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Abstract: In the process of studying the ζ-function for one parameter families of Calabi-

Yau manifolds we have been led to a manifold, first studied by Verrill, for which the quartic

numerator of the ζ-function factorises into two quadrics remarkably often. Among these

factorisations, we find persistent factorisations ; these are determined by a parameter that

satisfies an algebraic equation with coefficients in Q, so independent of any particular prime.

Such factorisations are expected to be modular with each quadratic factor associated to a

modular form. If the parameter is defined over Q this modularity is assured by the proof of

the Serre Conjecture. We identify three values of the parameter that give rise to persistent

factorisations, one of which is defined over Q, and identify, for all three cases, the associated

modular groups. We note that these factorisations are due a splitting of Hodge structure

and that these special values of the parameter are rank two attractor points in the sense

of IIB supergravity. To our knowledge, these points provide the first explicit examples of

non-singular, non-rigid rank two attractor points for Calabi-Yau manifolds of full SU(3)

holonomy. The values of the periods and their covariant derivatives, at the attractor points,

are identified in terms of critical values of the L-functions of the modular groups. Thus

the critical L-values enter into the calculation of physical quantities such as the area of the

black hole in the 4D spacetime. In our search for additional rank two attractor points, we

perform a statistical analysis of the numerator of the ζ-function and are led to conjecture

that the coefficients in this polynomial are distributed according to the statistics of random

USp(4) matrices.
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1 Introduction

1.1 Preamble

The attractor mechanism, first described in [1] in the context of N = 2 supergravity,

remains a fascinating topic that links 4D black holes to string theory and has led to an

understanding of black hole entropy in term of the counting of microstates. We refer to [2]

and [3] for overviews. In [4] G. Moore posed many questions pertaining to the arithmetic

nature of attractor points, which are divided into being of rank one or rank two. We report

here on a specific one parameter family of Calabi-Yau manifolds Xϕ determined by the

equation

1− ϕ (X1 +X2 +X3 +X4 +X5)

(
1

X1
+

1

X2
+

1

X3
+

1

X4
+

1

X5

)
= 0 (1.1)

first considered by H. Verrill in [5, 6] and by Hulek and Verrill in [7] which has at least

three attractor points of rank two, occurring at a rational value

ϕ =− 1/7

and a pair of values correspond to the roots of the quadratic equation ϕ2 − 66ϕ + 1=0,

ϕ = ϕ± = 33± 8
√

17 .

To our knowledge, these are the first nontrivial such attractor points to be identified explic-

itly for a Calabi-Yau manifold of holonomy SU(3). Some Fermat-type points were explicitly

identified as rank two attractor points in [4].

While attractor points of rank one are expected to be dense in the moduli space, those

of rank two are expected to be rare, as the underlying Calabi-Yau manifold has to satisfy

very stringent conditions. As we will summarise the attractor mechanism in the following

section, it may suffice here to recall that the condition for a rank two attractor point is

that the two-dimensional vector space V=H3,0 ⊕ H0,3 is the complexification of a rank

two lattice in H3(X,Z). The space V ⊥=H2,1 ⊕ H1,2 is orthogonal to V under the natural

symplectic product on three forms and is also the complexification of a rank two sublattice

of H3(X,Z). This results in a remarkable splitting of the Hodge structure of H3(X,Q).

The Hodge Conjecture predicts that such a splitting must have a geometrical origin, which

in turn makes this splitting visible in the arithmetic structure of X. In particular, this leads

to the factorisation, for infinitely many primes p, of the part R(T ) of the ζ-function for

the manifold coming from the third cohomology. By reversing the logic, the study of such

persistent factorisations leads to an effective strategy for finding rank two attractor points,

and it was in this way that the above attractor points were obtained for the one-parameter

family of manifolds considered here.

It follows from arithmetic considerations that, the splitting at a rank two attractor

point gives rise to modular forms of weight two and four that are determined by the way

that the two factors of R(T ) vary with p. The modular groups that arise in this way

have pervasive consequences. For example, the periods of the attractor variety and further
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quantities like the central charge and so the area of the black hole horizon can be expressed

in terms of critical L-values of these modular forms.

As a simple example of the identities that arise, we mention the Ramanujan-like

formula
∞∑
n=0

an(33− 8
√

17)n =
119 + 29

√
17

16π2
λ4(2) , (1.2)

where

a0 = 1, a1 = 5, a2 = 45, a3 = 545, a4 = 7885, a5 = 127905, . . .

and generally

an =
∑

p+q+r+s+t=n

(
n!

p!q!r!s!t!

)2

,

and

λ4(2) = Re L(f, 2) ,

where

f = q − 2q2 + 2iq3 + 4q4 + 8iq5 − 4iq7 − 8q8 + 23q9 + . . .

is a modular form for Γ1(34), that appears as f34.4.b.a in the LMFDB [8].

The left hand side of the above formula is the value of the fundamental period

$0=
∑

n anϕ
n, which will be defined in section 3, evaluated at the attractor point ϕ−.

It is intriguing that this should evaluate to an algebraic multiple of a critical L value. Now

the fundamental period is defined as a solution to the Picard-Fuchs equation and is very

far from being an algebraic function, so perhaps equally intriguing is the fact that

1 +
√

17

28
$0(33 + 8

√
17) =

119− 29
√

17

16π2
λ4(2) . (1.3)

Apart from the prefactor 1+
√

17
28 , the only change between (1.2) and (1.3) is the change of

sign of
√

17.

We make here a single disclaimer in relation to these identities and others that arise in

the following. What is meant by saying that we have established an identity such as (1.2)

or (1.3) is that we have evaluated both sides of the identity to at least 1000 figures and

found the quantities agree to this accuracy. We do not have proofs of the identities, in the

classical sense.

It is interesting that the Hulek-Verrill manifold with five complex structure parameters,

so before taking the quotient, appears also in other contexts. One of these is in the study

of field theory amplitudes, principally in relation to the banana or sunrise graphs. An

example, with four loops, is shown in figure 1. This is a Feynman diagram for a scalar field

with momentum p flowing through the diagram and the internal lines refer to particles of

mass mi, i = 1, . . . , 5. Denoting the maximally cut diagram in two dimensions by F (p2)

and with the identifications

µi = m2
i and p2 =

1

ϕ
,

– 2 –
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Figure 1. The four-loop banana graph that is related to the Hulek-Verrill manifold.

it has been observed that p2F (p2) is a period for the five parameter Hulek-Verrill manifold

defined by the n=5 case of the equation(
n∑
i=1

Xi

)(
n∑
i=1

µi
Xi

)
=

1

ϕ
. (1.4)

Note however that this equation is often written with coordinates related to those here by

the transformation Xi → 1/Xi. In the case that all the masses are equal, the quantity

p2F (p2) is a period for the quotient manifold. There is a considerable literature on this

subject, to which we cannot do justice. The expository article of Vanhove [9] and references

cited therein can serve as an introduction.

The fundamental periods of many Calabi-Yau manifolds have an interpretation as

generating functions for the numbers of lattice walks, with the nth coefficient an being

the number of lattice walks that return to the origin after n steps. The lattice in question

being the lattice generated by the monomials of the defining equation. For the Hulek-Verrill

manifold these considerations apply and the fundamental period is generating function for

walks in the A4 lattice. The Hulek-Verrill manifold fits into a closely related sequence

of manifolds that correspond to taking n= 3, 4, 5, . . . in (1.4). Verrill [5] examined this

sequence and noted, for the case of the K3 manifold, corresponding to n=4, that the

fundamental period is the generating function for lattice walks in the A3 lattice.

The study of lattice walks and of Feynman diagrams such as the banana graph leads

naturally to integrals of products of Bessel functions, so the Hulek-Verrill manifold has

appeared also in this context, see for example [10].

1.2 The attractor mechanism

One may construct four dimensional N = 2 black holes by compactifying IIB supergravity

on a Calabi-Yau threefold X with complex structure parameter ϕ. The charges of the

black hole are determined by a 3-cycle γ ∈H3(X,Z), which is viewed as being wrapped by

D3-branes.

Infinitely far from the horizon of the black hole, space-time is flat and the value of ϕ is

unconstrained. However, as one moves towards the horizon of the black hole, ϕ must evolve

in a manner dictated by the attractor mechanism. Moreover, the value of ϕ at the horizon

of the black hole is an attractor point that (for small enough perturbations) is independent

of the value of ϕ at infinity and is only determined by a choice of γ ∈H3(X,Z).

– 3 –
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The four dimensional black hole is assumed to be spherically symmetric with a metric

of the form

ds2 = −e2U(r)dt2 + e−2U(r)d~x 2,

where r is a radial coordinate that is taken to vanish at the horizon. In the supergravity

approximation, the preservation of supersymmetry requires that the complex structure of

X varies with the radius in a manner governed by differential equations, which are written

most simply in terms of a new variable ρ=1
r ,

dU(ρ)

dρ
= − eU(ρ)|Zγ(ϕ)|,

dϕ(ρ)

dρ
= −2eU(ρ)gϕϕ̄ ∂ϕ̄|Zγ(ϕ)| .

(1.5)

We use the initial condition U = 0 when ρ = 0, appropriate to an asymptotically flat

space-time. In the above formula, the quantity

Zγ(ϕ) = eK/2
∫
γ

Ω

denotes the central charge and K denotes the Kähler potential of the special geometry

metric on moduli space. By a change of variables, these equations can be recast as a

gradient flow of the function |Zγ(ϕ)| with respect to this metric.

If we pick a symplectic basis {Aa, Bb} of (the torsion free part of) H3(X,Z), we can

write the cycle γ as

γ = qaA
a − paBa ∈ H3(X,Z)

and the black hole will have electric and magnetic charges given by the charge vector

Q =

(
qa

pb

)
.

For the basis {αa, βb} of (the torsion free part of) H3(X,Z), dual to the symplectic

basis {Aa, Bb}, we have ∫
Ab
αa = −

∫
Ba

βb =

∫
Xϕ

αa ∧ βb = δa
b,

so that the dual in cohomology of the cycle γ is given by

Γ = paαa − qaβa

and the central charge can be written as

Zγ(ϕ) = eK/2
∫
X

Γ ∧ Ω =
QTΣΠ

(−iΠ†ΣΠ)
1
2

,

where Π is the vector of periods in an integral symplectic basis and Σ the matrix of the

symplectic form on H3(X,Z). For a concise review of special geometry and our conventions
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Figure 2. Attractor flow associated to the charge vector Q = (4,−15,−5, 0)T in the ϕ-plane. The

red dot represents the attractor point ϕ = −1/7, the hollow black dot is the large complex structure

point ϕ = 0 and the solid black dots represent the two nearest conifolds at ϕ = 1/25 and ϕ = 1/9.

