of a nonnegative decomposable vector bundle g, then S~ and Ir coincide 

up to a weighted homogeneous triangular change of variables: 

to-+to+fo(q)h+ f- l(q) ,  logq~-+logqi+fi(q), i=  l,...,1, 

where f - l ,  fo, f l ,  ..., fl are weighted homogeneous formal power series supported in 

NE(V) -O,  with d e g f _ l = l  and deg f~=0, i=0 ,  1, ...,l. 

In particular, this implies that  the coefficient ~Sv of the cohomology class 1EH*(V, Q) 

in Sv, and the coefficient aSx of er(g) in Ie (specialized to h = l ,  t0=0)  are related in a 

very simple way. Namely, if 

~2v = ~ a3q(P'~), ~ x  = ~ b3q(P'r 
3eNE(V)-O ~eNE(V)--O 
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then 
r 

bf~ = a~ H ((cl(Li), j3)!). 
i = 1  

We will refer to Theorem 4.2.2 as the quantum hyperplane section theorem. 

relation (5) above was called the "trick with factorials" in [6]. 

(5) 

The 

5. The  mirror construct ion  

In this section we give a partially conjectural mirror construction for partial flag mani- 

folds, and use it to obtain an explicit hypergeometric series as the power-series expansion 

of the integral representation. The case of Calabi-Yau complete intersections is then dis- 

cussed in some detail. 

5.1. Hypergeometr i c  so lut ions  for partial flag manifolds  

Let F = F ( n l ,  ..., nl, n) be a partial ftag manifold. In the notations of w we introduce l 

independent variables q~, i= l ,  2, ..., l (each qi corresponds to the roof T4i), IBI indepen- 

dent variables (tb, bEB, and IE[ independent variables Ye, eEE.  Consider the following 

set of algebraically independent polynomial equations: 

(i) Roof equations: for i= l ,  2, ..., l, 

~-i:= H Y~-qi=O" (6) 
e E ~  

(ii) Box equations: for b--{e, f ,g ,  h}CB,  

Gb := YeY/--(tbYgYh = O, (7) 

where {e, f}=Cb. 
This set of equations was discussed by Givental [16], and was used to give an integral 

representation for the solutions to the quantum cohomology differential equations for the 

special case of complete flag manifolds. The results in that  paper were the starting 

point for our investigations. We describe below Givental's result and our (conjectural) 

generalization to a general partial flag manifold. 

Let A [E] be the complex affine space with the coordinates y~ (eEE).  For fixed 

parameter values of 

(q, q) :---- (ql, ..., ql, ..-, qb, ...) 

we obtain an affine variety 

Mq,4:={uEAIEI :~'~ =0 ,  i = 1 ,  ...,l, and Gb=0, bEB} .  
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If all components of (q, ~) are nonzero, Mq, 4 is isomorphic to the torus (C*) IDI. 

One can define on Mq,4 a holomorphic volume form 

: = ReS M~ ~ ( l -~- ) ,  
o2q,~ ' \ 1-L=l-ri [IbeB 6b 

where 

f~:= A dye. 
e c E  

Let ~ ' = ~ c E  Y~" Consider the integral 

Iv(q, q) :---- ~ e~Wq'q' 

where "~EHIDI(Mq,4, Re(~ ' )= -c~ ) .  We put 

~7(ql, ..., ql) := I.,/(ql,..., ql, 1, 1, ..., 1). 

We can now formulate a precise version of Conjecture 4.1.2: 

CONJECTURE 5.1.1. Let S be any solution to the quantum differential system for F. 
Then the component (S, 1} can be expressed as O~(q) for some "yCMq,1. 

Remark 5.1.2. This conjecture generalizes Givental's mirror theorem for complete 

flag manifolds [16]. 

Definition 5.1.3. Let W denote the set of edges in the diagram A that  intersect F. 

We orient the vertical edges in W upwards and the horizontal edges to the right. Let 

V:=BU{O, 1, 2, ..., l}. For wEW, the tail t(w) of w is defined to be the box blEB where 

w starts. Similarly, the head h(w) of w is the box b2EB where w ends. If w crosses the 

roof T~i, so that  its "head" is outside the graph F, we put h(w):=i, and if the "tail" of 

w is outside F, we put  t(w)=0. In the sense of duality of planar graphs, the graph with 

vertices V, edges W and incidence given by h, t: W--+V is dual to the graph F with all 

stars collapsed to one point. 

