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Introduction. For an isolated hypersurface singularity f: (cn+l,0) ÷ 

÷ (6,0) the following celebrated formula is valid (see [Mi~ ,p.59) : 

= dim{ ~{x 0 ..... Xn}/(90 f ..... 3n f) 

It relates the topological invariant u , the Milnor number to a 

readily comoutable algebraic invariant. 

For ageneral hypersurface singularity it is improbable that there 

exist formulae of comparable simplicity for all Betti numbers of the 

Milnor fibre. However, for a more restrictive class of functions with 

non isolated singularities this seems to be possible. Siersma [Sl studied 

hypersurfaces with one dimensional complete intersection singular locus 

along which f has (mway from 0) transversally an Al-singularity, from 

a topological point of view. In this paper we show that for this class 

of singularities the relative de Rham cohomology is torsionfree. This 

fact implies that for these singularities there are simple algebraic 

formulae for the Betti numbers of the Milnor fibre. 

The proof goes as follows. In §I, we prove the coherence of the 

relative de Rham cohomology for so-called "concentrated singularities". 

In §2, we consider the spectral sequence for the Gauss-Manin system 

coming from the "Hodge filtration". When this spectral sequence 

degenerates at the E2-1evel , one gets torsion freeness of the relative 

de Rham cohomology in the same way as Malgrange's proof of the 

corresponding result for isolated hypersurface singularities. In §3, 

finally we check by explicit calculation the degeneration of the 
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spectral sequence for our special class of functions, using a result 

of Pellikaan [Pe]. 

51. Coherence of Relative de Rham cohomology 

In the case that f: (~n+l,0) ÷ (~,0) defines an isolated 

singularity, Brieskorn [B], by using a projective compactification and 

Grauert's direct image theorem, proves that the relative hypercoho~ology 
• _ _ f 

~if,(nv/S)~ ~ Hi(f,~v/S )~ are coherent 0S-mOdules. Here X ÷ S grQups 

is a Milnor representative of f ; i.e. X = B ~ f-l(D ) 0 <n << e etc. 
E 

In [B-G] Buchweitz & Greuel prove a general coherence theorem for 

certain complexes K" on an analytic space X with a flat map to a 

curve S , but still with the condition that the fibres have isolated 

singularities. They use a result of Kiehl and Verdier (see for example 

[D]). 

In [HI Hamm proves the coherence of ~i f,(~/s)/torsion in a quite 

general setting. 

Here we give a coherence theorem general enough to be applied in §2 and 

§3. In absence of an appropriate reference, we include a proof, which is 

based on [B] and [B-G]. We consider map germs (X,x) ~ (S,s) with X an 

an analytic space and S a smooth curve. 

Definition 1. A standard ~epresentative of the map germ (X,x) ~(S,s) 

is a representative X ~ S of the form 

X = X := (B n Y) D f-l(D ) 

S = S := D 
R 

with B an open e-ball in ~N and D an open n-disc in ~ . For 

the intersection we use a fixed embedded representative Y c ~N 
• , T c ( ~  

for the germ (X,x) f (S,s) 

We put ~X := ~B D Y N f-l(D ) and X = X U ~X (relative boundary 
q 

and relative closure). 

Note that for e,n small enough X will be a contractible Stein 

space. 
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Definition 2. Let X ~ S be a standard representative for a germ 

(X,x) ÷ (S,s) and ~ a sheaf of ~-vectorspaces on X . 

L is called transversally constant (with respect to U and 0) if there 

exists an open neighbourhood U of ~-X in ~N and a C~-vectorfield 

0 on U with the following properties: 

i) 0 is transversal to ~B 
£ 

2) the local 0,flow in U leaves X and the fibres of f in X 

invariant. 

3) the restriction of ~ to the local integral curves of O is a 

constant sheaf. 

Theorem i. Let X ~ S be a standard representative of the germ 

(x,x) ~ (S,s) 

Let (K',d) be a finite complex of sheaves on X . Assume: 

i) the sheaves K p are 0x-coherent modules. 

2) the differentials are f-!(0s)-linear. 

3) the cohomology sheaves H±(K ") are transversally constant (with 

respect to a single U and 0). 

Then ~if,(K') is an 0s-coherent module. 