The flow lines are discontinuous across branch cuts which illustrates the fact that the flow takes

place on a Riemann surface that is a multi-sheeted cover of the ϕ-plane.

see appendix C. In section 3 we give precise details on these matters for the family we

consider here.

It follows from the gradient nature of the flow that, for a given γ ∈ H3(X,Z), the ‘end

point’ ϕ∗ = ϕ∗(γ) of the flow is a minimum of |Zγ | and is independent of the starting point

ϕ∞, at least under small variations of ϕ∞, and thus will only depend on the charges Q. This

is the origin of the name attractor point. Note however, that due to the multi-valuedness

caused by the monodromy around the singular points, the flow really takes place on a

Riemann surface covering the ϕ-plane. We give an example of the attractor flow for a

specific charge vector leading to the attractor point ϕ =− 1/7 in figure 2.

It follows from (1.5) that the black hole metric near the horizon is asymptotic to that

corresponding to AdS2 × S2 and the area of the horizon is given by

A = 4π|Zγ(ϕ∗)|2 (1.6)

and this determines the entropy of the black hole in the limit of large charges.

The attractor points have a number of special properties. Firstly, as already mentioned,

attractor points are critical points of the absolute value of the central charge function

|Zγ(ϕ)|, as can be seen from (1.5). Secondly, with a bit more work, it can be shown that

the complex structure at an attractor point ϕ=ϕ∗ is such that the dual of the charge vector

satisfies the relation

Γ ∈ H3,0 ⊕H0,3 or equivalently Γ2,1 = Γ1,2 = 0 . (1.7)

– 5 –
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Im Ω

Re Ω

Γ1

Γ2

Figure 3. A sketch of the (four dimensional) space H3(X,R) for generic ϕ, showing the two planes

generated by Re Ω and Im Ω and by charge vectors Γ1 and Γ2. As ϕ varies, the plane generated by

Re Ω and Im Ω moves and, when ϕ = ϕ∗ is an attractor point of rank two, the two planes coincide.

The condition that (1.7) imposes on ϕ can be expressed more geometrically in the

following way. The space V (ϕ)=H3,0 ⊕ H0,3 is a plane, generated by Ω and Ω, in the

space H3(X,Z)⊗C=H3(X,C). The intersection with the real four dimensional space

H3(X,Z)⊗R=H3(X,R) is the 2-plane VR(ϕ) spanned, over R, by Re Ω and Im Ω. Inside

the vector space H3(X,R) we have the lattice of dual charge vectors H3(X,Z). This lattice

is fixed, but the plane VR(ϕ) moves with respect to this lattice as ϕ varies. There are three

possibilities:

0. The plane VR(ϕ) intersects H3(X,Z) only in 0. This is the generic case and ϕ is not

an attractor point.

1. The intersection VR(ϕ) ∩H3(X,Z) is a lattice line, i.e. a copy of Z. The point ϕ is

attractor point for any non-zero Γ ∈ VR(ϕ)∩H3(X,Z). In this case ϕ is an attractor

point of rank one.

2. The intersection Λ := VR(ϕ) ∩H3(X,Z) is a lattice plane, i.e. a copy of Z2. In this

case one can find two independent charges Γ1 and Γ2 in Λ, which have symplectic

product 〈Γ1,Γ2〉 6= 0. In this case ϕ is an attractor point of rank two.

As we are dealing with the geometry of 2-planes in a four dimensional vector space,

it is natural to formulate equation (1.7) in terms of the Grassmanian Gr(2,C4), which by

the Plücker embedding

Gr(2,C4) ↪→ P5(C)

can be identified with the Plücker quadric. The natural map

ϕ 7→ V (ϕ) = H3,0 ⊕H0,3 ⊂ H3(X,C)

from the complex structure moduli space to the Grassmanian can be composed with the

Plücker embedding. Since H3,0 ⊕H0,3 is spanned by the cohomology classes of Re Ω and

– 6 –
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Im Ω the resulting map can be identified with the map

ϕ 7→ P =
(
Re Π, Im Π

)
7→ [π12, π13, π14, π23, π24, π34] ∈ P5(R) ⊂ P5(C)

where πij is the minor formed by the ith and jth rows of P . The rows of P form a basis of

H3,0⊕H0,3 and any other basis is related to this one by P 7→ Pg for some g ∈ GL(2,C4)

which simply multiplies each πij by det(g), so the image in P5(C) is left unchanged. One also

sees that the map does not depend on the normalization of Ω and that the Grassmannian

is given by the Plücker quadric

π12 π34 − π13 π24 + π14 π23 = 0

which the moduli space maps into.

The equation (1.7) characterising attractor points is more commonly written as

Q = −2eK/2 Im
(
Zγ(ϕ∗) Π(ϕ∗)

)
. (1.8)

Given γ ∈ H3(X,Z), one can solve the Picard-Fuchs equation and the attractor equations

numerically and find the attractor point ϕ∗(γ) that makes γ the (2, 1) part and (1, 2) part

of Γ vanish to high precision. Conversely, at an arbitrary point ϕ∗, we can solve eqs. (1.8)

for the charges Q for which ϕ∗ would be an attractor point. By a simple computation we

find that the charges are given by

Q =
(π14

π34
p0 +

π31

π34
p1,

π24

π34
p0 +

π32

π34
p1, p0, p1

)T
. (1.9)

However, this charge vector Q will, generically, not be integral.

At a rank one attractor, the first two components of Q are integral for some choice of

p0 and p1 unique up to an overall scale. However, at a rank two attractor, we require that

each of the four ratios in equation 1.9 are rational. This is much more constraining and

explains the scarcity of rank two attactors.

In other words, the rank two attractors are precisely the Q-rational points on the

moduli space in Gr(2,R4).

We now concentrate on the case of a rank two attractor point. It follows from the

above discussion that

Λ⊗ C = H3,0 ⊕H0,3 .

The lattice Λ⊥ ⊂ H3(X,Z) that is orthogonal to Λ under the symplectic product Σ has

the property that

Λ⊥ ⊗ C = H2,1 ⊕H1,2 .

The fact that the spaces H3,0⊕H0,3 and H2,1⊕H1,2 are spanned by lattice planes in

this way is very remarkable.1 We note that the sum of these two lattices

Λ⊕ Λ⊥ ⊂ H3(X,Z)

1It should be noted that the elements of Λ⊥ lead the same attractor point as those in Λ. However,

the central charge at the attractor point vanishes for any charge in Λ⊥ because one ends up integrating a

(2, 1)+(1, 2) form againts a (3, 0) form. As a result, the “black hole” will have zero mass. We will have

more to say about this in the conclusion.

– 7 –
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has finite index, so after extension of coefficients to Q we obtain an isomorphism

H3(X,Q) = ΛQ ⊕ Λ⊥Q ,

which then can interpreted as saying that at a rank two attractor point we have a splitting

of the of the Hodge structure H3(X,Q) into two sub-Hodge structures, where ΛQ has

Hodge numbers (3, 0), (0, 3) and Λ⊥Q with Hodge numbers (2, 1), (1, 2), so that on the level

of Hodge vectors we have:

(1, 1, 1, 1) = (1, 0, 0, 1) + (0, 1, 1, 0).

We note that the real plane Λ ⊗ R spanned by Re Ω and Im Ω can be identified with

the one dimensional complex space H3,0 and similarly Λ⊥ ⊗ R can be identified with the

one-dimensional complex space H2,1. So associated with the splitting there are also two

one-dimensional complex tori

TΛ = H3.0/Λ, TΛ⊥ = H2,1/Λ⊥.

In fact, the Hodge structure Λ⊥ is the Tate-twist of a the Hodge structure of weight one

of the elliptic curve E := TΛ⊥ :

H1(E,Q)(−1) ∼= Λ⊥Q ⊂ H3(X,Q).

In the seminal paper [4], G. Moore speculated on the arithmetical nature of the pa-

rameter values ϕ∗ of attractor points and the associated varieties Xϕ∗ . He analysed these

in detail for families related to K3-surfaces. Furthermore, he identified three examples

of attractor points in one-parameter models. The varieties in question are Fermat points

and lead to (apparent) singularities of the associated Picard-Fuchs equation. Attractor

points and associated lines of marginal stability on the mirror quintic famliy have been

investigated in papers by Denef et al. in [11, 12].

Below we describe how attractor points of rank two can be found by an arith-

metic method.

1.3 The arithmetic of Xϕ∗

Any projective variety X defined over Q can be defined by polynomial equations with

integral coefficients. For any prime p we may then ask how many solutions these equations

have over Fpr , the field with pr elements. Let Nr be this number. These numbers are

collected into the generating function

ζ(T ) = exp

( ∞∑
r=1

Nr
T r

r

)
,

known as the Artin-Weil Zeta Function. Of course, it also depends on p, but we suppress

this dependence from the notation. The form of ζ(T ) is governed by the (now proved)

Weil Conjectures. We will not state these in full, but simply note that the first of these

– 8 –
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asserts that ζ(T ) is a rational function of T . If the reduction modulo p of X is smooth of

dimension n, ζ(T ) has a factorisation of the form

ζ(T ) =
R1R3 . . . R2n−1

R0R2 . . . R2n
, (1.10)

where the polynomials Rk, k=0, 1, . . . , 2n have a cohomological origin. We pause to explain

this in rather greater detail and to recall the basic facts pertaining to the Frobenius map.

For c an integer, recall Fermat’s Little Theorem that

cp = c mod p .

So if we think of c as a number in Fp we have cp=c. If however c is in a higher field Fpr
then cp 6= c, in general, since the analogous identity is cp

r
=c. Now take c1 and c2 to be

numbers in Fpr , for some r, and note the identity

(c1 + c2)p = cp1 + cp2 ,

since all the intermediate terms in the binomial expansion are divisible by p.

Suppose now that a manifold is defined by a polynomial

F (x) =
∑
m

cmx
m (1.11)

where we use a multi-index notation and xm=xm
1

1 . . . xm
n

n . Let us further suppose that the

coefficients cm are in Fp, while the coordinates x are in some higher field Fpr . Then we have

F (x) = 0

⇒ F (x)p = 0

⇒ F (xp) = 0 .

