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INTRODUCTION 

LETS: UP, 0 + P-l, 0 be a real analytic map germ, withf-‘(0) a reduced curve germ. In a 
recent paper [I], Aoki, Fukuda and Nishimura produced a remarkable algebraic method 
for computing the number branches of this curve. Their method is, briefly, to associate tofa 
map-germ F : Iw”, 0 + [w”, 0 whose topological degree is equal to the number of branches of 
f- l(O), and then to use the Eisenbud-Levine theorem [73 to calculate the degree of F as the 
signature of a quadratic form on the local algebra of F. (We describe it in more detail in 92.) 

The aim of this paper is to generalize the method of Aoki et al. to apply to the case where 
the curve is not a complete intersection. In the case of a complete intersection, local duality 
comes into play in the use of the Eisenbud-Levine theorem on F. However, since there is no 
such map F in the general case, we were led to use local duality and residues on the curve. As 
usual, the more general setting clarifies the special one. 

Given any meromorphic form c1 on a curve 59, we use the module of Rosenlicht 
difirentials ow of the curve to define two “ramification modules” which measure in some 
sense the zeros and poles of the form respectively. These modules are finite dimensional 
vector spaces, and we prove in $1 that the difference in dimension is preserved under 
deformation of both the form and the curve. In the case that r = dg for some holomorphic 
function g, this enables us to find the number of critical points of a small generic 
deformation ofg. Further, we give a simple proof of the fact that the jump in Milnor number 
(as defined in [3] and [6]) in a flat family of curve singularities is equal to the vanishing 
Euler characteristic. 

In the case that V and a are real, the l-form defines an orientation on each connected 
component of V - {p} ( = half-branch), where p is the base point of %, Some of these half- 
branches will be oriented outwards and some inwards. Moreover, the two ramification 
modules come with real valued non-degenerate quadratic forms. We show in $2 that the 
sum of signatures of these two forms is equal to the difference between the numbers of 
branches oriented outwards and those oriented inwards. This is related to the classical 
method of Hermite for calculating the number of real roots of a polynomial as the signature 
of a quadratic form (see[12]). We remark that it seems surprising that the two important 
features of these ramification modules are the difference of the dimensions, but the sum of 
the signatures. 

81. THE RAMIFICATION MODULES OF A ONE-FORM 

Usually, V will be a germ of a reduced analytic curve with base point p and local ring 0~. 
in this section defined over @ but in $2 defined over Iw. The normalization of the curve V will 
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be denoted by n: @ + g. We will be interested in three basic local invariants of curve 
singularities. First, r is the number of irreducible components of V, or what is the same, the 
number of points in n-‘(p) c G?. Second, 6 = dimc,(C;“g/c& which can be interpreted 
heuristically as the number of double points concentrated at p. Third is the Milnor number 
~1. which is equal to 26 - r + 1. We extend 6 and p additively to multigerms and to 
global curves (with finitely many singular points), which means that the relation becomes 
p = 26 - E(r - l), where the summation runs over the singular points of Q?. 

Let 0% be the &module of Kihler one-forms on ‘+? and let G(*) = C,(*) 0 06 be the 
cd*)-module of meromorphic one-forms on G$ (or, what is the same, on @), where &&*) is 
the total fraction ring of 0~. There is a (weakly) non-degenerate bilinear form: 

Res: fLg(*) x I!!&(*) + @ 

w h I-+ Rq,,(h, 4 (1.1) 

which we call the residue pairing. The residue can be defined as 

Res&a) = (2xi)-’ 
s 

a 
i’6 

where 8% is the boundary of an appropriately small representative of @?. If V? is a multigerm 
then the total residue is the sum of the residues at the base points. Indeed, another way to 
define the residue is to pull back the form to the normalization and then add the residues 
over the points lying above p (see [ 111). 

The Cfg-molecule of Rosenlicht differentials 0% is defined by 

0%: = 0: = {oERw(*)IRes(o. cry) = 0). 

This module is the dualizing module of the curve. If %? is mapped finitely to C”’ ‘, n 2 0, then 
this module is naturally isomorphic to &z/~(O~., Q”+l), where R”+l is the Cr = c%.+,- 
module of (n + I)-forms. The curve V? is said to be Gorensrein if cuu is generated over Crw by 
one element. Such a generating element is called a Gorenstein generator. 