Sketch of proof: Let X = X . Now choose an U an~ e exhibiting 
....... Et~ 

the Hi(K ") as  t r a n s v e r s a l t y  c o n s t a n t  s h e a v e s .  By c o m p a c t n e s s  o f  ~'--X 

and transversality of 0 we can find e~ < e such that ~X c U 

and 8 ~ 3X for all ~ 6 [~2,e] . Choose e_ i 6 (e2,e) . Because e 
~rn 

respects the f-fibres and leaves X invariant we have a commutative 

diagram 

XI-X 2 f % Xl-X 2 with X i = X 

~x I f; s 

Here p and q are the quotient maps induced by the local ~flow. If 

is a transversally constant sheaf on X (w.r.t. U and 0) then 

Rip,~ IXI-X 2 ~ Riq~l Xl~ 2 (in fact = 0 for i > 0). By the 

spectral sequence for the composition of tWO maps we get 

Rif,L IXl-X 2 ~ Rif,~l XI-X 2 . By Mayer-Vietoris we then get 

R1f~ IX 1 ÷ Rlf~ IX 1 . The same argument for X-X 1 ~-m ~Xl gives 

Rif~ IX ~ Rif~L IX 1 ~ Rif~L IX 1 . Apply this to ~ = HI(K ") . This 

gives an isomorphism of Spectral sequences 
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RPf,(H q(K')Ix ) % RPf.(Hq(K')IXI) 

IRP+qf. (K" }X)..-~.÷ mP+qf. (K" IX 1 ) 

showing that shrinking of X does not change the hypercohomology. This 

fact implies the coherence of ~if (K') as 0S-mOdule, in exactly the 

same way as in ([B-G],p.250) by applying the main theorem of Kiehl & 

Verdier. m 

Definition 3. Let X ~ S be a standard representative of (X,x) ÷ (S,s) . 

A complex of sheaves (K',d) on X = X is called concentrated if 

for all e' £ (0,el there exists B' 6 (0,n] such that the restriction 

of K" to X , , full-fills conditions i), 2) and 3) of Theorem i. 
e rn 

A germ (X,x) + (S,s) is called concentrated if the relative de Rham 

complex ~X/S is concentrated for some standard representative of 

the germ. 

Examples. 

i) A deformation (X,x) ~ (S,s) of an isolated singularity 

(X s = f-l(s),x) is concentrated (see [B-G],p.248) . 

2) A hypersurface germ f: (6n+l,0) ÷ (6,0) with a good • -action 

(i.e. all weights >0) is concentrated. 

3) A hypersufface germ f: (6n+l,0) ~ (6,0) such that for a certain 

representative X ~ S there are only a finite number of isomorphism 

classes of germs (X,x) ÷ (S,S) with x 6X, s = f(x), is concentrated. 

4) The function f = y4+ xy2z2 + z 4 does not define a concentrated 

germ at 0 . The relative de Rham cohomology is not coherent. 

We omit the proofs of these facts. 

The idea is that for a concentrated complex the things really only 

happen in one point. 

Proposition i. Let X ~ S be a contractible Stein standard 

representative of a germ (X,x) ÷ (S,s) and let K',d) 

trated complex on X . Then: 

• ~ • ~ (f~H~(K')) s Hi(f~K )s ~if~(K )s = Hi(K')x ~ Hi(Kx ) 

Proof: The first isomorphism follows from the spectral sequence 

HP(Rqf~K ") => ~P+qf.(K') and the fact that the K i are coherent and 

be a concen- 
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X is Stein, so Rqf~(K ") = 0 q > 0 . For the second isomorphism we use 

the other spectral sequence RPf~(Hq(K')) ~ ~P+qf.(K'). By concentradness 

we may replace X by X and then apply ([G],II 4.11.1) to obtain 

RPf.(Hq(K')) s = HP(f-l(s),Hqlf-l(s)) By concentratedness again we may 

assume there is a contraction of f-l(s) to x such that the restriction 

of H q to the fibres of the contraciton is constant. The proposition 

then follows from 

Lemma I. Let ~: X × [0,i] -> X be a contraction of X to p 6 X by 

homeomorphisms (i.e.: ~(x,0) = x , 9(x,l) = p , #(p,t) = p Vt 6 [0,i] 
\ 

and ~(-,t): X ~ X t := ~(x,t) homeomorphism Vt 6 ~0,i~ . Let 

~x: I ÷ X ; t ÷ ~(x,t) . Let F be a sheaf on X with FIYx([0,1)) 

a constant sheaf. 

Then Hi(x,F) = 0 Vi > 0 . 