Definition 5.1.4. For each cone a E E  of maximal dimension we define a cycle ~/= 

'~q,4(O') i n  Mq, 4 by 

"7:=(yEMq,4: ] y d = l  for all eEE  with ~(e)Ea}.  

Note that  the YI with 6(f)~cr are determined uniquely by the y~ with ~(e)Ea and the 

roof and box equations (6), (7). 

The cycle ")' is a real torus, of dimension equal to dimc(Mq,4)=dimc(F). Since it is 

defined over the entire family of the Mq,(1 , it is invariant under monodromy. The integral 

over this special cycle will be denoted by I(q, ~). 
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Definition 5.1.5. The specialization OF(q):=I(ql ,  ..., qt, 1, ..., 1) is called the hyper- 

geometric series of the partial flag manifold F.  

It turns out that  I(q, ~) has a nice power-series expansion. 

T H E O R E M  5 . 1 . 6 .  

I (q'q)= E A.~I ..... m~,...,mb .... q~...q?Z H qbmb' 
m l , . . . , m l  ,...,mb,... bEB 

with 

1 1 1 
*--  . . . . . .  Am1 ..... ml ..... mb . . . . . .  (ml!)kl+k2 (m2!)k2+k3 (mz!)kz+kl+l Bm~ ..... m~ ...... b ..... 

Bmi,... ,ml,.. ,mb,...  : ~  ~ m t 
~ e w  k (~) / 

Proof. By Leray's theorem, the integral is equal to 

JfT eY: Ft 
l 

('yq.q(cr)) Hi=l~C'i H b e B ~ b  

where T is the tube map. For ]ql<l, ]ql<l,  the cycle T(Tq,4(cr)) is homologous to the 

cycle 

T : = { y c A I E I :  ]yel= 1 for all e E E }  

in the complement of the hypersurfaces ye=0.  We now expand all the terms in the 

integrand: 

oo 1 a [IeeE yde ~ 

1-LeE df i '  d = O  de >10 

( ) 1 1 ~>~o qi 
~i  -- 1-Ieen~ ye ~ [I~Enl Ye m~, 

?b 1 1 Z(qbygy__   
~b Y~YI o \ y~ Yl ] ' 

where {e, f}  makes up the corner and {g, h} the opposite corner of the box b={e, f ,  g, h}. 

The integral picks up precisely the constant coefficient of the following power series in 

the y~'s, with parameters the q's and ~'s: 

E 1 - I e e E y d ~ (  qi )m~H(qbYgY_____hh~mb 
de,mi,mb>/O H e e E d f i  = I ~ ,  Y~ beB \ Y~Yl / " 
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Now there are three types of edges. 

Type I. eET~i for some i=l, . . . , l .  

unique box b. Only the terms with 

will give a contribution. 

Then e is also edge of the opposite corner of a 

de = mi --rob 

Type II. eEbnb' for two boxes b and b t. We can then assume that  e is part of the 

corner of b, and the opposite corner of b'. Only the terms with 

d e  = m b  --  rob '  

will give a contribution. 

Type III. e is contained in a unique bEB. In this case e is part of the corner of b. 

Only the terms with 

d e  --= m b  

will give a contribution. 

Hence we see that  the integral is given by the series 

l 

IIq ,:l b BII 0F ~ 
where for each edge the number de is determined by the mi and mb by the above equa- 

tions. We can rewrite this coefficient nicely in terms of binomial coefficients as follows. 

Each edge w E W of the diagram A intersects precisely one edge e E E of Type I or Type II. 

The corresponding coefficient de is then given by 

Trivially, 

de = mh(w) --rot(w). 

1 1-I~ew mh(~)! 
YIeeE de! Hwew mh(w)! [I~eE dr!" 