The pairing (1.1) descends to a non-degenerate pairing between CUK/O~ and c’g/c’,, so 
the former also has dimension 6. Furthermore, by reducing to a finite dimensional situation 
(essentially working modulo the conductor ideal) one can show that GU = 0:. 

Definition (1.2). (i) Let ac:Ryi*). We say that z is a finite form (or a is finite) if 
its restriction to each branch is not identically zero. Such a form induces an isomorphism 
h(*) 4 C;,(*); WHO/~. Composing this with the residue pairing (1.1) gives a symmetric 
bilinear form: 

Y =V,:Ry(*) x Q,(*)-+C 

. 

(ii) Let z be a finite form. We define the ramification modules: 

Ri = R+(a): = oV/O~ n 0%. a 

R- = R-(a): = O~.a/~~ n CZ..a 

and the integer p(a): = dimcR+(a) - dimcR_(a). 
(iii) For a finite form a, Y descends to two bilinear forms: 

t,b.f:R*(a) x R*(a)-+@. 

(1.3) 
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Remarks (1.4). A finite form a has on each branch an expansion as 

a = C r,t’dt 

for some NE Z (the order of a on that branch), where t is a local parameter and aN # 0. It is 
easy to see that for a finite form the ramification modules are finite dimensional vector 
spaces over C. It is worth noting that the number p(a) can also be computed as: 

p(a) = dimc(o%/Y) - dimc(fiV. x/Y), 

where 2 is any subspace 0~ n 01. a of finite codimension. Finally, since 0% = I& it follows 
that the quadratic forms ++ are well-dejned and non-degenerate. 

Special cases (1.5). (i) Let %’ be smooth, so 0g = C(t) and of6 = C(t). dt, and let x be a 
meromorphic 1 -form of order N. Then Ou. a = tN @{tjdt, so if N 2 0 then dim R’ (2) = N, 
dim R+(r) = 0, while if N 5 0 then dim R+ = 0 and dim R- = - N. In particular 
p(r) = N. 

(ii) It is clear from the definitions that R+(a) = R-(r) = 0 if and only if o,~ = 6%. z, that 
is Y? is Gorenstein with generator a. 

(iii) Suppose z = dg, with glow Then a is finite precisely when g defines a finite map 
g : V + 9, where 3 is a germ of the complex line, and 

R +(&) = o-k/&. da 

R-(dg) = 0. 

In this situation 0% is equal to Y,, . dg, where _Yipgiy = {fo C,(*)(trace(f. 0%) c CC21 is the 
classical complementary module, so R+(dg) z _T’~&B~. In [8] Herzog and Waldi relate the 
dimension of this space to the cotangent complex of V -+ 8. 

(iv) Now suppose that %cJ is Gorenstein with generator w and g E Lo, In this case g has a 
Jacobian defined as Jac(g) = dg/w. Then 

R+(&) = WJac(d, 

so the choice of o gives R+(dg) an algebra structure. In particular, suppose 
f: C”, 0 + P-i, 0 defines an isolated complete intersection singularity. Then ~0% is gener- 
ated by any o satisfying w A f *CD,, _ 1 = co, (where CD, is a holomorphic volume form on C’), 
so 

Thus, 

&I zxi 

Jac(g) = (dg A f *a,_ 1)/o” = det 

[ I 

. . . . . . . . 

&7/h 

R+(dg) z C{xi,. . . , x.}/Ui,. . . ,_Ll, Jac(d), 

which is precisely (the complexification of) the local algebra of F considered in [l]. 

LEMMA (1.6). Let n: %? --, V be the normalization map and a anyfinite l-form on %. Then 

p(n*a) = p(a) - 26 

where 6 is the b-invariant of W. 
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Proof Let A, B, C, D be finite dimensional vector spaces then in the ring of formal 
vector spaces: 

A - D = (B - C) + (A - B) + (C - D). 