The map x → xp is the Frobenius map, which we shall denote by Frob. It would be more

correct to denote the map by Frobp, but we shall drop the suffix p in the following. What

we have seen is that Frob is an automorphism that every manifold defined over Q has. The

fixed points of the map are of interest. These correspond to the points for which

xp = x

and this relation picks out the points that are defined in Fp ⊂ Fpr . So another way to look

at N1 is as the number of fixed points of the Frobenius map; more generally Nk counts the

number of fixed points of Frobk. It can also be shown that the Frobenius map generates the

Galois group of the polynomial (1.11). If suitable cohomology groups are defined, then the

action of Frob extends to cohomology. It was Dwork [13] who showed that the ζ-function

is a rational function which decomposes as in (1.10) by showing that the ζ-function is a

superdeterminant, though Dwork did not use this term, which decomposes into factors

corresponding to the different cohomology groups with

Rk(T ) = det(1− T Frob−1
k ) ∈ Z[T ] , Frobk : Hk(X) −→ Hk(X) ,

– 9 –
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where Hk can be any Weil-cohomology, for example `-adic cohomology, (` 6= p). In partic-

ular, the degree of Rk is equal to the k-th Betti-number bk of the complex variety defined

by X. A textbook account is given in [14] and one in the style of the present work is given

in [15], which also gives more detailed references to the original literature.

For the situation of Calabi-Yau threefolds with h21 = 1 considered here, ζ(T ) is further

constrained and assumes the form

ζ(T ) =
R(T )

(1− T )(1− pT )h11(1− p2T )h11(1− p3T )

The denominator in this expression gives the form of the product R0R2R4R6, while, in the

numerator, the factors R1 and R5 are trivial, corresponding to the fact that b1=b5=0, so

we are left with R3 and we henceforth dispense with the suffix. The polynomial R(T ) has

integer coefficients and is of degree four if the reduction mod p of X is smooth, and we will

refer to it as the Frobenius polynomial. It is of the form

R(T ) = 1 + aT + bpT 2 + ap3T 2 + p6T 4 ,

and so is determined by two integers a and b, that depend on p and, of course, the mani-

fold X. When the manifold Xϕ lies in a family they depend on the parameter ϕ.

Now, if X = Xϕ∗ is a rank two attractor variety, the third cohomology group splits as

a Hodge structure:

H3(X,Q) = ΛQ ⊕ Λ⊥Q.

By the Hodge Conjecture, such a splitting is supposed to have a geometrical origin. To be

more precise, let

σ : H3(X,Q)→ H3(X,Q)

be the projection (σ ◦ σ = σ) with image ΛQ and kernel Λ⊥Q. Writing H3 := H3(X,Q), the

element σ can be considered as an element of the space

Hom(H3, H3) = H3∗ ⊗H3 = H3 ⊗H3 ⊂ H6(X×X,Q) ,

where we used Poincaré duality and the Künneth-formula. In fact, as σ is a morphism of

Hodge structures, it can be checked that

σ ∈ H3,3(X×X,Q) ,

which, according to the Hodge Conjecture, can be represented by a 3-cycle S on the product

space X ×X.

If the cycle S is defined over Q, this gives a splitting of the Q-motive H3(X) into two

rank two Q-submotives (we will not give a formal definition of a motive, one can think of

this, informally, as an algebraically defined part of the cohomology). As a consequence, the

cycle S induces a similar decomposition on any Weil-cohomology. In particular, the matrix

of Frob, expressed in a suitable basis, will appear in block-diagonal form and consequently

its characteristic polynomial R(T ) factors over Z into two quadratic factors as

R(T ) = (1− αpT + p3T 2)(1− βT + p3T 2) . (1.12)
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p = 19

ϕ smooth/sing. singularity R(T )

1 singular 1 (1− pT )(1− 20T + p3T 2)

2 smooth 1 + 4pT + 2pT 2 + 4p4T 3 + p6T 4

3 smooth 1− 8T + 242pT 2 − 8p3T 3 + p6T 4

4 smooth (1 + 4pT + p3T 2)(1− 60T + p3T 2)

5 smooth (1 + 4pT + p3T 2)(1− 60T + p3T 2)

6 smooth 1 + 8T − 318pT 2 + 8p3T 3 + p6T 4

7 smooth 1− 44T − 238pT 2 − 44p3T 3 + p6T 4

8 smooth (1− 2pT + p3T 2)(1− 80T + p3T 2)

9 smooth (1 + 4pT + p3T 2)(1− 160T + p3T 2)

10 smooth 1 + 12T + 562pT 2 + 12p3T 3 + p6T 4

11 smooth (1 + 4pT + p3T 2)(1− 140T + p3T 2)

12 smooth 1 + 12T + 82pT 2 + 12p3T 3 + p6T 4

13 smooth 1 + 178T + 1082pT 2 + 178p3T 3 + p6T 4

14 smooth 1 + 12T − 158pT 2 + 12p3T 3 + p6T 4

15 smooth 1 + 42T − 2p2T 2 + 42p3T 3 + p6T 4

16 singular 1
25 (1− pT )(1 + 76T + p3T 2)

17 singular 1
9 (1− pT )(1− 20T + p3T 2)

18 smooth 1− 54T + 322pT 2 − 54p3T 3 + p6T 4

Table 1. The R-factors for ϕ ∈ F19. Note the factorisations into two quadrics for the five values

ϕ = 4, 5, 8, 9, 11.

The first factor comes from H2,1⊕H1,2 and there is an ‘extra’ factor of p that accompanies

the coefficient α. This corresponds to the Tate-twist refered to above and has the effect

that the first factor can be rewritten as

1− α(pT ) + p(pT )2 ,

which has the form of the numerator of the ζ-function for an elliptic curve. In fact, this

elliptic curve is just E⊥=TΛ⊥ , which is defined over Q if S is, and the polynomial

1− αT + pT 2 ,

is identified with the factor corresponding to H1 of this elliptic curve.

The second factor has the form of the numerator of the ζ-function of a rigid Calabi-Yau

manifold; the torus TΛ cannot be expected to be defined over Q or even over a number field.

The arithmetic information of the Frobenius transformations for various p can conve-

niently be packed into what is called a Galois representation

ρ : Gal(Q/Q)→ GL4(Q`)
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that maps a Frobenius element at p to the matrix Frob. In case of a splitting, we end up

with two 2-dimensional representations

ρ : Gal(Q/Q)→ GL2(Q`) ,

which is the subject of Serre’s conjecture [16, 17]. This asserts that such representations

are attached to modular forms of specific weight and conductor and can as such be seen

as a generalisation of the Taniyama-Weil conjecture, which, following on from the work

of Wiles [18] and Wiles and Taylor [19], was proved by Breuil, Conrad, Diamond and

Taylor [20]. Further work by Taylor, and many others, led to a complete proof of the Serre

conjecture by Dieulefait [21], Khare and Wintenberger [22, 23] and Kisin [24]. As a result

of this important development in number theory, there is now very good arithmetic control

over 2-dimensional Galois representations coming from geometry. Gouvêa and Yui [25] have

shown the modularity of rigid Calabi-Yau threefolds defined over Q can be derived from it.

But also for non-rigid varieties defined over Q, that split in the above way the modularity

has been proved, which means that the coefficients ap and bp are Fourier coefficients of cusp

forms of weight 2 and 4 for some congruence group Γ0(N) of the modular group. So, for

an attractor point of rank two, we expect a factorisation into two quadratic factors, giving

rise to modular forms of weights 2 and 4.

If the variety X (or the cycle S producing the splitting) is not defined over Q but

over some number field K, the situation is more complicated, as we are then dealing with

representations of Gal(Q/K). But the Chebotarëv density theorem [26] implies that in such

cases one still has such a splitting of R(T ) for infinitely many and in fact a positive fraction

of primes p. In the case of totally real fields one in general expects Hilbert modular forms.

However, in the cases we encounter here, we find classical modular forms for Γ1(N).

1.4 The strategy

We consider a 1-parameter family Xϕ of Calabi-Yau threefolds with h2,1 = 1, defined by a

polynomial equation

P (x, ϕ) = 0

with integral coefficients. In the light of the previous discussion, the strategy to find rank

two attractor points ϕ∗ is now quite clear: we compute the polynomial

R(T ) = 1 + aT + bpT 2 + ap3T 2 + p6T 4

for many p and ϕ and look for persistent factorisations into a product of two quadratic

factors. By this we mean that the factorisations occur whenever ϕ is the root of some

algebraic equation G(ϕ) defined over Q, without any reference to a particular prime.

For this to be feasible, we need an efficient way to compute R(T ). The coefficients

a and b can, in principle, be determined by directly counting the number of points of X

over Fpr , in fact it is sufficient to count points over Fp and Fp2 . This however quickly

becomes impractical as p is increased. Sometimes even for small p, it is onerous to count

the Fpr -points of a manifold, for example if X is defined as a quotient by a group, since these

‘points’ are then group-orbits that are defined over Fpr , not the orbits of group-invariant

points, and there are frequently orbits without any points, for example.
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Fortunately, there are much better ways to compute R(T ). It was discovered by Dwork

and developed further by Lauder [27] that the ζ-function can be calculated from a p-adic

computation of the periods, using the Picard-Fuchs equations. This goes under the name

deformation method. A more detailed discussion of this fascinating process, pertaining to

the ζ-function of one-parameter families of Calabi-Yau manifolds with a point of maximal

unipotent monodromy which is taken as expansion point, may be found in [28].

Using these methods, the quantities R(T ) were calculated, in [28], for ϕ=1, . . . , p − 1

for the 500 values p=5, . . . , 3467, for a family first described by H. Verrill [5, 6] and that

is number 34 in the AESZ list [29]. In the following, we will often refer to this manifold

as AESZ34.

For example for p=19 we have table 1 and we see that R(T ) factors in the form in-

dicated for the five values ϕ=4, 5, 8, 9, 11. At the conifold points R(T ) degenerates to a

cubic, and factorises into a linear factor and a quadric. These cases are also very inter-

esting, not least because they also exhibit modular behaviour and can be thought of as

corresponding to massless black holes. We will not however pursue the factorisations due

to the conifolds here.

We do not want to assert that every factorisation of the form (1.12) corresponds to

a rank two attractor point. However, there is a form of converse statement that we do

expect. Let us suppose that, as conjectured by Moore [4], the rank two attractor points are

algebraic, in the sense that there is a polynomial G(ϕ) with rational (so integer) coefficients,

whose roots are the rank two attractor points. If this is so, then it makes sense to reduce

G(ϕ) mod p and the roots will exist in Fp for some, and in fact for infinitely many, p. For

these p we expect R(T ) to factorise. By assuming that there is a single polynomial G(ϕ),

whose roots are the rank two attractor points, we are assuming, not only that the rank

two attractor points are algebraic, but also that there are finitely many such points. These

comments are made for the case that there is one parameter. If there are more parameters,

we would expect the rank two attractor points to lie on algebraic submanifolds of the

parameter space.