Proof. Let U = X-{p} , U t = Xt-{ p} and j: U ÷ X the inclusion map. 

First we prove the lemma for F = j.G with G a sheaf on U . We have 

a spectral sequence HP(x,Rqj~G) ~ HP+q(U,G) . But HP(X,Rqj~G) = 0 

p,q > 0 because the higher direct images are concentrated at p . By 

constancy of G along the contraction fibres HP+q(u,G) 

% lim HP+q(Ut,G) = H0(x,RP+qj~G) so we must have HP(x,j.G) = 0 for 
t÷l 

p > 0 . Using 

0 ÷ H 0 (F) ÷ F ÷ F ÷ 0 
{p} 

0 ÷ T ÷ j.j*F + H~p}(F) ÷ 0 

* H 0 (X, H I fact that H0(X,j.j F) ÷÷ {p}CF))_ the general case and the 

follows from the special case. 

For the relative de Rham complex one has of course a link with the 

topology of the situation: 

Proposition 2. Let X ~ S be a contractible Stein standard representa- 

tive of a germ (X,x) ÷ (S,s) . Assume that ~X/S is a concentrated 

comple~ and that flX-f-l(s) :X-f-l(s)÷s-{s}is a submersion. Then there is a 

shor~ exact sequence of 0S-mOdules 

0 ÷ (mif,{x) ® 0 S ÷ Hi(f,~x/s ) ÷ f,Hi(~x/s ) ÷ 0 . 

Pro___oi~ Look at the spectral sequence RPf,(Hq(ex/s)) ~ ~P+qf,(~X/S ) 

and remark that HO(gx/s ) = f-lo S and that Hq(~x/S) is concentrated 
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• : R i ~ 0 S (by an easy adaptation ,on f-l(s) . Use that Rlf,f-10S f~{x 

of [L] , p. 138) m 

%2. The Gauss-Manin system 

Let X [ S be a standard representative of a hypersurface germ 

f: ({n+l,0) ÷ ({,0) . The Gauss-Manin system H x is a certain ~complex 

of) DS-mOdule(s) , describing the behaviour of period integrals over 

cycles in the f-fibres (see [Ph],[S-S]). 

In formula ([S-S],p.646): 

H x = ~" 0 x = ~ f,(~x[D]) 

Here ~x[D] is a complex of sheaves on X with differential 

d(~.D k) = d~.D k - dfA~.D k+l. 

On this complex there is an action of t and 
t: 

t. (~.D k) = f.~.D k - k.~D k-I 

Dt(mD k) : ~.D k+l 

One should think of the symbol m.D k as representing the 

differential form 

Res{ k'~ ] 
X \ t (f-t) k+l" 

on the Milnor fibme X t . One can consider ~he complex (~x[D],d) as 

the associated single complex of the double complex (K ;d,-dfA) with 
MPq ~+q for q z 0 , K pq = 0 for q < 0 . This complex carries a 

so called "Hodge filtration", obtained by cutting off vertically. 

In formula: 

FP~xk[D] := t~ ~k.D£ 
k- (p+l) >-Z 

This filtration gives rise to a spectral sequence. 

Question. Under what conditions does this spectral sequence 

degemerate at E 2 ? (i.e. d i = 0 i -> 2). 
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Is this true for concentrated singularities in the sense of §i? 

Remark. For f = y4+xy2z2 + z 4 it does not degenerate at E 2 . 

We introduce some notation: Put a = ~ . 

S" := ker(df^:~" ÷{~.+i) 

°--I 

C := df ^ ~ 

• • • 

H := S /C (the Koszul cohomology) 

~f := f~'/C" (the relative de Rham complex). 

The relations between these complexes, which carry all a differential 

induced and denoted by d , are summarized in the following diagram 

with exact rows and columns. 

0 0 

C ~ C 

0 ÷ S' + a" df^÷ C'[l~ ÷ 0 
+ + + 

0 ÷ H" ~ ~- df^+ C'[l] + 0 
+ +f 

0 0 

Now the E2-term of the spectral sequence of the Hodge filtration 
o. 

on (K ;d,-df^) can be written as: 

0 

HP+q(H" ) 

if q < 0 

if q = 0 

if q > 0 . 

(Here we abbreviate HP(f.S" ) to HP(s" ) etc.) 