Apply this to A = u&/M, B = wg/lM, C = Co,.n*r/M, D = Olg. afM, where M is 
w,-n &. 2. Note that dim (A - B) = dim (C - D) = 6, so taking dimensions gives the 
result. [XI 

We now consider the behaviour of p under deformations of the curve % and the form a. 
So we have a Cartesian diagram of germs: 

(% P)‘-- (% P) 

1 ln 

(0) - (SV 0) 

Here S is a smooth curve germ, II is a flat map, and X is the total space of the deformation of 
%, i.e. 3E is a surface germ. We choose good representatives of all these germs (for good 
representatives see [9], 2.B or [6]), and we will be sloppy with the distinction between germs 
and global section of sheaves. The fibres of II are curves, which we denote by qs: = II-l(s). 
Consider further an analytic family of l-forms a, on the fibres ‘3,, i.e. an element A c&p(*) 

such that AIWs = a,. Because the form a = a,, is finite, we may assume after a possible 
shrinking of S that A has no vertical zero or pole components, i.e. all a, are finite forms 
everywhere on V,. Define the following function on S: 

Here P(ar, q) is the p invariant of (1.4) (iii) of the form a, on the curve germ (ws, q). 

THEOREM (1.7). The function p : S + Z is constant. 

Proof First we choose a function HE 0~ such that A. HE ~~~~ and lI.+(~r.~~~. H) is a 
free &s-module of finite rank. This is possible as A restricts to finite forms on the fibres and 
the deformation is flat. Here ozis is the so-called relative dualizing module, which can be 
considered as a subsheaf of flz,s(*). For a flat family X + S, the sheaf oXis is S-flat and 
restricts to Ok, on the fibre ?Zs (see for example [6]). Since now both ox/s and Cx are flat 
over S and specialize to oq and 0, on the special fibre V we see that lI,(~r,s/Cr. H.A) is 
also a free C”s-module of finite rank. Hence, because L’, z (SE. A etc., one has for all s E S: 

rank &(&Jr. A/Ox. H. A) = dimc(c‘,,. aJOy,. H,. a,) 

rank Il.+(or&5’, . H . A) = dim&u,,/@&, . H, . a,) 

where H, = H,,. But 0,. aL,. H, c my, n O,, . as, so using Remark (1.4) we see that the 
value of p(s) is independent of s. El 

Remark. It is clear that the dimensions of R+ and R- are not themselves constant unde< 
deformation: even on a smooth curve poles and zeros can annihilate. 

As might be guessed from the invariance of p under deformation, this number has a clear 
topological meaning, which we now explain. Let %? be a curve-either a small representative 
of a (multi-)germ or a global curve-with boundary 3%‘. (a%? must be disjoint from the 
singularities of %.) Let a be a finite meromorphic l-form on V. At a smooth point p of V, the 
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real part &(a) has a singularity if and only if a has a zero or a pole. A simple calculation 
shows that if a has order N at p, then the index i(Re(a); p) of &(a) at p (the usual winding 
number of the associated section of the circle bundle) is - N. That is, at a smooth point of W 
(cf. 1.5(i)) 

W(a); p) = - p(a; p). (1.4) 

In [2], Arnol’d introduced a local index i, associated to a boundary singularity of a l-form. 
(A form has a boundary singularity if its restriction to the boundary has a singularity, but 
the form itself does not.) He showed that if M is any compact manifold with boundary, and 
fl is any l-form on M with only boundary singularities at the boundary, then 

X(M) = W) + 1 +(B), (1.5) 

Here I and I+ are the sums of the indices i and i, respectively and x the Euler characteristic. 
To apply this to our case, we consider the normalization @ of V, which is smooth. Then 

from (1.4) and (1.5) we obtain: 

x(%?) = - p(n*a) + Z+(Re(n*a)). (1.6) 

Now by Lemma (1.6), &*a) = p(x) - 26, and for topological reasons, x(g) = x(W) + 
c(l- 1). Moreover, away from the singular points of V? the normalization is an iso- 
morphism. In particular this is the case in a neighbourhood of 8%. So (1.6) becomes: 

x(V) + I@- 1) = - p(a) + 26 + Z+(Re(a)), 

or, by definition of /.c 

XV) - PW’) = - p(a) + I+(Re(a)). (1.7) 
In particular: 