In section 8 of [4] Moore has made several conjectures as to the arithmetical nature

of the attractor points, making a distinction between strong and weak versions of these

conjectures, according to whether they apply to all attractor points, or only to the rank

two attractors. In particular, the Attractor Conjecture section 8.2.2 of [4] asks if rank two

attractor points ϕ∗ are algebraic, and hence whether the corresponding varieties Xϕ∗ are

defined over a number field. In section 3.6.2 of [30] it is stated that (according to Nori)

this actually follows from the Hodge conjecture, but no details are given. Indeed, for any

projective family of varieties over a (possibly higher dimensional) base S defined over a

number field, the locus of points s ∈ S, where Xs carries an algebraic cycle in a specific

homology class, is an algebraic subvariety of S that is defined over a number field. Taking

the union over all possible homology classes gives a countable union of such sub-varieties.2

2Independent of the Hodge conjecture, it follows from general results of Cattani, Deligne and Kaplan [31]

that the locus of Hodge cycles is a countable union of algebraic varieties in S, and if we knew that “Hodge

cycles are absolute Hodge cycles”, then these varieties would be algebraic varieties defined over a num-

ber field.
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Figure 4. The flows for ϕ = ϕ(ρ) for the charges Q = (0, 0, 2, 1)T (above) and Q = (−4, 15, 5, 0)T

(below) leading to attractor point at ϕ = − 1/7. The point of maximal unipotent monodromy at

ϕ = 0 is indicated by a hollow black dot while the solid black dots represent conifold singularities.
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As a rank two attractor point can be seen as a special kind of Hodge class in Xϕ∗×Xϕ∗ ,

the Hodge conjecture implies that the rank two attractor points belong to a countable union

of algebraic sub-varieties in S, that are defined over a number field. So, in particular, for a

one-parameter family (always assuming that not all points are rank two attractor points),

the Hodge conjecture implies that the parameter-values ϕ∗ for rank two attractor points

are algebraic. Based on our searches, we are tempted to strengthen Moore’s Attractor

Conjecture 8.2.2 and conjecture that the rank two attractor points are contained in an

algebraic sub-variety defined over a number field, rather than a countable union of them.

For a one-parameter family this would mean that the set of rank two attractor points is

finite and hence to be found among the solutions to a single polynomial equation

G(ϕ) = cnϕ
n + cn−1ϕ

n−1 + . . .+ c1ϕ+ c0

where the coefficients ck are integers.

The crudest summary of the tables produced in [28] is to count how many times R(T )

factorises in the indicated way for each prime p. We have just seen that for p=19 it

factorises 5 times. This leads to the two plots in figure 5. The first gives the data for the

manifold AESZ34, while the second gives the analogous data for the mirror of the quintic

threefold and is presented for comparison. Clearly R(T ) for AESZ34 factorises much more

often than for the mirror quintic. Notice also that while for the mirror quintic there are

many primes for which R(T ) does not factorise, for AESZ34 the polynomial R(T ) factorises

at least once for each p. This suggests that, for AESZ34, the polynomial G(ϕ) has a linear

factor,3 since a linear equation

c1ϕ+ c0 = 0

has a solution mod p for all p, apart from primes that divide c1.

By looking first at the primes for which R(T ) factorises precisely once, and using a

variant of the Chinese Remainder Theorem, or by simply performing a computer search

over integers c0 and c1, we find that (apart from the case p=7) the polynomial R(T ) always

factorises when

ϕ = −1/7 .

[In Fp, ϕ = − 1/7 is the integer that satisfies the relation 7ϕ + 1 = 0. For p = 19, for

example, we have 7 × 8 =− 1, so −1/7 = 8 in F19 and this indeed is one of the values for

which factorisation of the desired form occurs in table 1.]

It is easy to check that, considered as a point of C, ϕ = − 1/7 is indeed a rank two

attractor point. By this, we mean that we solve the Picard-Fuchs equation around ϕ = 0

and, by numerical integration, evaluate it at ϕ = −1/7 to 1000 decimal places. We then

check that, the ratios in equation 1.9 are rational to this precision. We will later, in

section 4, propose identities between the periods at ϕ = − 1/7 and critical L-values that

will also be verified to at least 1000 decimal places. Although not a proof, these observations

leave little doubt that ϕ =− 1/7 is indeed a rank two attractor.

3We are grateful to Noam Elkies for this elementary but important observation.
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Figure 5. The upper plot shows the number of factorisations into two quadrics as ϕ varies over

each Fp, 7 ≤ p ≤ 3583, for the manifold AESZ34. For comparison, the lower plot provides the same

information for the mirror of the quintic which explains why it is difficult to find rank two attractor

points on this family.

Encouraged by finding a linear factor of G(ϕ), we search for a quadratic factor

c2ϕ
2 + c1ϕ+ c0 = 0

and find that R(T ) always factorises when ϕ2 − 66ϕ+ 1=0 and so when

ϕ = ϕ± = 33± 8
√

17

exists in Fp. This occurs when 17 is a square mod p, and so, by quadratic reciprocity, when

p is a square mod 17.

[Pursuing our example for p=19, note that 17=62 in F19 so ϕ±=4, 5 and the desired

factorisations also occur for these values of ϕ in table 1.]

Again, if we take ϕ± to be points in C, then it is straightforward to check numerically

that these values correspond to rank two attractor points. These flow plots are presented

in figure 6 and figure 7.

The tables of the Frobenius polynomials R(T ) contain much more information than

that shown in figure 5. For example, let us consider the coefficients α and β for the attractor

points, as p varies. For ϕ = − 1/7 we list primes 5 ≤ p ≤ 137. While for ϕ = 33 ± 8
√

17

we list primes 5 ≤ p ≤ 349 such that 17 is a square mod p. A first remark is that R(T ) is

the same for ϕ=ϕ± so we need only present a single table for these parameter values.

– 16 –



J
H
E
P
1
0
(
2
0
2
0
)
2
0
2

65.0 65.5 66.0 66.5 67.0

0.0

0.2

0.4

0.6

0.8

1.0

65.0 65.5 66.0 66.5 67.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6. The flows for ϕ = ϕ(ρ) for the charges Q = (4,−9, 7, 4)T (above) and Q =

(4,−30,−30,−5)T (below) leading to attractor point at ϕ = 33 + 8
√

17
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Figure 7. The flows for ϕ = ϕ(ρ) for the charges Q = (−2, 0, 0, 5)T (above) and Q = (0, 3, 1, 0)T

(below) leading to attractor point at ϕ = 33− 8
√

17. The point of maximal unipotent monodromy

at ϕ = 0 is indicated by a hollow black dot while the solid black dots represent conifold singularities.
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For ϕ = − 1/7 we observe that the α’s are the pth coefficients of a weight 2 modular

form, with LMFDB designation 14.2.a.a for the group Γ0(14). The coefficients β are

similarly the pth coefficients of a weight four modular form, with designation 14.4.a.a,

also for Γ0(14).

The appearance of modular forms was anticipated by mathematicians, but for a physi-

cist these have appeared, seemingly out of nowhere.

Conventions differ between references, so we pause to state these. We understand a

modular form of weight k to satisfy the relation

f(γτ) = (cτ + d)kf(τ) for all γ =

(
a b

c d

)
∈ Γ0(N) .

There is also a further relation, that is not a special case of the above, if N 6= 1:

f

(
− 1

Nτ

)
= εNk/2τkf(τ) , (1.13)

where ε = ±1 is a sign that depends on the particular modular form f . The group Γ0(N)

is the subgroup of matrices(
a b

c d

)
⊂ SL(2,Z) with c ≡ 0 mod N .

For the modular forms for Γ0(14), that we need, the weight 2 form admits a represen-

tation in terms of the Dedekind η-function

f14.2.a.a(τ) = η(τ)η(2τ)η(7τ)η(14τ)

= q − q2 − 2q3 + q4 + 2q6 + q7 − q8 + q9 − 2q12 − 4q13 − q14 + q16 + 6q17

− q18 + 2q19 + . . . .

For the weight 4 form we do not know of an analogous expression, however the LMFDB

provides the expansion

f14.4.a.a(τ) = q − 2q2 + 8q3 + 4q4 − 14q5 − 16q6 − 7q7 − 8q8 + 37q9 + 28q10 − 28q11

+ 32q12 + 18q13 + 14q14 − 112q15 + 16q16 + 74q17 − 74q18 + 80q19 + . . . .

For ϕ=33± 8
√

17, with the exception of p=17, the correspondence is for primes such

that 17 is a square mod p. For these primes, the α’s are the pth coefficients of the weight

two modular form, with designation 34.2.b.a and the β’s are the pth coefficients the weight

4 modular form 34.4.b.a, both for the congruence subgroup Γ1(34).

The group Γ1(N) is the subgroup of SL(2,Z)(
a b

c d

)
⊂ Γ0(N) with

(
a b

c d

)
≡

(
1 0

0 1

)
mod N .
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In this case, a modular form of weight k satifies

f(γτ) = χ(d) (cτ + d)kf(τ) for all γ =

(
a b

c d

)
∈ Γ0(N) ,

where χ is a Dirichlet character of modulus N .

For ϕ=33 ± 8
√

17, the α’s appear as the coefficients of qp in the q-expansion of the

weight 2 modular form for Γ1(34) with LMFDB designation 34.2.b.a and Fourier expansion

f34.2.b.a = q − q2 + 2i
√

2q3 + q4 − 2i
√

2q5 − 2i
√

2q6 − q8 − 5q9 + 2i
√

2q10 − 2i
√

2q11

+ 2i
√

2q12 + 2q13 + 8q15 + q16 −
(
3− 2i

√
2
)
q17 + 5q18 − 4q19 + . . . . (1.14)

The β’s appear as the coefficients of qp of the weight 4 modular form for Γ1(34) with

LMFDB designation 34.4.b.a and Fourier expansion

f34.4.b.a = q − 2q2 + 2iq3 + 4q4 + 8iq5 − 4iq6 + 34iq7 − 8q8 + 23q9 − 16iq10

− 30iq11 + 8iq12 − 42q13 − 68iq14 − 16q15 + 16q16 + (17− 68i)q17

− 46q18 + 60q19 + . . . . (1.15)

At first sight, these last two q-series are surprising since the coefficients are not all integers.

However, the coefficients we need to compare with the α’s and β’s are those of terms qp

for primes such that 17 is a square mod p, and for these the coefficients are integers.

The coefficients in these expansions that are not integral are complex so there is a choice

that has been made in defining the forms f34.2.b.a and f34.4.b.a above, since the complex

conjugates of these forms are also modular forms of the same weight for Γ1(34).