The heads of arrows w E W which are not tails are the heads of arrows intersecting the 

edges of Type I. The tails of arrows w E W which are not heads are in bijection to the edges 
z 

of Type III. Hence, when we pull out a factor I ] i= l l - i~cn  me! from the denominator 

of the left-hand side of the above equality, the other terms in the numerator and the 

denominator can precisely be combined into the product 

This proves the result. [] 



28 V . V .  B A T Y R E V ,  I. C I O C A N - F O N T A N I N E ,  B.  K I M  A N D  D.  V A N  S T R A T E N  

Remark 5.1.7. Note that I(q,~) is the generalized hypergeometric series for the 

smooth toric variety P defined in w The parameters ql, .--, ql correspond to the gen- 

erators of Pic(P) coming from the singular variety P (the pullbacks of the line bundles 

s s while qb correspond to the additional generators of Pic(/~). 

Theorem 5.1.6 shows that it is very easy to write down the power-series expansion 

for I(q, ~) directly from the diagram. 

Example 5.1.8. F(2, 5) (the Grassmannian of 2-planes in C5): 

I n  m 

! ! 

! I 

/" - -  8 - -  I n  

v 

Hence we read off: 

I(q,~) = 
1 

(ra!) 5 r s qmOrq-~" 
m , r , s ~ O  

Example 5.1.9. F(3, 6) (the Grassmannian of 3-planes in C6): 

Hence we read off: 

I (q , ( l )= 
m~r~s~u~v 

i n  r n  

t 
i i 
i i 

r - -  ~ 8 

I ! 
I ! 
! ! 

U ~ V ~ - m  

1 r v 8 m 2 m m - r - s - u - v  
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Example 5.1.10. F(1, 2, 3, 4) (the variety of complete flags in Ca): 

m l  

A 
i 

r - -  m 2 

A A 
' [ ' i i 
i i 

t o -  S - - ! 9  /rt3 

Hence we read off: 

with 

S(q,0)= Z -'~ml,ra2,ma,r~s,ttll t/2 t/3 t/lC/2t/3, 
ml~m2,ma~r,s~t 

1 ?" 8 

A weaker version of Conjecture 5.1.1 is 

CONJECTURE 5.1.11. The series i~ F := I ( q , 1) is the coefficient of the cohomology 

class 1 in the H*(F, Q)-valued function SF describing the quantum :D-module of F, i.e., 

~:=(ml, . . . ,m/)  ~t0 \ o,2 (F,~) 1 - c  

where Ct stands for Cltl+.. .+Czh, with {C1,...,Cl} the Schubert basis of H2(F,Q),  

and f~F is the cohomology class of a point. 

Remark 5.1.12. (i) Besides the case of complete flag manifolds (cf. Remark 5.1.2), 

there is another case for which the above conjecture agrees with previously known results. 

Consider the partial flag manifold F:=F(1, n - l ,  n) of flags V I c V n - I c C  n, The Pliicker 

embedding identifies F with a (1, 1)-hypersurface in p,~-i x pn-1.  The hypergeometric 

series for P ~ - l x p n - 1  is 

1 
E (rnl!)n(m2!) ~ qr~,q~, 

ml,m2)0 
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(el. [17]), and by the quantum hyperplane section theorem ([17], [23]) we obtain that the 

hypergeometric series for F is 

(ml +ra2)! q~lq~.  (8) 
m~,m2>>-o (ml!)n(m2!)n 

On the other hand, the recipe of Theorem 5.1.6 gives the formula 

8 
(rr~!)n_l(m2[)n_ 1 q?~q7 ~ (9) 

ml,m2>/O 

for the hypergeometric series of F. The identity 

~- '~(ml) (ms2)=(ml+m2 ~ 
k m l  / 

implies that the series (8) and (9) coincide. 

(ii) The quantum Pieri formula [llJ gives explicitly the quantum product of a special 

Schubert class with a general one, and in particular the quantum product of a Schubert 

divisor with any other Schubert class. Using this, one can write down in reasonably 

low-dimensional cases the quantum differential system for F, and reduce this first-order 

system to higher-order differential equations satisfied by the components. In particular, 

one can write down the differential operators annihilating the component (if, 1) of any 

solution S, and check by direct computation that the hypergeometric series OF(q) of 

Theorem 5.1.6 is annihilated by these operators. In [6] this is done for the Grassmannians 

containing complete-intersection Calabi-Yau 3-folds. For the complete flag manifolds, the 

operators are known to be the operators for the quantum Toda lattice (see [22]). 