Thus we get a collection of maps d2: HP(H ") + HP+I(s ") p=0,...,n+l 

Due to the peculiar shape of the complex (K'';d,-df^) we have 

Lemma 2. If d2: HP(H ") ÷ HP+I(s ") p=l ..... n is the zero map, then 

the spectral sequence degenerates, i.e. E 2 = E 
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Proof. A form w £ 9P represents a class in HP(H ") iff df ^ w = 0 

and dw = df ^ w for a certain E ~P . Then 1 w I d2[w] is represented 

by dw I , considered as an element in HP+I(s ") . This element represents 

zero iff dw I = dq with df A n = 0 for a certain q 6 2P . This 

means that we can change w I to Wl = wl-q , which is closed. So we 

have: d2[w] = 0 means: If d~ A W = 0 and dw = df A W 1 , then we can 

choose w I closed. 

Now suppose we have a form w representing a cycle for the differentia~ 

d r . This means that we can find Wl,...,w r such that df A W = 0 and 

dw = df ^ w I , dw k = df A Wk+ 1 k=l .... ,r-i but already dw = df ^ w 1 

implies that we can choose w I closed, so we can take w k = 0 k=2,...r . 

Hence dr+l[W] =[dWr]: 0 . m 

Remark. H0(H ") = Hn+2(S ") = 0 , so the map is only interesting for 

p = l,...,n . 

We will now give an alternative description of the d2-ma p. Look at the 

long exact cohomology sequences 

... + HP(c ") + HP(s ") + HP(H) ....... 

.... HP(s ") + HP(2 ") ÷ HP+I(c ") ÷ . .... 

coming from the diagram. If p ~ 1 , then HP(e ") = 0 , so we get 

an isomorphism HP(c ") ~ HP(s ") (p ~ 2). We call this isomorphism ~t " 

If an element of HP(c ") is represented by df ^ q , q 6 ~p+l then 

~t([dfAq]) = [dq] 

We can eliminate HP(c ") from the first long exact sequence using this 

isomorphism. So we get: 

÷ HP(H ") + HP+I(c ") J+.HP+I(s ") 

~ t ~ t S  I 

H p+ I(S" ) 

..... 

(p-> l~ 

Claim. ~ = d 2 

Proof. The map HP(H ") e HP+I(c ") can be described as follows: If w 

represents a class in HP(H ") then df ^ w = 0 and there is an w 1 

such that dw = df ~ w I . The image am HP+I(c ") is then just 

[dw] = [dfAw I] . Applying ~t to this element gives Edw I] , so 

~([w]) = d2([w]) o 
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• ° 

The map j above is induced by the inclusion C c S and although 

the induced map HP+I(s ") + HP+I(s ") is not really the inverse of ~t ' 

we denote it by . One has n ~t = j Observe that j is 

0s-linear whereas ~t is a derivation over j 

Similarly we have an exact sequence and isomomphism involving HP(~f) : 

÷ HP(H" ) + HP(2f) ÷ HP+I(c ") ÷HP+I(H ") 

H p (s%f) 

In this diagram St is represented as follows: A class in HP(~f) is 

represented by w 6 ~P such that dw = df A ~ . Then ~t([w]) = [df^~] . 

As we have isomorphisms of the maps 

. ~ HP+l ~ HP+l • HP(~f) ~+ (C') + (S) 

-i -i -i 
~t ~t ~t + + + 

Hp(2,f) N+ HP+I(c.) ~÷ HP+I(s.) 

(where the horizontal maps are all called ~t ) we get: 

Corollary. Equivalent a~e 

i) d : HP(H) # HP+I(s ") is the zero map 
2 
- , " HP+l 21 ~tl: HP(2f) ~ HP+I(c ) ~ or (S')~ is injective 

3) HP(2f) j HP+I(c ") or HP+I(c ") j HP+I(s ") is injective. 

NOW, ~philosophically at least the operator 2 -1 should be similar 
' t 

to multiplicatiQn by t Injectivity of should learn about 

injectivity of t , i.e. %orsion freeness of HP(2f) as an 0S-mOdule. 

The modules HP(~f) , HP+I(c ") and HP+I(s ") are analoguous to the 

modules of Brieskorn [B] H,H' and H" respectively: on S-{s} they 

are locally free of rank b (F) , the p-th Betti number of the Milnor 
P 

fibre F = f-l(t) , t ~ s . The isomorphism on S-{s} is given by the 

map jlS-{s} , so .ker j and cok j are both modules supported o~ the 

point {s} . Further we have isomorphisms HP(2f) ~ HP+I(s ") and 

~t HP~Iic') ÷ HP+I(s'). The relation ~t.t - t~ t = j is easily seen to 

hold. We repeat Malgrange's proof of the Sebastiani theorem (see [Ma], 

p.416) : the torsion freeness of the Brieskorn module H" = Hn+I(R ") in 
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the case of an isolated singularity. 