[Returning, once again, to the case p=19, notice that the coefficients of q19 in the

modular forms above are -4 and 60 and that these are the α and β coefficients that appear

for ϕ=4, 5 in table 1.]

1.5 Outline of the paper

In outline, the rest of this paper is as follows. We recall the essential features of the

Hulek-Verrill manifold in section 2. This manifold admits a freely acting symmetry group

that is abstractly Z/10Z and taking the quotient by this group, or by the Z/5Z subgroup,

yields manifolds with one complex structure parameter. These one parameter families of

manifolds are the subject of our investigation. In section 3 we set out the Picard-Fuchs

equation, define bases of periods that satisfy this equation and explain the relations between

these. Having set out our conventions, we proceed in section 4 to calculate the periods,

and their first three covariant derivatives, at the rank two attractor points. Since the

attractor points are of rank two, we expect, and duly find, two Q-linear relations between

the periods, at each attractor point. We are also able to evaluate the periods and their

covariant derivatives, at the attractor points, in terms of critical L-values, for the modular

groups together with the τ -parameter of the H2,1⊕H1,2 lattice. The principal results, in

this direction, are recorded in table 5 and table 8. Give the periods, we are able to evaluate
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also the central charge and so the area of the horizon of the black hole in terms of ratios

of L-values.

It was pointed out, already by Moore, that if an attractor point occurs for a parameter

value that is within the region of convergence of the instanton sum for the Yukawa coupling,

then there will be interesting identities that involve the instanton numbers. The attractor

point at ϕ=33−8
√

17 is just such a point and we write out the simplest of these identities in

section 5. These identities are morally like the identities (1.2) and (1.3), except that they

involve the special geometry coordinate t and the prepotential F , and so the instanton

numbers. We note also that as with the relation (1.3) interesting identities exist even

outside the region where the instanton sums converge.

We have come to the attractor points and the consequent splitting of the Hodge struc-

ture by an indirect means. The Hodge Conjecture requires, as we have noted, that there

should be a geometrical reason for this splitting. We have not observed this directly in

the geometry of the manifold, but speculate in section 5 how this may come about. We

speculate also with regard to the physics interpretation of our results. Prominent among

these are how to interpret the infinite number of cycles with vanishing central charge, cor-

responding to points of the H2,1⊕H1,2 lattice, that become massless at the attractor point.

We discuss this in section 6.

Three appendices deal with ancillary matters. In appendix A we discuss the toric

polyhedron associated to AESZ34 and its dual. In appendix B we discuss the likelihood

that there are further rank two attractor points in the moduli space of AESZ34. As

part of this discussion we ask how many factorisations of the Frobenius polynomial can be

expected to occur ‘at random’. This number turns out to be much smaller than the number

of factorisations that do occur. From the statistics of the distribution of the coefficients of

the Frobenius polynomial, we are also led to conjecture that these are distributed according

to the statistics of random USp(4) matrices. Appendix C is a telegraphic review of special

geometry, included largely to set our conventions.

2 AESZ34: a quotient of a Hulek-Verrill manifold

Hulek and Verrill in [7] consider a family of Calabi-Yau manifolds that are birational to a

variety defined on T = P4 \ {X1X2X3X4X5 = 0} by the equation

(X1 +X2 +X3 +X4 +X5)

(
µ1

X1
+
µ2

X2
+
µ3

X3
+
µ4

X4
+
µ5

X5

)
= µ6 . (2.1)

For generic parameters µ1, . . . , µ6, the variety X] that is defined by this equation is smooth

on T, however there are 30 nodes where a subset of the coordinates Xj vanish. Three nodes

lie on each of ten surfaces. The singularities can be simultaneously resolved by blowing up

each of these ten surfaces yielding a smooth Calabi-Yau manifold X̂.

A multiplication of the coefficients µj , j=1, . . . , 6 in (2.1) by a common scale has

no effect, so superficially this equation defines a five parameter family of manifolds. The

equation defines a reflexive polyhedron, in the sense of Batyrev. Analysis of the polyhedron

and the resolution just described reveals that the superficial count of complex structure
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ϕ = − 1
7

p α β

5 0 −14

7

11 0 −28

13 −4 18

17 6 74

19 2 80

23 0 −112

29 −6 190

31 −4 72

37 2 −346

41 6 162

43 8 −412

47 −12 24

53 6 318

59 −6 −200

61 8 −198

67 −4 −716

71 0 392

73 2 538

79 8 240

83 −6 −1072

89 −6 810

97 −10 1354

101 0 −1358

103 −4 −832

107 12 444

109 2 1870

113 6 1378

127 −16 1944

131 18 −848

137 18 −2966

ϕ = 33± 8
√

17

p α β

13 2 −42

17 −6 34

19 −4 60

43 −4 508

47 0 −136

53 6 318

59 12 300

67 −4 −676

83 −12 −1132

89 6 −350

101 −6 −1218

103 8 8

127 −16 −1216

137 −18 1954

149 6 −1010

151 8 −968

157 14 1654

179 12 −980

191 0 952

223 −16 −712

229 −22 5230

239 0 2040

251 −12 −5868

257 6 −4646

263 24 −6472

271 −16 8312

281 18 −518

293 6 −6402

307 20 −3516

331 −4 2892

349 −34 5270

Table 2. The (α, β)-coefficients for the attractor points ϕ =− 1
7 and ϕ = 33 ± 8

√
17.

parameters is in fact correct and that the Hodge numbers for a generic member of the

family are given by

hpq
(
X̂
)

=

1

0 0

0 45 0

1 5 5 1 .

0 45 0

0 0

1

Thus χ
(
X̂
)

= 2(h11 − h21) = 80.
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We consider now a 1-parameter subfamily where µj=1, j=1, . . . , 5 and µ6=1/ϕ then

the manifold admits a symmetry isomorphic to Z/10Z with generator

Xi →
1

Xi+1
,

with the indices understood mod 5. This symmetry is fixed point free if ϕ 6∈ {1, 1
9 ,

1
25 ,∞}.

This is easy to see for points of the singular variety X]. For the resolution X̂, we note

that, since it is a resolution, there is a projection X̂ → X] and so a fixed point of X̂

would project to a fixed point of X], and these do not exist unless ϕ takes one of the

values {1, 1
9 ,

1
25 , ∞}. Taking the quotient by either the Z/10Z, or the Z/5Z subgroup with

generator Xi → Xi+2, yields a family of smooth manifolds, that we shall denote by X,

with one complex structure parameter and the following Hodge numbers:

hpq(X) =

1

0 0

0 4κ+1 0

1 1 1 1 ,

0 4κ+1 0

0 0

1

where κ=1, 2 according as the quotient is taken by a group of order 10 or 5.

We wish to describe the singular members of the family Xϕ and how the symmetries

act on these in somewhat greater detail. We will restrict attention to points Xj in T since

the discussion of the points not in T is part of the story of how the non-compact manifold

described by (2.1) is compactified so as to yield a Calabi-Yau manifold.

A first remark is that the manifold defined by (2.1) can be regarded as arising from

two linear equations in six variables

6∑
i=1

Xi = 0 and

6∑
i=1

µi
Xi

= 0 , (2.2)

since eliminating X6 between these two equations returns us to (2.1).

Let P (X) denote the defining equation

P (X) =

(
5∑
i=1

Xi

)(
5∑
i=1

1

Xi

)
− 1

ϕ
.

The partial derivatives of P vanish at a singularity, yielding the conditions(
5∑
i=1

1

Xi

)
− 1

X2
j

(
5∑
i=1

Xi

)
= 0 , (2.3)

for j=1, . . . , 5. It follows, since we are assuming that Xj does not vanish, that if either∑5
i=1Xi or

∑5
i=1

1
Xi

vanish, then both sums vanish. This can only happen when ϕ=∞, but
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in this case (2.3) provides no further constraints so the singular set is a two-dimensional

surface described by the equations

5∑
i=1

Xi = 0 and
5∑
i=1

1

Xi
= 0 ,

analogous to (2.2) but with five variables, instead of six. This being so, we expect the

singular set to be a K3 surface.

If now neither sum in (2.3) vanishes, then the X2
j are all equal and by choice of scale

can all be set to unity. Let us suppose that r of the Xj take the value −1 and the remaining

5 − r take the value 1. So, up to permutation of the coordinates, the singular points are

given by

Xj = ( 1, . . . , 1︸ ︷︷ ︸
5−r

,−1, . . . ,−1︸ ︷︷ ︸
r

) , (2.4)

and we may assume that r=0, 1 or 2. Such a point lies on the manifold with ϕ=(5−2r)−2.

r=0. In this case ϕ=1/25 and there is one singular point Xj=(1, 1, 1, 1, 1). This point is

fixed by both the Z/5Z and Z/2Z symmetry generators and so gives rise to a single point

that is fixed by either Z/10Z or Z/5Z on the respective quotient manifolds.

r=1. This case corresponds to ϕ=1/9 and Xj=(1, 1, 1, 1,−1), up to cyclic permutation.

These five points are fixed by the Z/2Z generator and give rise to a single point on the

Z/5Z quotient and a single point that is fixed by Z/2Z on the Z/10Z quotient.

r=2. The last case corresponds to ϕ=1. Now there are ten points, which are the cyclic

permutations of (1, 1, 1,−1,−1) and (1, 1,−1, 1,−1). These points give rise to two points

in the Z/5Z quotient and two points fixed by a Z/2Z action, in the Z/10Z quotient.

It is easy to see that a point that is fixed by an element of Z/10Z must be fixed by

either, or both of, the Z/2Z or the Z/5Z generators. A point fixed by the Z/2Z generator

is, up to permutation, of the form (2.4). So these coincide with the singular points of

the ϕ=1/25, 1/9, 1 manifolds and have the effect of turning the conifold singularities into

hyperconifold singularities. The fixed point (1, 1, 1, 1, 1) is also fixed by the Z/5Z generator.

The other fixed points of the Z/5Z generator are the four points

Xj = ζjk ; k = 1, 2, 3, 4 ,

where ζ is a nontrivial fifth root of unity. For such a point we have
∑

j Xj=
∑

j 1/Xj=0,

so these lie in the singular surface of the ϕ=∞ manifold.

3 The periods of Xϕ

3.1 The Picard-Fuchs equation

A method for finding the Picard Fuchs differential equation and the periods that satisfy it

is given in [28]. The differential operator for the family Xϕ is

L = S4ϑ
4 + S3ϑ

3 + S2ϑ
2 + S1ϑ+ S0
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where ϑ = ϕ d/dϕ and

S4 = (ϕ− 1)(9ϕ− 1)(25ϕ− 1)

S3 = 2ϕ
(
675ϕ2 − 518ϕ+ 35

)
S2 = ϕ

(
2925ϕ2 − 1580ϕ+ 63

)
S1 = 4ϕ

(
675ϕ2 − 272ϕ+ 7

)
S0 = 5ϕ(180ϕ2 − 57ϕ+ 1).