5.2. Ca lab i -Yau  comple te  in tersect ions  in F(n l ,  ..., nt, n) 

Recall that Pic(F) is generated by the line bundles O(Ci), i=1, ..., l, which also generate 

the (closed) K/ihler cone. Hence any line bundle 7-I on F which is globally generated is 

of the form O(d):= O(~ti=l d(i)Ci), with d(') nonnegative. The common zero-locus of r 

general sections of the line bundles O(dl), ..., O(d,,) will be denoted by X:=Xdl ..... &. 
Assuming Conjecture 5.1.11, it follows from the quantum hyperplane section theorem 

that the hypergeometric series Ox has the expression 

o x  = = _ "'~ . . . . . . . . . . .  , q r ? l . . ,  q ? , ,  ( 1 0 )  
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where Am1 ..... mt are the coefficients of (I) F in Theorem 5.1.6. 

From now on the complete intersection Xdl ..... dr is assumed to be a Calabi-Yau mani- 

fold. The construction of mirrors described in [6] for the case when F is a Grassmannian 

can be extended to the case of a general F as follows: 

X can be regarded as the intersection of F C  p N l - 1  • • pNz-1 with r general hyper- 

surfaces Zj ( j  = 1, ..., r ) i n  p N l - 1  X . . .  X pN~- l ,  with Zj of multidegree (d~ 1), ..., d~ 1)). Let 

Y be the Calabi-Yau complete intersection of the same hypersurfaces with the toric 

degeneration P of F.  

For each edge eE [.J~=17~ which is part  of a roof, define polynomials 

Z csy , 
/cu(~) 

where c/ are generically chosen complex numbers. (Recall that  we have defined U(e) as 

the set consisting of e, together with all edges in the graph F which are either directly 

below e, if e is horizontal, or directly to the left of e, if e is vertical.) 

Part i t ion each of the roofs ~ i ,  i=1 ,  ..., l, into r disjoint subsets 

~2~i = ~ P ~ i , l U . . . U ~ . i ,  r 

7"~ [ d (j) such that  ,J = i �9 It  follows from Definition 3.2.3 and Theorem 3.2.13 that  the toric 

Weil divisor 
I 

i~- i eCT~i,j 

is Cartier, and 
l 

z 1 e ~ 7 ~  j 

Consider the torus T in the affine space --~AIEI given by the following set of equa- 

tions: 

(i) Roof equations: for i=l, 2, ..., l, 

H ye=l. 
eE?~i 

(ii) Box equations: for b={e,  f,g, h}cB, 

YeYI--YgYh = 0, 

where {e, f }  form the corner Cb of b. 
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Introduce additional independent variables Xd, dED, one for each generator of the 

lattice L(D). For every edge eEE, set 

x ~(c) := Xh(c) (Xt(c))- 1, 

where, as before, h(e) (resp. t(e)) is the head (resp. tail) of e. The torus T can be 

identified with Spec(C[xd, Xdl;dED]), with the embedding Tc--~A IEI induced by the 

ring homomorphism 

C[yc;eEE]-+C[Xd, Xdl;dED], yc~-+x ~(c). 

With this identification, we obtain Laurent polynomials 

~c(x):= ~ csx ~(s). 
leG(c) 

For j = l ,  ..., r, let Vj be the Newton polyhedron of the Laurent polynomial 

l 

:: 1 - E  Z :c(x) 
i = l  eETCi, j 

The polyhedra Vj, j = l ,  ..., r, define a nef-partition of the anticanonical class of P (see 

definitions in [9], [4]), and according to [7], [9], the mirror family Y* of the Calabi- 

Yau complete intersection YC P consists of Calabi-Yau compactifications of the general 

complete intersections in T defined by the equations 

l 

1-~, ~, ~c(x)=O, j =  l,...,r. (11) 
i ~ 1  eET~i,j 

CONJECTURE 5.2.1. Let Y~ be a Calabi-Yau compactification of a general complete 

intersection in T defined by the equations (11), with the additional requirement that the 

coefficients satisfy the relation 

cf~ cf2 = cf3 c f4 

whenever {f l ,  f2, f3, f4} make up a box bEB, with {fl ,  f2} forming the corner Cb of b. 

Then a minimal desingularization of Y~ is a mirror of a generic complete-intersection 

Calabi- Yau X C F. 