PROPOSITION (1.8). Let V be a compact curve without boundary, and a any-finite I-form on 

V. Then 

o(a) = 10) - x(W, 

where ,u(%‘) is the sum of the local Milnor numbers at the singular points of ‘3’ and ~(93) is the 
Euler characteristic. [XI 

Now let g : V + .2 be a finite map of degree d on all irreducible components of 9, and 
suppose that g is unramified over &’ = g- l ad. Then for any finite l-form a on S, non- 

singular in a neighbourhood of da, Z+(Re(g*a)) = d.Z+(Re(a)). Thus (1.7) gives the 
following singular analogue of the Zeuthen-Hurwitz formula of Riemann: 

PROPOSITION (1.9). With g : W + 9 as above, 

o(g*a) - dWo(a) = PW - XV) - d*(Z@) - x(3). 

In particular, if% is a germ, 9 is smooth and a = dt, then one has: 

Nd = M9 + d - 1. IXI 

Remark. The invariant p(W) + d - 1 has also been considered in [6], Lemma 6.2.8 and 
in [S], “On Zariski’s criterion . . . “, prop. 2.2, which say that it is constant under 
deformations of V. (In [6] for V a complete intersection and in [S) for general ‘3.) Here the 
constancy follows from Theorem (1.7) and the above proposition. The number is equal to 
the multiplicity of the discriminant of g, as defined in [S]. 



506 James Montaldi and Duco van Straten 

This differential-topological point of view gives another proof of a theorem of Milnor 
[lo] for plane curves, Bassein [3] for smoothable curves and Buchweitz and Greuel [6] in 
the general case. (In fact, it is close to Milnor’s original proof.) 

THEOREM (1.10). Let lT:x + S be (a good representative of) a flat deformation of the 
curve germ V = %,-,. Then for all s E S 

,n(Ws) - @0) = x(W,) - x(~g,), 

where 1 is the topological Euler characteristic and p is the sum of the local Milnor numbers 
over the curve. 

Remark. In fact, it is not hard to show that under a flat deformation a reduced curve 
germ remains connected (see e.g. [6]), so one can replace x by - dim H’ in the formula 
above. 

Proof After possibly shrinking 3E and S we can assume that: 

(a) III,, is a smooth fibration (8x = UNs); 
(b) we have a holomorphic l-form A on 3E whose restrictions a, are finite; 
(c) for all s the zeros of a, do not meet &fZs. 

The theorem then follows from (1.7) since Z+(Re(a,)) is constant (Arnol’d’s boundary index 
i, is constant under homotopy provided no singular points of the l-form cross the 
boundary), and p(a,) is constant by Theorem (1.7). IXI 

We turn to another consequence of the deformation Theorem (1.7) concerning the 
multiplicity of the critical point of a function on a singular curve germ. In [4], Bruce and 
Roberts define for certain singular spaces and functions g on them a “stratified Milnor 
number” p(g) in terms of the Jacobian ideal generated by vector fields tangent to X acting 
on g. They show that if the so-called logarithmic characteristic variety K-(X) is Cohen- 
Macaulay, then this Milnor number is continuous under deformation of g ([4], prop. 5.4). 
However, even in the simplest examples, p(g) is not constant under deformations of X: 

Example. X = {(x, y)~@‘jx, y = 01; g = x + y. Then 

p(g) = dim @{x, y}/(xy, x&Ax + Y), yd,(x + Y)) = 1, 

whereas the number of critical points of g on xy = E is clearly 2. (And of course, p(dg) = 2.) 

COROLLARY (1.11) (of Theorem (1.7) and Proposition (1.9)). Let g E mq define a finite 
mapping of degree d. Then for generic L E S+.HQ - SW& and sujiciently small A # 0 the function 
g + R.L has d - m(U) critical points away from 0, where m(q) is the multiplicity of %9. 