The operator L appears as operator number 34 in the AESZ list [29] and has Riemann

symbol

P



0 1
25

1
9 1 ∞

0 0 0 0 1

0 1 1 1 1

0 1 1 1 2

0 2 2 2 2

ϕ


.

One can see that there is a point of maximal unipotent monodromy (the large complex

structure point) at ϕ = 0 and hyperconifold singularities when ϕ ∈ { 1
25 ,

1
9 , 1}.

3.2 The periods

One may use the method of Frobenius to solve the differential equation around ϕ = 0 and

find a basis of solutions that we shall term the arithmetic Frobenius basis

$0 = f0(ϕ)

$1 = f0(ϕ) log(ϕ) + f1(ϕ)

$2 = f0(ϕ) log2(ϕ) + 2f1(ϕ) log(ϕ) + f2(ϕ)

$3 = f0(ϕ) log3(ϕ) + 3f1(ϕ) log2(ϕ) + 3f2(ϕ) log(ϕ) + f3(ϕ)

(3.1)

where the fj are power series with f0(0) = 1 and fj(0) = 0 for j ≥ 1.

As a practical matter, the coefficients of the functions fj are best calculated via re-

currence relations. These are given in [28], but, in any event, are easy to derive. We

cannot however refrain from pointing out that there is an interesting closed form for the

coefficients an, n=0, 1, . . ., of the fundamental period $0, that was found by Verrill.

an =
∑

p+q+r+s+t=n

(
n!

p!q!r!s!t!

)2

.

If we want the periods to be single valued we can cut the ϕ plane along the negative

real axis and along the positive real axis for 1/25 < ϕ <∞, as shown in the figure 8.

There are other bases of periods that will also concern us. The first of these which

we can call the complex Frobenius basis, and whose utility will become evident shortly, is

simply given by

$̂j(ϕ) =
$j(ϕ)

(2πi)j
.
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ϕ = −1
7

ϕ = 0 ϕ = ϕ−

ϕ = 1
25

ϕ = 1
9 ϕ = 1

Figure 8. The functions fj , and so the periods, are defined initially in a disk of radius 1
25 . There

is a branch cut on the negative real axis owing to our convention for the definition of the logarithm.

The branch cut that runs out along the positive real axis from ϕ = 1
25 is due to the singularities

of the functions fj . The two red dots indicate the attractor points at ϕ = − 1
7 and ϕ = ϕ−. The

large complex structure limit is at ϕ = 0, and is marked by a hollow dot, and the black dots

indicate (hyper) conifold points. The attractor point at ϕ = ϕ+ and the conifold point at ϕ =∞
are not shown.

We will continue to modify the basis $j , but we pause to relate the $j to an integral

basis and to set notation for the charge vector for the case that X is used to reduce IIB

string theory to a 4D black hole spacetime.

The prepotential F transforms in a complicated way under simplectic changes of the

basis forms {αa, βb}. It is believed however that, when there is a point of large complex

structure, there is a choice of basis such that the prepotential takes the form

F = − 1

3!
Yabc

zazbzc

z0
+ . . . ,

where the elipsis indicates a power series in the exponentially small terms e2πizi/z0 , and the

indices a, b, c run over the values 0, 1, . . . , h11(X̃). With X̃ denoting the mirror manifold.

By choice of basis, the quantities Yabc are related to invariants of X̃ . Let i, j, k run over

the values 1, . . . , h11(X̌), omitting zero, then there is a choice of symplectic basis such that

Yijk =

∫
X̃
eiejek

Y0jk ∈
{

0,
1

2

}
Y00k = − 1

12

∫
X̃
c2 ek

Y000 = −3
ζ(3)

(2πi)3
χ
(
X̃
)

(3.2)

where the ek are a basis for H2
(
X̃
)
. It is perhaps intuitive that the coefficients Y0jk should

be given by the integral of c1ejek and so vanish. However, this is not quite true. The

components can, by choice of basis, be made to take either the value 0 or 1
2 . For the

case of one parameter, the rule is simple and depends on whether Y111 is even or odd. If

Y111 is even, then Y011 can be taken to vanish, and if Y111 is odd, it can be taken to be

1/2. The history of the identification of these terms is a long one. The relation between
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the large complex structure of the prepotential and the intersection numbers Yijk may be

found in [32]. The identification of Y000 appears in [33]. The identification of the role of the

coefficients Y0jk and Y00k may be found in [34]. The advance that sets these observations

in context is the Gamma class [35].

The utility of the prepotential F is that we may express the components of the holo-

morphic three-form with respect to a symplectic cohomology basis in terms of this

Ω = zaαa −Fb(z)βb ; Fb =
∂F
∂zb

, (3.3)

where αa, β
b ∈ H3(X,Z) is the symplectic basis introduced in section 1.2.

Returning to the Yukawa couplings, the specialization of (3.2) to our manifold is

Y111 = 12κ

Y011 = 0

Y001 = −κ

Y000 = −24κ
ζ(3)

(2πi)3
.

We form a vector from the integral periods

Π =


∂F
∂z0

∂F
∂z1

z0

z1

 (3.4)

and by considering asymptotic forms in the large complex structure limit ϕ→ 0, with the

identification z1/z0 ∼ 1
2πi logϕ, we deduce the relation between Π and the vector $̂ formed

from the periods $̂j

Π = ρ̂ $̂ ,

with

ρ̂ =


−1

3Y000 −1
2Y001 0 1

6Y111

−1
2Y001 − Y011 −1

2Y111 0

1 0 0 0

0 1 0 0

 =


8κ ζ(3)

(2πi)3
1
2κ 0 2κ

1
2κ 0 − 6κ 0

1 0 0 0

0 1 0 0

 .

Let us now introduce another basis ˜̂$j which we shall term the modified complex

Frobenius basis or, in the slightly shorter form, the modified complex basis. This basis

differs from $̂j only when j=3

˜̂$j =


$̂j ; for j = 0, 1, 2

$̂3 − 2
Y000

Y111
$̂0 ; for j = 3 .
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This basis is related to the integral basis Π by a matrix ˜̂ρ

Π = ˜̂ρ ˜̂$
with

˜̂ρ =


0 −1

2Y001 0 1
6Y111

−1
2Y001 − Y011 −1

2Y111 0

1 0 0 0

0 1 0 0


which differs from ρ̂ only in so far as the irrational element Y000 has been removed.

Finally, we will require also a modified arithmetic Frobenius basis, or for short a modified

arithmetic basis, which we shall denote by $̃j where

$̃j =


$j ; for j = 0, 1, 2

$3 − 2(2πi)3 Y000

Y111
$0 ; for j = 3 .

For the manifold we are considering we have simply

$̃3 = $3 − 4ζ(3)$0 .

To justify our notation: we could regard ∗̂ as the operation that divides $j by (2πi)j ,

and by ∗̃ the operation that adjusts the last component. Then the four versions of the

Frobenius basis that we have introduced are

$j , $̂j , $̃j and ˜̂$j .

3.3 The periods on the real axis

The functions fj(ϕ) are defined as series with real, in fact rational, coefficients and so

are real for real values of ϕ, that lie within the disks in which the series converge. For ϕ

real and ϕ > 1
25 the values of the fj , defined by analytic continuation, will in general be

complex owing to the singularity at ϕ= 1
25 . For ϕ real and negative the fj are real but the

periods $j are complex owing to the presence of the logarithms. We cut the plane as in

figure 8 and understand the value of the periods, for ϕ real, to be the limit of approaching

the real axis from above.

For the modified arithmetic basis, let us define real and imaginary parts for the periods

by the relation

$̃j(ϕ+ iε) = ξj(ϕ) + iηj(ϕ) .

Thus, for example, for our manifold ξ3 is the real part of $3 − 4ζ(3)$0. The operator L
is real, for real ϕ, and the periods ξj form a basis of solutions on any interval I of the real

axis, that does not contain a singular point. Since the imaginary parts ηj also satisfy the

differential equation, there is a constant matrix TI such that

η(ϕ) = TI ξ(ϕ) ; ϕ ∈ I .
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For the interval (0, 1
25) the $̃j are real, so for this interval the ηj and the corresponding

T vanish. By the Schwarz Reflection Principle the values of the periods just below a cut

are $j(ϕ− iε)=ξj(ϕ)− iηj(ϕ), so the real part ξj is, in fact, the average of the values just

above and just below the cut.

The attractor point at ϕ = − 1
7 lies in the interval I=(−∞, 0). Here the T matrix is

easily calculated from (3.1) using the fact that logϕ= log |ϕ|+ iπ. We find

T(−∞,0) =


0 0 0 0

π 0 0 0

0 2π 0 0

2π3 0 3π 0

 .

For I=
(
0, 1

25

)
we have already observed that TI=0. While for the interval (1,∞), that

contains the attractor point ϕ+, we find by numerical calculation that

T(1,∞) =


0 − 45

28π 0 − 15
28π3

π
4 0 − 3

4π 0

0 11π
28 0 − 15

28π

−π3

4 0 3π
4 0

 .

The point that is being made is that the imaginary parts of the periods are readily

calculated in terms of the real parts.

Now let mI denote the matrix

mI = ˜̂ρν(1 + iTI) ,

where ν is the diagonal matrix with entries (2πi)j , j=0, . . . , 3. The utility of this matrix is

that we have

Π = ˜̂ρν(ξ + iη) = ˜̂ρν(1 + iTI) ξ = mI ξ .

Let us further define matrices σI and µI by the relations

mT
I ΣmI = σI and m†IΣmI = µI .

We record these matrices for the cases that we will need in the following table.

3.4 Monodromy around the singular points

The Picard-Fuchs operator has singular points when ϕ ∈ {0, 1
25 ,

1
9 , 1,∞}. These singular-

ities of the operator coincide with the values of ϕ for which Xϕ is singular. Under mon-

odromy about a singular point ϕ=φ the integral period vector undergoes a monodromy
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I σI µI

(−∞, 0) − 2κ

(2πi)3


0 6π2 0 1

−6π2 0 −3 0

0 3 0 0

−1 0 0 0

 − 2κ

(2πi)3


0 6π2 0 1

6π2 0 3 0

0 3 0 0

1 0 0 0



(
0,

1

25

)
− 2κ

(2πi)3


0 0 0 1

0 0 −3 0

0 3 0 0

−1 0 0 0

 − 2κ

(2πi)3


0 0 0 1

0 0 3 0

0 3 0 0

1 0 0 0



(1, ∞) − κ

28(2πi)3


0 39π2 0 41

−39π2 0 −51 0

0 51 0 45
π2

−41 0 − 45
π2 0

 − κ

28(2πi)3


0 39π2 0 41

39π2 0 51 0

0 51 0 45
π2

41 0 45
π2 0


Table 3. The matrices σI and µI for the intervals of the real axis that contain the three attractor

points.