_ _ _ .  " HP+I H p+l Theorem 2. Assume that HP(~f) , (C') and (S') are coherent 

0S-mOdules. If d2: HP(H ") + HP+I(s ") is the z~mo map, then 

HP(~f) , HP+I(c ") and HP+I(s ") are torsion free. 

Proof. Put E : HP+I(c ") , F = HP+I(s ") . We have an isomorphism 

~t E ÷ F and if d 2 = 0 an 0~-linear injection E ~ F with F~(E) 

0s-tOrsion, i.e. we have an (E,F)-connection in the sense of 

Malgrange. 

We derive a contradiction by assuming Torsion (F) # 0 . So let t.~ = 0 , 

~ ~ 6 F . By E ~F we find an n 6 E such that ~t ~ = ~ . Now 

tk~ # 0 Vk , because if tk~ = 0 , with k smallest as possible, then 

0 = ~t tkn = k'tk-l'J'q + tk~t n = k'tk-l'j'q" By injectivity of j 

it fol6ows that tk-ln = 0 , so contradiction. By coherence of E as 

0S-mOdule it follows that nlS-{s} ~ 0 , but ~t~IS-{s} = 0 . But now 

we use the link with the topology, by integrating n over a horizontal 

family of vanishing cycles y t) , t 6 [0,I] . One has 

I _ d 
0 = ~t ~ dt 

y(t) ¥(t) 

so the period t ÷ ~(t)n is constant. Because q is holomorphio on 

the whole of X , and has closed restriction to the f-6ibres, we know 

however that this integral has to go to zero. (Here one has to use an 

extension of Lemma 4.5 of [Ma] to the case of p-forms, which can be 

proved qui~e in the same way). Hence fy(t)n = 0 t £ [0,i] . As this 

is true for every horizontal family of cycles we conclude that 

represents the zero form. Contradiction, hence torsion (F) = 0 

The rest of the proof is obtained by remarking that via the 0s-linear 

map j HP(~f) and HP+I(c ") are submodules of HP+I(s) u 

Remark. The proof of the theorem shows that one really needs coherence 

modulo torsion of the module HP+I(c ") , which follows from the results 

of Hamm [H]. In order to keep this paper as selfcQntained as possible, 

we prefer to use the d&~ect ~oherence theorem of 91 for the singularities 

we are interested in. 

There is an obvious kind of converse to Theorem 2. 
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Propo@ition 3. Assume HP(H ") coherent. Then if HP+I(s ") is 

torsion free, then d2: HP(H ") ÷ HP+I(s ") is the zero map. 

Proof. HP(H ") is an 0S-mOdule concentrated at s . By coherence, it is 

torsion. Hence the 0s-linear map d 2 has to be zero. o 

Of course, if one knows that HP(gf) is a torsion free 0S-mOdule, then 

one gets relatively nice formulae for the Betti numbers of the Milnor 

fibre. 

For a concentrated singularity one has the exact sequence of 

Propos£tion 2, §i: 

i ÷ H i 0 ÷ R f*{x ® OS (f*~f) ÷ f*Hi(~ ) + 0 • 

b, 
The first sheaf has stalk 0 at s and { i @ 0S,t at t ~ s where 

b. = b. (F) is the i-th Betti number of the Milnor fibre. The second 1 l 
sheaf is 0s-coherent with stalk f~Hi(~)~ = Hi(~,x )~ at s If we 

know that t acts injectively one thus finds. 

bi(F X = dim E Hi(~f,x)/t-Hi(~f, x) 

By Malgranges index theorem ([Ma],p.408) this number is a~so equal 

to dim~ H i(~f,x )" /~t I Hi(~f,x ) = dim E Hi+l(Hx ). . 

Conclusion. For a concentrated singularity where 

~tl:- Hi(~f,x)C. ~ Hi(~f,x ) 

we have: bi(F ) = dim E Hi+I(H i) (i > 0) 

§3. A special class of s~ngularities 

We now specialize our situation to the case of a hypersurface 

gerra f: ({n+l,0) + ({,0) wi~h a one dimensional singular locus. This 

is the simplest situation where the map d 2 of §2 can be nontrivial. 