The main period of the mirror Y* of Y is given by 

: ResMq,4 r C t 
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where the extra factors Sj come from the nef-partition of the anticanonical class of P 

described above. Specifically, 

l 

C J : = I - E  E E Y" j=l,. . . ,r.  
i = 1  eC?l~i, j fEU(e)  

By direct expansion of the integral defining (by (as in Theorem 5.1.6), followed by the 

specialization ~b=l, bcB, one gets exactly the hypergeometric series Ox- 

Finally, we discuss some applications to the case when X C  F is a Calabi-Yau 3-fold. 

First, as discussed in [6], our construction can be interpreted via conifold transi- 
tions. Indeed, by Theorem 3.1.4, if X is generic, then its degeneration YC P is a singular 

Calabi Yau 3-fold, whose singular locus consists of finitely many nodes. The resolution 

of singularities P - + P  induces a small resolution Y-+Y. In other words the (nonsingu- 

lar) Calabi-Yau's X and Y are related by a conifold transition, and Conjecture 5.2.1 

essentially states that  their mirrors are related in a similar fashion. 

Second, it is well understood (see e.g. [7]) that  the knowledge of the hypergeometric 

series ~ x  for a Calabi-Yau 3-fold gives the virtual numbers of rational curves on X via a 

formal calculation. In [6] we have used the hypergeometric series (10) to compute these 

numbers for complete intersections in Grassmannians. 

5.3.  List  o f  C a l a b i - Y a u  c o m p l e t e - i n t e r s e c t i o n  3-folds 

Recall that  if F:=F(nl, ..., nz, n) is a partial flag manifold, then 

1 

dim(F)  -- E ( n i - n ~ - l ) ( n - n i ) .  (12) 
i = 1  

In the Schubert basis of the Picard group, the anticanonical bundle of F is given by 

l 

Wgl=O(E(ni+l--ni_l)Ci) .  (13) 
~ i = 1  

A (general) complete-intersection Calabi-Yau 3-fold in F is the common zero-locus 

of r : =  dim (F) - 3 general sections sj E H ~ (F, O (d j)), where O (d j), j = 1, 2,..., r, are line 
r - - - 1  bundles with @j=l  O(dj)=wF �9 Hence, if F contains a complete-intersection Calabi- 

Yau 3-fold, then necessarily 

1 

dim(F) ~< 3 + E  (ni+l -ni-1) = n+nt-nl  +3. (14) 
i = l  
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PROPOSITION 5.3.1. If  F:=F(nl , . . . ,  nl, n) is a partial flag manifold containing a 

complete-intersection Calabi-Yau 3-fold, and F is not a projective space or one of the 

manifolds F ( 1 , n - l , n ) ,  then n~7.  

Proof. Using (12), after some manipulation, one can rewrite the inequality (14) as 

1) 44.  (15) 

There are two cases. 

(1) nl  > 1. Then it is easy to see that  (nl - 1 ) (n -n 1  - 1) >4 for n~>8, unless n l = n -  1, 

in which case F is a projective space. 

(2) n ] = l .  If l=1,  then F is a projective space, so we may assume I~>2. As above, 

( n 2 - 1 ) ( n - n 2 - 1 ) > 4  for n>~8, unless n 2 = n - 1 ,  in which case F=F(1 ,  n - l , n ) .  [] 

Remark 5.3.2. The flag manifold F ( 1 , n - l , n )  sits as a (1,1)-hypersurface in 

P n - l x P n - 1 .  Hence these cases (as well as the case when F is projective space) can 

be viewed as particular instances of complete-intersection Calabi-Yau's in toric varieties. 

We list below all the partial flag manifolds (not excluded by Proposition 5.3.1) for 

which the inequality (14) is satisfied. The anticanonical class of F,  denoted by --KF, is 

expressed in terms of the natural Schubert basis of the Picard group. The last column of 

the table below contains the possible splittings of the anticanonical class into d i m ( F ) - 3  

nonnegative divisors. 