Proof For a finite mapping h:W + C, we have by Proposition (1.9): p(dh) = ,u(Gf?) + 
degree(h) - 1. Thus for generic h E mrg - m& p(dh) = p(W) + m(W) - 1. Thus for generic L 

this equation is satisfied by both L and i..L + g for sufficiently small 1. By Theorem (1.7), 
p(dg + I..dL) summed over critical points is independent of 1. A further genericity condition 
on L ensures that all the critical points away from 0 have multiplicity one. Thus the number 
of these critical points is: p(dg) - p(dg + A.dL, 0) = (p(%) + d - 1) - (/.I(%?) + m(U) - l).[xI 

Remark. The number deg(g) - m(W) is called the number of vertical tangents of g, see 
also [6]. 
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$2. REAL CURVE SINGULARITIES 

In this section we consider real l-forms on real analytic curve germs. We find that the 
signatures of the quadratic forms defined in Definition (1.2) are related to the orientation 
induced on the curve. Throughout this section V denotes a germ of a real analytic curve. 
The local ring 0% now is an R-algebra of the form: 

O$f z R{x,, . . . ,x,)/l 

for some n and ideal 1. The complexification ‘Xc has local ring UV @ R@. The complexifi- 
cation of an R-algebra or module has a natural complex conjugation on it, and one can 
identify the original with the subspace of fixed points of this conjugation. Whenever we say 
that ‘1p is reduced, irreducible or Gorenstein, we mean that %‘c is. Note that all the Ok- 
modules defined in $1 are already defined over IF!. Let a E C&(q) be finite.Then on each half- 
branch of %Z (that is, connected component of V - {p}) a defines an orientation. Given a, we 
say that a half-branch is inbound or outbound accordingly as the orientation is towards or 
away from the base point p. We have from Definition (1.2) two real artinian &-modules 
R*(a) with non-degenerate quadratic forms JI,‘. 

Y t 
a2 = xdx l ydy a2=xdx*ydy 

Fig. 1. Examples of orientations induced by l-forms on singular curves. The curves are y3 - x2 = 0 and xy = 0. 
In each case 01, is a Gorenstein generator. 

THEOREM (2.1). Let W be a reduced real analytic curve germ and a be afinite meromorphic 
l-form on V. Then: 

# {outbound half-branches} - # (inbound half-branches} = 2 Sig(+:) + 2 Sig($,), 

where Sig denotes the signature of a quadratic form, that is the diflerence between the number 
of positive and the number of negative eigenvalues. 

COROLLARY (2.2). For a = CXidXi we have R-(a) = 0 and every half-branch is outbound, 
so the number of half-branches of 59 is equal to 2Sig($:). E4 

Before proving this theorem we show that in the case of an isolated complete inter- 
section curve it reduces to the theorem of Aoki, Fukuda and Nishimura [l]. Let 

f = (fil * * . ,f,-l):R”;o~R”-‘,o 
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define an isolated complete intersection germ % =f-‘(0) and let gEmrg define a finite 
mapping. From (1.4)(iv), R+(dg) = Sy/Jac(g), which is the local algebra of the finite map 

F = U-1, * * . ,f.- 1, Jac(g)) and R-(dg) = 0. The Jacobian of F is then Jac(Jac(g)). 

THEOREM (Aoki, Fukuda, Nishimura). Let f be as above and put g = xx:. If 
cp : cO,/juc(g) + (w is any linearfunctional with cp(Jac(Jac(g))) > 0 and if B, is the symmetric 

bilinear form defined by B,(a. b) = cp(a . b) then 

2 Sig B, = # {half-branches of U> q 

We show that our quadratic form $,‘, c1 = dg is of the form B, for a suitable cp. Define 
q: Cn,/Jac(g) + Iw by 

where o is a Gorenstein generator as in (1.4) (iv). Then 

q(Jac(Jac(g))) = Res 

Remark (2.3). In fact, the method of Aoki et al. generalizes to the following: Let ferns 
define a finite mapping, then 2 Sig B, is the difference between the number of half-branches 
with g > 0 and the number of half-branches on which g < 0. Note further that the signature 
of the quadratic form as B, can be computed as the dimension of &/Jac(g) minus twice the 
dimension of a maximal square-zero ideal, comparing Theorems 1.1 and 1.2 of Eisenbud 
and Levine [7]. 

Proof of Theorem (2.1). Let n: d -+ %’ be the normalization of % and let p = n* z be the 
pull back of the l-form c1 to the normalization. 