~In the sequel a fixed appropriate contractible Stein representative 
f 

X ÷ S is understood). 

We will give the singular locus the non reduced structure defined 

by the jacobi ideal Jf = (~0 f ..... ~n f) and denote it by ~ . So we 

put 0~ ~ = 0/Jf , where 0 = 0 x . We also will consider the curve f 
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defined by the ideal I , which is obtained from Jf by removing the 

M-primary component. In other words, Z is the largest Cohen-Macaulay 

curve contained in ~ . Thus we have an exact sequence: 

0 ÷ I/Jf + 0 F ÷ 0~ + 0 

where I/Jf is an M-primary 0-module. In [Pe] modules like 

have been studied and they are called "jacobi-modules" 

I/Jf 

In order to study the map .d 2 we first need a description of 

the Koszul cohomology groups H l . One easily sees (use for instance 

the "Lemme d'Acyclicit@, see [P-S]) that the Koszul complex on the 

generators ~i f , i=0,1,...n , acting on 0 , is exact except possibly 

in degrees 0 and 1 

One has (where Hi(0;$0f , .... ~n f) denotes Koszul homology) 

0/If = H0(0;~0f , .... 3nf) ~ H n+l = ~n+i/dfA~n 

Hl(O;~of, .... ~n f) ~ H n = ker(df^:~ n ÷ ~n+l)/dfA~n-i 

Hi(0;~0f , .... ~n f) = 0 i ~ 2 

Note that H n and H n+l are 0~-modules. The funny thing about H n 

is, that although it is defined in terms of the function f , its 

structure as a module is only dependent on the singular locus Z This 

is always the case with the first non vanishing Koszul cohomology group. 

It turns out that this cohomology group as a module is always isomor- 

phic to the dualizing module ~Z of the singular locus. For our 

purpose it is important to have an explicit isomorphism between H n 

and mZ . The description of this isomorphism is due to R. Pellikaan 

[Pe], and can be formulated as follows: 

We consider the following diagram: 

d I d 2 d 
0 ÷ 0 ~ 0 ÷ 0 ..... O n+ 0 
Z 

+ ~I + ~2 + ~n ~ 

O~ ~ 0 ÷ 8 + A2@ ~ .... An(] ÷ An+18 ÷ 
÷ 

I/Jf 
+ 

(*) 
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In the top row we put the minimal resolution of 0 Z as an 

0-module. The bottom row is a natural incarnation of the Koszul complex 

on the generators ~i f i=0,...,n ;0 is the module of tangent vectors 

÷ Z a.~ f The vertical maps $i are and @ ÷ 0 is the map z ai~ i 1 i " 

induced from 41 , which expresses the fact that Jf c I . Dualizing 

this diagram with respect to 0 and taking homology produces a map 

[~T~: Ext~(0Z,0) ÷ Hn 

Theorem. (R. Pellikaan [PeJ,p.152) 

[~] is an isomorphism. o 

So the choice of a volume form ~ 6 ~n+l will give a natural map 
~Z + Hn 

We now restrict to an even more special situation: From now on we 

assume that 2 is a reduced complete intersection curve. 

This is precisely the class of singularities studied by Siersma from a 

topological and by Pellikaan from an algebraic point of view. 

Reducedness of Z is equivalent to the condition that the function 

f defines a singularity which around a point p 6 Z-0 is right 
zn 2 

equivalent to f(x0,...,x n) = i= 1 x i ("generically transvers&l A 1 ). 

If Z is a complete intersection curve, we can write I = (gl,...,gn) 

From the reducedness it now follows that f 6 12 , so we can write 

f = ½ Zhisg i~ gj . The function h := det(his)~ , which is called the 

transversal Hessian, is non-zero on a generic point of Z (for these 

facts, see [Pe]). 

AS Z is a complete intersection, defined by gl,...,g n , we can 

resolve 0Z by the Koszul. complex. This implies that in diagram 

(~ we can take ~i = AI#I . Using Pellikaans theorem we can write 

down a generator for H n as 0Z-module as ~i ^ ~2 ^ "'" ^ ~n ' where 

we put df = Z~ig i with w i 6 ~i . So H n = 0~ ~i ^ ~2 ^ "'" ^ ~n " 

(In concrete terms: Write ~i f = ZAijg j with Aij a n × (n+l)-matrix. 