In general, there is a natural duality isomorphism 

F ( n l ,  ..., nl, n) ~- F(n-nz , . . . ,  n - - n l ,  n). (16) 

This is taken into account by listing only one of the two isomorphic flag manifolds. It 

may also be that  the flag manifold is self-dual, i.e., (16) is an automorphism, and two 

families of complete-intersection Calabi-Yau 3-folds corresponding to different splittings 

of the anticanonical class are interchanged by the duality automorphism. Whenever this 

happens (e.g., when F parametrizes complete flags), only one of the two splittings of 

- / t "  F is listed. 
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F dim(F) 
F(2, 7) 1o 

F(1, 2, 7) 11 
F(1, 5, 7) 14 

F(1, 2, 6, 7) 15 
F(2, 6) 8 
F(3, 6) 9 

F(1, 2, 6) 9 

F(1,3,6) 11 
F(1,4,6) 11 

F(1, 2, 5, 6) 12 

F(1, 3, 5, 6) 13 
F(2, 5) 6 

F(1, 2, 5) 7 

F(2, 3, 5) 8 

F(1, 3, 5) 8 

--KF splitting of --KF 

7 7(1) 
(2,6) 2(1,0)+6(0,1) 
(5,6) 5(1,0)+6(0,1) 

(2,5,5) 2(1,0,0)+5(0,1,0)+5(0,0,1) 
6 (2)+4(1) 
6 6(1) 

(2,5) (2,0)+5(0,1) 
(1,0)+(1,1)+4(0,1) 

2(1,0)+(0,2)+3(0,1) 
(3,5) 3(1,0)+5(0,1) 
(4,5) (2,0)+2(1,0)+5(0,1) 

3(1,0)+(1, 1)+4(0,1) 
4(1,0)+(0,2)+3(0,1) 

(2,4,4) (2,0,0)+4(0, 1,0)+4(0,0,1) 
(1,0,0)+(1, 1,0)+3(0, 1,0)+4(0,0, 1) 
(1,0,0)+(1,0,1)+4(0, 1,0)+3(0,0,1) 

2(1,0,0)+(0,2,0)+2(0,1,0)+4(0,0, 1) 
2(1,0,0)+(0,1,1)+3(0, 1,0)+3(0,0,1) 
2(1,0,0)+4(0,1,0)+(0,0,2)+2(0,0,1) 

(3,4,3) 3(1,0,0)+4(0,1,0)+3(0,0,1) 
5 (3)+2(1) 

2(2)+(1) 
(2,4) (2, 0)+(0, 2)+2(0,1) 

(1, 0)+(1,1)+(0, 2)+(0,1) 
2(1, 1)+2(0, 1) 
2(1,0)+2(0,2) 

(1,0)+(1,2)+2(0, 1) 
(2, 1)+3(0, i) 

(3, 3) (1, 0)+(2, 0)+3(0, 1) 
2(1,0)+(1, 1)+2(0, 1) 

(3,4) 

(1, 

(3, 0)+4(0, 1) 
(1, 0)+(2, 1)+3(0, 1) 
(1, 1)+(2, 0)+3(0, 1) 

(1, 0)+2(1, 1)+2(0, 1) 
0)+(2, 0)+(0, 2)+2(0, 1) 

3(1, 0)+2(0, 2) 
3(1, O) + (0, 1)+(0, 3) 
2(1, 0)+(1, 2)+2(0, 1) 
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F 
F(1,2,4,5) 

dim(F) -KF  splitting of --KF 

9 ( 2 , 3 , 3 )  2(1,0,0)+(0,3,0)+3(0,0,1) 
2(1, 0, 0)+3(0, 1, 0)+(0, 0, 3) 
(2, 1,0)+2(0, 1,0)+3(0,0, 1) 
(2,0, 1)+3(0, 1,0)+2(0,0, 1) 

(1,2,0)+(1, 0, 0)+(0, 1,0)+3(0,0, 1) 
2(1,0,0)+(0,2, 1)+(0, 1,0)+2(0,0, 1) 
2(1,0,0)+(0, 1,2)+2(0, 1, 0)+(0, 0, 1) 
(1,0,0)+(1,0,2)+3(0, 1, 0)+(0, 0, 1) 
(1, 1, 1)+(1,0,0)+2(0, 1, 0)+2(0, 0, 1) 
(2,0,0)+(0,2,0)+(0, 1,0)+3(0,0, 1) 
(2,0,0)+(0,0,2)+3(0, 1, 0)+(0, O, 1) 