Π→MφΠ. The monodromy matrices are the following:

M0 =


1 −1 3κ 6κ

0 1 −6κ −12κ

0 0 1 0

0 0 1 1

 M 1
25

=


1 0 0 0

0 1 0 0

−10
κ 0 1 0

0 0 0 1



M 1
9

=


−9 −2 2κ 0

0 1 0 0

−50
κ −10

κ 11 0

−10
κ − 2

κ 2 1

 M1 =


−39 −16 16κ −24κ

60 25 −24κ 36κ

−100
κ −40

κ 41 −60

−40
κ −16

κ 16 −23



M∞ =


31 17 −19κ 42κ

−60 −35 42κ −96κ
60
κ

30
κ −29 60

30
κ

16
κ −17 37


In these matrices, κ=1 for the Z/10Z quotient and κ=2 for the Z/5Z quotient. For the

case that no quotient is taken, we have κ=10. This case is not a one parameter family and

indeed the monodromy matrices M 1
9

and M1 are not integral for this value of κ.

The three monodromy matrices corresponding to the conifolds at ϕ=1/25, 1/9, 1, have

the form

M = 1− ccnfw(Σw)T , (3.5)

with ccnf a coefficient and w a vector with integral components that corresponds to the

vanishing cycle, the cycle that shrinks to zero at the conifold point. We will meet the
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Monodromy ccnf wT

M 1
25

10
κ (0, 0,−1, 0)

M 1
9

2
κ (κ, 0, 5, 1)

M1
4
κ (2κ,−3κ, 5, 2)

Table 4. The coefficients and w-vectors for the three conifold points.

ϕ = 0 ϕ = 1/25 ϕ = 1/9 ϕ = 1 ϕ =∞

P

Figure 9. A sketch of a contour, that can be deformed to a point, which shows that the product

of all the monodromy matrices, taken in order, is the identity. In the figure, P is a basepoint for

the monodromies.

coefficients ccnf again when we come to discuss the genus one corrections to the prepotential.

These coefficients and the corresponding vectors are shown in table 4.

The monodromy matrix M0 is readily calculated by hand calculation. The three mon-

odromies corresponding to the conifold points are calculated by integration of the Picard

Fuchs equation along loops that encircle the conifold points. This technique can be ap-

plied also to the calculation of the monodromy matrix M∞, but it is easier to note that a

contour, as in figure 9, that winds once about each of the singular points can be deformed

to a point and this allows us to relate M∞ to the other matrices.

M∞ =
(
M0M 1

25
M 1

9
M1

)−1
.

This matrix differs from the identity by a matrix of rank two and can be brought to a

Jordan form with two 2×2 blocks. Let J and S denote the matrices

J =


1 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1

 ; S =


2κ −κ

2 −κ
2

4κ
15

−6κ κ 2κ −κ
2

0 0 1 0

1 0 0 0

 .

Then

M∞ = SJS−1 .
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4 The periods and their derivatives at the attractor points

4.1 L-functions

Given a modular form f we can define the associated L-function in terms of the Mellin

transform

L(s) =
(2π)s

Γ(s)

∫ ∞
0

dy f(iy)ys−1 .

The growth of the coefficients in the q series for f is such that the integral above converges

for Re(s) > 1. The ambiguity associated with the sign of the imaginary part of f leads to

a corresponding ambiguity in the choice of sign of the imaginary part of the L-function.

Let γ(s) = (2π)sΓ(s) which appears in the reflection formula for a weight w modular

form. We say that an integer s0 is a critical point if neither γ(s) nor γ(w − s) has a pole

there. In other words, the critical points for a weight w-modular form are {1, 2, . . . , w−1}.
By Deligne’s conjecture [36], it is expected that the critical L-values are related to the

periods of the modular Calabi-Yau manifold, so we may search numerically for relations

between the periods and critical L-function values. See [37] for an example of this on a

rigid Calabi-Yau manifold which is modular by [25].

Since the reflection formula relates L(s) to L(w − k), the critical values can be taken

to be L4(1) and L4(2) for weight 4 L-functions because the L(3) can be expressed in terms

of L(1). Similarly, a weight two L function has critical value L(1).

4.2 ϕ = −1/7

We have seen that the factorisation of R(T ) when ϕ = − 1
7 is related to the group Γ0(14)

and the weight 2 and weight 4 modular forms with LMFDB designations 14.2.a.a and

14.4.a.a. We expect to find two linear relations between the periods, suitably understood,

with rational coefficients. The caveat ‘suitably understood’ refers to a ‘transcendentality

degree’ such that π has transcendentality degree 1 and ζ(3) has transcendentality degree

3. We will specify this more fully as we proceed. In this counting the periods $j and $̃j

have transcendentality degree j, so the two linear relations with rational coefficients that

we find are most simply stated between the quantities $̃/π
j . The use of the modified

arithmetic periods allows us to write relations without the explicit appearance of ζ(3).

The expected relations do exist, but more is true: the values of the periods at the

attractor points are simply related to the values of of the L-functions, associated to the

modular forms, at their critical points. The relations are most easily stated for the real

parts ξj of the modified arithmetic basis. The critical points of the L-functions are s=1

and s=2 for the weight 4 function that we will denote by L4(s) and s=1 for the weight two

function that we will denote by L2(s). These have the values

L4(1) = 0.67496319716994177129269568273091339919322842904407 . . .

L4(2) = 0.91930674266912115653914356907939249680895763199044 . . .

and

L2(1) = 0.33022365934448053902826194612283487754045234078189 . . . .
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The accuracy given is sufficient to check the simpler relations that follow, however, unless

otherwise stated, our numerical calculations are performed with an accuracy of at least

1000 figures.

The relations between the periods and the L- functions are

ξ0 =
7

π2
L4(2) ξ1 = −5

2
L4(1)

ξ2 = − 7

3
L4(2) ξ3 =

11π2

2
L4(1) .

So we find the linear relations

ξ0 +
3

π2
ξ2 = 0 and

11

π
ξ1 +

5

π3
ξ3 = 0 . (4.1)

Notice that L2(1) does not appear in these relations and also that the L4(k), k=1, 2, have

transcendentality degree k.

Let us try to see what we can say about the derivatives of the ξj at ϕ =− 1
7 . It is here

that L2(1) appears along with the L4-values. The relations are most simply stated for the

covariant derivatives

Dξj = ξ′j +K ′ξj

where ′ denotes the derivative with respect to ϕ. The derivative of the Kähler potential

can be calculated, from (C.1), in terms of the periods and their derivatives. Perhaps

surprisingly, this quantity turns out to be rational, in fact K ′(−1
7)=− 35

8 . We quickly find

the relations

19Dξ0 +
15

π2
Dξ2 = 0

5Dξ1 +
3

π2
Dξ3 = 0 .

We can relate Dξ0 and Dξ2 directly to L2(1), but Dξ1 and Dξ3 depend also on a new

irrational number v⊥:

Dξ0 = −15·72

24π2
L2(1) Dξ1 =

3·72

25π

L2(1)

v⊥

Dξ2 =
19·72

24
L2(1) Dξ3 = −15·72 π

25

L2(1)

v⊥
.

where

v⊥ = 0.37369955695472976699767292752499463211766555651682 . . . .

To understand the role of v⊥ let us revert to the integral basis Π. With a certain

prescience, we also define a complex number

τ⊥ =
1

2
+ iv⊥

In virtue of our results so far we find

DΠ

(
−1

7

)
=

3·72

25π2

iL2(1)

v⊥



−5κ

10κ

−5

−3

− τ⊥

−7κ

14κ

−10

−5


 (4.2)
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j = 0 j = 1 j = 2 j = 3

ξj
7

π2
L4(2) −5

2
L4(1) −7

3
L4(2)

11π2

2
L4(1)

Dξj −15·72

24π2
L2(1)

3·72

25π

L2(1)

v⊥
19·72

24
L2(1) −15·72π

25

L2(1)

v⊥

D2ξj
5·73

28π

v⊥

L2(1)

73

29

1

L2(1)
−19·73π

3·28

v⊥

L2(1)
−5·73π2

29

1

L2(1)

ygϕϕ̄eKD

(
gϕϕ̄ e−K

y
D2ξj

)
− 3·75

212π2L4(1)
− 15·74

213L4(2)

75

212L4(1)

33·74π2

213L4(2)

Table 5. A table showing the values for the ξj and their covariant derivatives when ϕ =− 1
7 . For

the first two rows, the transcendentality degree for the j’th entry is j, while for the third and fourth

rows, it is 3−j.

The vector DΠ is the vector of periods of DΩ, which, owing to the properties of special

geometry, lies in H2,1(X) = Λ⊥ ⊗ C. The relation above identifies τ⊥ with the parameter

of the lattice that the components of DΠ are valued in.

The j-invariant of this lattice is rational and given by

j(τ⊥) =

(
215

28

)3

.

LMFDB contains only one elliptic curve defined over Q with this j-invariant and with

the form 14.2.a.a as its associated weight 2 eigenform. This curve can be defined by the

equation

y2 + xy + y = x3 + 4x− 6 . (4.3)

and is indeed the modular curve X0(14) itself.4

We gather the periods and their covariant derivatives in table 5.

We give also a table of the values of quantities that enter in to the calculation of the

covariant derivatives of table 5.

4As an aside, we note that a rank two attractor Xϕ∗ with h2,1 = 1 can be used to define a flux

compactification with internal manifold (an orientifold of) Xϕ∗ × T 2 [30]. In this scenario, the G-flux of

M-theory is given by

G =
1

τ − τ

{(
F − τH

)
∧ dz −

(
F − τH

)
∧ dz̄

}
where F,H ∈ H3(Xϕ∗ ,Z) and τ is the complex structure parameter of T 2. They satisfy

F − τH ∈ H2,1(Xϕ∗).
We know that H2,1

(
Xϕ∗

)
is generated by DϕΩ and, by comparison, we see that the integral vectors in

equation 4.2 can be identified with the periods of F and H and that T 2 can be identified with the elliptic

curve defined by equation 4.3.
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e−K K ′ K ′′ gϕϕ̄ y Γ′ + Γ2

72κ

2π3
L4(1)L4(2) −5·7

23
−5·73

26

3273L2(1)2

28πv⊥L4(1)L4(2)
− 3·76 κ

210(2πi)3

7

27
(412Γ−1197)

Table 6. The values of quantities that enter into the calculation of the covariant derivatives of

table 5. In this table, Γ denotes the Christoffel symbol Γϕϕϕ.