= = (-I) i Then ~i ^ "''^ ~n Z Aid~ i with A 1 i-th n×n minor of 

(Aij) , and dx i ^ d~ i = dx 0 ^ .... ̂  dx n ). 

In order to study the map d: H n ÷ H n+l we first project 

H n+l = 0~ ® ~n+l to 04 ® ~n+l = ~n+i/i.~n+l and study the composed 

map d: ~n ÷ ~n+I/I.~n+~ . The first step is to compute ~i ^ "'" ^ ~n 

and d(w I ̂  ... ^ ~n ) mod I 
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proposition 4. With the notation as above we have: 

a. ~i ^ "'" A ~n = h.dg I A .... A dg n rood I-~ n 

b. d(m I A . . . A Wn) -- ½dh A dg I ^ . .. A dg n rood I.~ n+l 

Proof. Write f = ½Xhijgi.g j . Then we have 

df = [ (hijdg j + ½dhijgj)g i 
i,j 

so we can take 

~. : [ (hijdg j + ½dhij-g j) 1 j 

Hence 

= [ h .dg mod I.~ 
• i3 3 
3 

d~ i : [ dhij A dgj - ½dhij ^ dgj : ½ dhij A dgj 

3 

So ml ^ ~2 ^ "'" A mn = det(hij)dg I A ... A dg n mod I.~ n and 

d(,~ 1 A . . . A ~n ) = ~ (-l)i ml ^ " " " A d~ l A . . . A mn = 
i 

= i ~ (-l)i (Z hljdg j) A ... A (Z ½dhijAdg j) ^ ..- 

... A (Z hnjdg j) mod I-~ n+l = ½dh A dg I A ... ^ dg n 

Using this proposition, we can compute d : 

Pml + Pd(~ A ... A ~n ) _ d( A ... A mn ) = dP A ~i A ... ^ ~n 1 

= hdP A dg I A ... A dg n + ½P~dD A dg I A ... ^ dg n 

Introducing the vectorfield e , dual to dg I A ... ^ dg n (i.e.: 

i0 (dx0A...^dx n) = dg I A ... A dg n where i~ is the contraction 

operator) we can interpret d as a map D: 0~ ÷ 0~ ; P ÷ D(P) = 

= h.0(P) + ½0(h).P making the following diagram commutative: 

d 
H n -) ~n+i/i~n+l 

To I 
0 z ~ O~ 
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... ~ ~n+i/i~n+l 
Here 0£ + H n is given by P ÷ P'el ^ A ~n and 0Z ÷ 

by P + P.dx 0 A ... A dx n 

The vectorfield e is tangent to ~ and non-zero on Z-{0} ° 

Now we can prove: 

Theorem 3. Let f: (~n+l,0) ÷ (~,0) define a singularity which has 

a one dimensional singular locus, which is a reduced complete inter- 

section. Write f = ½Z hijgig j with I = (gl .... 'gn ) the ideal of 

and put h = det(hij) . Then 

If h is not a unit then H n d÷ Hn+l is injective 

If h is a unit then H n ÷ H n+l has a one dimensional 

kernel, which can be represented by a closed form. 

6 H n be an element in the kernel of the Proof. Let P'~I ^ "'" ^ ~n 

operator d . Then also @(P~I ^ .... A ~n ) = 0 i.e.: D(B) = 0 In 

the ring 0z[h ½] we can write the operator D as follows: 

D~P) = h%(P) + ½ 0(h)P = h½.0(h½.p) 

Because h is a function that is non-zero on E-{0} we conclude 

0(h½-p) = 0 . Because e is a vectorfield that is tangent to 

and non-vanishing on Z-{0} it follows that h½.p = C mod 1.0_[h ½] , 
L 

where C is a constant. If this eons~ant, is non-zero, then one must 

have that h is a unit in 0Z, 0 . If this constant is zero it follows 

that P 6 I , i.e. P 91 ^ ... A ~n represents zero hence 

d: H n + H n+l is injective. 