2(1, 0, 0)+(0, 2, 0)+(0, 1,0)+(0,0,2)+(0,0, 1) 
2(1, 1, 0)+(0, 1,0)+3(0,0, 1) 

(1, 1, 0)+(1, 0, 1)+2(0, 1, 0)+2(0, 0, 1) 
(1, 1, 0)+(1, O, O) +(0, 1, 1)+(0, 1, 0)+2(0, O, 1) 

2(1,0,0)+2(0, 1, 1)+(0, 1, 0)+(0, 0, 1) 
(1,0, 0)+(1, 0, 1)+(0, 1, 1)+2(0, 1,0)+(0,0, 1) 

2(1, 0, 1)+3(0, 1, 0)+ (0, 0, 1) 
(2, 0, 0) + (0, 1, 1) +2(0, 1, 0) +2(0, 0, 1) 
(1, 1, 0)+ (0, 2, 0)+(1, 0, 0)+3(0, 0, 1) 

(1,0, 1)+(0,2,0)+(1,0,0)+(0, 1,0)+2(0,0, 1) 
2(1, 0, 0) + (0, 2, 0) + (0, 1, 1) + 2(0, 0, 1) 

(1, 1, 0)+(1, 0,0)+2(0, 1,0)+(0,0,2)+(0,0, 1) 
(1,0, 1)+(1,0,0)+3(0, 1,0)+(0,0,2) 

2(1,0,0)+(0, 1, 1)+2(0, 1,0)+(0,0,2) 
F(1, 2, 3, 5) 9 (2, 2, 3) 

F(1, 2, 3, 4, 5) 10 (2, 2, 2, 2) 

(2, 0, 0)+2(0, 1, 0)+3(0, 0, 1) 
(0, 2, 0)+2(1, 0, 0)+3(0, 0, 1) 

(0,0,2)+2(1,0,0)+2(0, 1, 0)+(0, 0, 1) 
(1, 1, 0)+ (1, 0, 0)+(0, 1, 0)+3(0, 0, 1) 
(1, 0, 1)+(1, 0, 0) +2(0, 1, 0)+2(0, 0, 1) 
(0, 1, 1)+2(1, 0, 0) + (0, 1, 0)+2(0, 0, 1) 

(2,0,0,0)+2(0, 1,0,0)+2(0,0, 1,0)+2(0,0,0, 1) 
2(1,0,0,0)+(0, 2,0,0)+2(0,0, 1,0)+2(0,0,0, I) 

(1, 1, 0, 0)+(1,0, 0, 0)+(0, 1,0,0)+2(0,0, 1,0)+2(0, 0,0, 1) 
(1, 0, 0, 1)+(1,0,0,0)+2(0, 1, 0,0)+2(0,0, 1,0)+(0, 0,0, 1) 
(1, 0, 1, 0)+(1, 0, 0, 0)+2(0, 1, 0, 0)+(0, 0, 1, 0)+2(0, 0, 0, 1) 
(0, 1, 1, 0)+2(1,0,0,0)+(0, 1,0,0)+(0,0, 1,0)+2(0,0,0, 1) 
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n F dim(F) 

4 F(2,4)  4 

4 F(1, 2, 4) 5 

4 F(1 ,2 ,3 ,4)  6 

--KF splitting of --KF 

4 (4) 

(2, 3) (1, 0)+  (1, 3) 
(1, 1)+(1, 2) 
(2, 1) + (0, 2) 

(2, 2) + (o, 1) 
(2, 2, ~) (2, o, o) + (0, 2, o) + (0, o, 2) 

(1,1, 0)+(1,  o, 1 )+(0 ,1 ,1)  
(1,2,0)+(1,0,0)+(0,0,2) 
(1,2,0)+(1,0,1)+(0,0,1) 
(2, 1, 0)+(0, 1,0)+(0,0, 2) 
(2, 1, 0)+ (0, 1, 1)+ (0, 0, 1) 
(2,0, 1)+(0,2,0)+(0,0, 1) 
(2,0, 1)+(0, 1, 1)+(0, 1,0) 

2(1, 1, 0)+(0, 0, 2) 
2(1, 0, 1)+(0, 2, 0) 
(2,2,0)+2(0,0, 1) 
(2, 0, 2)+2(0, 1, 0) 
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