LEMMA (2.4). Sig$: + Sig$; = Sig$; + Sig$i. 

Proof Consider the subspace P? = OV + Q&I of fig(*) = Q,(e). On V there is the 

quadratic form Y = ‘I-“, = YP defined in (1.3), from which the Ic/‘s are induced. With respect 
to Y one has 0% = (O&’ and ~3 = (Sg./?)‘. So the statement follows from the following 
lemma: 

LEMMA (2.5). Let Y be a quadratic form on a vector space Y whose null space has finite 

codimension in Y. Then for any subspace 4p of V one has: 

Sig Y,, + Sig YlyL = SigY q IXI 

The above two lemmas show that our sum of signatures does not change under 
normalization of g. We have reduced the proof of Theorem (2.1) to the special case where V 
is smooth: since the normalization map is an isomorphism away from the singular point, the 
numbers of outbound and of inbound half-branches are the same on V? and 3. So we can 
assume: 

OcP = ,+i w{ti> jil R{sj9 uj>/(“f + l)* 

Here a is the number of real branches and b is the number of complex conjugate pairs, so 
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r = a + 2b is the total number of branches of %. Similarly, since ?? is smooth: 

0’~ = ~ iW{ti}.dti ~ iw{Sj, Uj}.dsj/(uf + 1). 
i=l j= 1 

The modules R* split into corresponding direct sums, the summands being pairwise 
orthogonal with respect to $*, so we reduce to the case where cw has only one summand. 

LEMMA (2.6). Let I?% = [w {f>, cc)% = [w {t}.dt. Consider a jinire I-form z = c ajrj.dt of 
j2 N 

order N (so aN # 0). Then 

if N is even 

if N is odd ’ 

Here$=$+ifN>Oand$=$-ifN50. 

ProoJ Suppose N L 0. Then R; = 0 and dim RL = N. We can choose as a basis for 
R+:(tmN.a, tmN+l.a,. . . , t-’ .a}, with respect to which the matrix of II/’ has a very simple 
form with the number uN on and zeros below the anti-diagonal. From this one reads off the 
signature immediately. For N I 0 the proof is of course similar. Ix) 

LEMMA (2.7). Let &W = rW{s, u}/(u’ + l), 0% = L?w.ds. Consider a finite I-form r on %. 
Then Sig $h = 0. 

Proof: On the @%-modules R * we now have a transformation U: w H u.o, whose square 
is - 1. Thus $*(uo,, uwI) = $*(u*.w,, 02) = - $*(wi, w,), so II/* is under the auto- 
morphism U equivalent to - I/ *. Consequently Sig +.f = 0. EJ 

We have now proved Theorem (2.1), since by Lemma (2.7) the complex conjugate 
branches of the complexification of ‘3 give no contribution to the signature, while by 
Lemma (2.6) the real half-branches give a contribution in agreement with the orientation: if 
the order N of a l-form a on a branch is even, then this branch has one inbound and one 
outbound half-branch, while if N is odd both half-branches are outbound or inbound 
accordingly as the sign of uN is positive or negative. LZJ 

COROLLARY (2.8). Let $5’ be a real Gorenstein curve and let w be a Gorenstein generator. 
Then the number of inbound half-branches with respect to o is the same as the number of 

outbound half-branches. 

Proof In this case R+ = R- = 0 by (1.4) (ii). Hence the result follows from 
Theorem (2.1). q 

Remarks (2.9). Corollary (2.8) should be seen as an expression of a “geometric sym- 
metry” for Gorenstein curves. In the case of an isolated comp!ete intersection case (2.8) can 
be proved more directly as follows: Let f: OX”, 0 + UP-l, 0 define Q and consider a small 
sphere S around 0 in R”, transverse to %‘. The map& has 0 as a regular value and for 
x Ef,; ‘(0) the jacobian off;, at x is positive or negative accordingly as x lies on an outbound 
or inbound half-branch. (This can be seen from the formula for o given in (1.4)(iv).) Since the 
degree of any map S + W-r is zero, the result follows. More generally, for a smoothable 
Gorenstein curve singularity (2.8) is clear, 
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