If h is a unit, ~hen we can "diagonalize" the matrix h~j by a 

change of generators for the ideal I from the gi to gi ' achieving 

~2 for our function f (see [S],p.23). But then the form f = ½ ~gi 

df = Z dgi.~i , hence the generator of H n is represented by 

d~l ^ ... ^ dgn which is a closed form. It is easy to see that every 
N 

element in the kernel &s a scalar multiple o~ dg I ^ ... ^ dg n s 

Corollary. Under the hypothesis of theorem 3 and with notations of 

§2 we have: 

i) Hn(~f);, Hn+I(c ") and Hn+I(s ") 

rank b (F) 
n 

2) Hn+l(~f) , Hn(c ') and Hn~s ") 

rank bn_l(F) 

are free 0S-mOdules of 

are free 0S-mOdules of 
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3) bn(F) = dim~ Hn+I(H ") = dim{(~n+i/df ^ ~n +dHn) 

4) bn_l(F) = 1 if h is a unit 

= 0 if h is not a unit. 

The corollary follows by remarking that the complexes ~f ,C" and 

S" are concentrated for these singularitees, and the fact that the 

d2-ma p is the zemomap, as follows from the fact that the kernel 

of d: H n ÷ H~ +I can be represented by a closed form. 

It is interesting to note that ~n+I/d f ^ ~n + dHn , which is a 

~ector space of dimension bn(F ) , does not have a structure of an 

0X-mOdule, as in the case of an isolated singularity. 

The proof of Theorem 3 shows a bit more: if h is not a unit then 

dH n n I~ n+l = 0 . This fact gives an exact sequence 

0 ÷ I/Jf ~n+l + ~n+i/d f ^ ~n + dHn + ~n+i/i~n+l + dHn ÷ 0 

leading to the formula 

bn(F) = dim{(I/Jf) + dim~(0z/D(0z)) 

The first part, dim (I/Jf) , is called the jacobi number of f . 

Pellikaan has proved a conjecture of Siersma, stating that this number 

jf is equal to ~Al-points +~D=-points in a generic approximation 

of f , making the singular locus into a smooth curve. 

The second part, dim(0~/D(0~)) has tQ be equal to ~(~) + ~ D -I , 

by comparison with Siersma's formula ([S],p.4). We will give an 

algebraic proof of this fact. 

First note the formula of Buchweitz and Greuel for the Milnor 

number of a curve: ~(~) = dim(~/d0~) (see [B-G],p.244). Secondly, 

the number of D~ points in a deformation can be computed as 

dim(0z/h-0 Z) (see [Pe],p.83). 

Now assume that h ½ 6 0Z . Then it is easy to see that we can consider 

D: 0Z ÷ 0Z as the composition of the following four maps 

h½ d h½ 
0z ÷ 0Z + ~Z + ~Z ~ 0Z 

where the first and the third maps are multiplications and the last 

one is the identification of eZ with 0Z by the generator 

[dx 0 A ... A dXn/dg I A ... A dg n] . By additivity of the index we find: 

Index(D) = Index(h ½ ) + Index(d) + Index(h ½ ) 
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dim(Oz/D(O~)) = dim(0z/h.0z) + ~(Z)-i . 

The proof in the case that h ½ [ 0 Z is similar. 

In t h e  c a s e  o f  a l i n e  s i n g u l a r i t y ,  i . e .  ~ i s  a s m o o t h  c u r v e ,  o n e  

can choose coordinates (x,y I ..... yn ) such that I = (Yl .... 'Yn ) 

and h = x ~ As in this case e = ~ we get a particularly ~ice form 
X 

f o r  t h e  o p e r a t o r :  D = x a - 1 ,  ( X ? x  + ~)  

Concludin 9 remarks and ~uestions~ 

i) There should be some clear "geometry" in the map d: H n ÷ H n+l 

The expression D = xe-l(x~x+ ~) for line singularitges suggests 

that it describes the monodromy of the transversal vanishing cycle 

by a connection on Z . However, in general ~ is singular and can 

have several irreducible components and it is not clear in what 

sense d is a connection. 

2) It is a shame that this theory does not cover the case of 

f = x'y'z ; the singular locus is not a complete intersection. Heme 

bl(F) = 2 . Is it always true that bn_l(F) s Gorenstein type (Z) 

when ~ is a reduced curve? Numerous examples confirm this guess. 

3) There are many other examples of function for which one can verify 

the degeneration of the spectral sequence. For example for the 

singularities studied by T. de Jong in [dJ] one can check this 

often. 

4) The ~ectorbundle Hn+l(f~S ") sitting in the Gauss-Manin system 

does not seem to play the same r61e as in the isolated singularities 

case in the sense of characteristic exponents. We will study this in 

in a later paper. 
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