Λ Λ⊥

(4κ,−15κ,−5, 0), (0, 0, 2, 1) (3κ,−6κ, 0, 1), (κ,−2κ,−5,−1)

Table 7. Generators for the lattices Λ and Λ⊥ for the attractor point at ϕ =− 1/7.

We can continue with a computation of the second5 and third covariant derivatives

of the ξj .

It is a pleasure to check identities such as∫
DΩ ∧ Ω = 0 ;

∫
D2Ω ∧ Ω = 0 ;

∫
Ω′′′∧ Ω = y and

∫
D2Ω ∧DΩ = −y ,

which translate into

(Dξ)Tσξ = 0 , (D2ξ)Tσξ = 0 ; (ξ′′′)Tσξ = y and (D2ξ)TσDξ = −y .

In the third of these identities, the third derivative ξ′′′ may be replaced by the third

derivative of table 5 without affecting the result.

Let us return to the integral period Π, whose components have not yet been stated

explicitly

Π

(
−1

7

)
= i

L4(1)

4π


8κ

−30κ

0

5

+
7

2

L4(2)

π2


0

0

2

1

 . (4.4)

The two integral vectors define a lattice but there is a finer lattice since the difference of

the two vectors divides

(8κ,−30κ, 0, 5)− (0, 0, 2, 1) = 2 (4κ,−15κ,−1, 2)

One could define a lattice parameter τ for either the coarser, or the finer, lattice but in

both cases the invariant j(τ) seems to be transcendental.

The vectors Π and DΠ given in (4.2) and (4.4) reside in Λ and Λ⊥, respectively and

allow us to identify the following bases for the lattices.

5It is best to restore the coordinate indices that have been suppressed on the derivatives when performing

the calculation, in order to remember to include the Christoffel symbols Γϕϕϕ that arise in the higher

derivatives.
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The basis for Λ is the finer basis discussed above, while the basis for Λ⊥ is a basis

equivalent to that defined by (4.2). We observe that Λ⊕Λ⊥ has index 72κ2 within H3(X,Z).

Being orthogonal to Λ⊥, with respect to the symplectic product we see that Λ is the

charge lattice and we have a two parameter family of charge vectors

Qk` = k (4κ,−15κ,−5, 0) + ` (0, 0, 2, 1) .

Equation 1.6 can now be used to find that the black hole with charge Qk` will have horizon

area given by

A(−1/7)

4π
=

(5k − 2`)2

8

(
πL4(1)

L4(2)

)
+

49k2

2

(
πL4(1)

L4(2)

)−1

. (4.5)

We can rewrite (4.4) in terms of the basis vectors of the finer lattice and, in this way,

we see that, up to an SL(2,Z) transformation, the lattice has parameter

τ = −1

2
+ iv∗ with v∗ = 7

L4(2)

πL4(1)
.

The area of the black hole can be rewritten in a simpler form in terms of v∗

A(−1/7) = 14π

{
k2v∗ +

(
`− 5k

2

)2 1

v∗

}
.

The parameter τ is a ratio of periods and the periods are, as we have seen, Q-linear in

the two quantities πL4(1) and L4(2). So it is inevitable that τ should be a fractional linear

function (av∗ + b)/(cv∗ + d) of the ratio we have called v∗. For the τ we have chosen, this

is just a linear function, but an SL(2,Z) transform of this would yield a fractional linear

function, in general. The special geometry coordinate t is also a ratio of periods, so has

this same general form. In fact we see from (4.4) that

t∗ =
1

2
+

5i

4v∗
, (4.6)

where we have written t(−1/7)=t∗.

This brings us to the three ‘Attractor Conjectures’ formulated in section 8 of [4].

Conjecture 2 amounts to the assumption, to which we subscibe, that the attractor points

are algebraic in the parameter. Conjecture 1, however, asserts that the period vector Π,

evaluated at the attractor point, is, projectively, a vector of algebraic numbers. Thus t∗,

and so v∗ would have to be algebraic. While there is no proof that v∗ is transcendental,

it is generally believed that the critical L-values are algebraically independent. If this

is so, then Conjecture 1 is contradicted by (4.6). Conjecture 3 concerns a conjectured

extension of Kronecker’s Jugendtraum and depends for its formulation on the periods

being projectively algebraic.
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4.3 The rudiments of arithmetic in Q(
√

17)

As a preparation for discussing the attractor points 33±8
√

17, let us pause briefly to recall

some elementary facts pertaining to the field Q(
√

17), which is the field of numbers of

the form

t = r + s
√

17 ; r, s ∈ Q . (4.7)

The conjugate of t, denoted by t̄ is the number

t̄ = r − s
√

17 .

For the avoidance of doubt: in this subsection, the quantity t bears no relation to the

coordinate of special geometry.

An integer in a field K is a number x ∈ K that is a root of an irreducible monic

polynomial with coefficients in Z. Thus, for example, the rational integers, as well as

numbers such as
√

17 and (1 +
√

17)/2, are integers of Q(
√

17), since they satisfy the

respective equations

x−m = 0 ; m ∈ Z ,
x2 − 17 = 0 ,

x2 − x− 4 = 0 .

If x is an integer, then so is −x, and one can show that the sum and product of two

integers is again an integer. It follows from the foregoing that the integers of Q(
√

17) are

of the form

a+ b
√

17 ; a, b ∈ Z and
a+ b

√
17

2
, if a and b are both odd integers.

A number t ∈ Q(
√

17) of the form (4.7) has a norm N (t)

N (t) = tt̄ = r2 − 17s2 .

The term norm is universally used in this context, even though it is somewhat a misnomer,

since N (t) is not necessarily positive. It has however the property that N (yz)=N (y)N (z),

for all y, z ∈ Q(
√

17). Moreover, N (x) ∈ Z if x is an integer of the field.

An integer, whose inverse is also an integer, is a unit and the set of all units form

a group. A unit necessarily has norm ±1. For Q(
√

17) the unit group is infinite and is

generated by 4 +
√

17 and we have

N (4±
√

17) = −1 .

The conjugate satisfies 4 −
√

17 =− (4 +
√

17)−1 and so also generates.

The attractor points 33 ± 8
√

17 are units, so are powers of the generator. In fact

33± 8
√

17 = (4±
√

17)2 .

The existence of units complicates the process of factorizing integers. In general, for a

field Q(
√
d), the factorisation of integers, even leaving aside multiplication by units, is not
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unique. However, for Q(
√

17), it is unique, up to multiplication by units. Given an integer

x, that is not a unit, we can ask if it can be factored into a product x=yz of integers,

neither of which is a unit. If x cannot be factored, in this way, then x is a prime of the

field. Since N (x)=N (y)N (z) the integer x can only factor if N (x) factors as a rational

integer. In particular, if N (x) is a rational prime, then x is a prime of the field. Note that

some of the rational primes factor and so are not primes of the field. For example

2 = −

(
3 +
√

17

2

)(
3−
√

17

2

)
and 17 =

(√
17
)2

.

We will often factorise integers in the following, in order both to save space, particularly

in tables, and to show that otherwise inscrutable numbers are the products of a small

number of primes with small norm. The numbers 4 ±
√

17 and (3 ±
√

17)/2, the latter

being the prime with the smallest absolute value of the norm, so somewhat analogous to

2, are ubiquitous in expressions, so we will often write

4±
√

17 = ε± and
3±
√

17

2
= δ± .

As an illustration of the utility of this consider a relation that we will meet shortly

j(τ⊥+ ) =
1

24
ε4+δ

2
−
(
2−
√

17
)3(

14− 5
√

17
)3
.

If expanded, the right hand side becomes the somewhat more inscrutable number

1

32

(
3832069 + 915957

√
17
)
.

4.4 ϕ±=33± 8
√

17

The relevant L-functions at ϕ = 33 ± 8
√

17 have LMFDB designations 34.2.b.a and

34.4.b.a. As in the previous section, we denote the corresponding weight-j L-function by

Lj(s). These functions are complex but we can concentrate on the real parts since the

imaginary parts are simply related to these. We set

Lj(s) = λj(s) + iµj(s)

and note that the real parts take the following values at their critical points

λ4(1) = 0.61300748403501690756896255581360559790853555213198 . . .

λ4(2) = 0.72053904959503349611018739597922735350251006854978 . . .

and

λ2(1) = 0.51696098116017249777442349444758176009873137273013 . . . .

At the critical values, the imaginary parts of the L-functions are determined in terms

of the real parts up to a sign. This choice follows from the choice of sign in the square
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root in the Fourier expansion of the weight two form 34.2.b.a and the weight four forms

34.4.33.a. With the choices in (1.14) and (1.15), we find that

µ4(1) =

(
1 +
√

17

4

)3

λ4(1) , µ4(2) = −

(
1−
√

17

4

)
λ4(2)

and

µ2(1) = −

(
3−
√

17

2
√

2

)
λ2(1) .

The coefficients in the first two relations are numbers in Q(
√

17) but the coefficient in the

third relation is a number in the quartic extension Q(
√

17,
√

2).

Just as was the case for ϕ = − 1
7 , we can determine the period matrix at ϕ = ϕ± in

terms of L-function values and a single new modular parameter. We have gathered the

values of the real parts of the periods and their derivatives into two tables. The tables

contain the irrational numbers v±, where

v⊥+ = 1.9696894453517505490479716982864516913834531417517 . . .

v⊥− = 1.0153884942216545916762729868825409864938877880731 . . . .

Surprisingly we find that these numbers are simply related

v⊥+v
⊥
− = 2 .

To understand the significance of these numbers we now set τ⊥±=iv⊥± and examine the

lattices defined by the covariant derivatives of the integral periods. We find that

DΠ(ϕ+) = − 3

25π2
ε4− λ2(1)




9κ

−16κ

20

9

− 1

τ⊥+


15κ

−36κ

15

11




DΠ(ϕ−) = − 3

26π2
ε4+δ− λ2(1)




0

−2κ

5

0

 + τ⊥−


3κ

0

0

1


 .

and we see that the τ⊥± are the parameters of the lattices. We also find that these parameters

have algebraic j-invariants. We find

j(τ⊥+ ) =
1

24
ε4+δ

2
−
(
2−
√

17
)3(

14− 5
√

17
)3
,

with j(τ⊥− ) satisfying the conjugate relation. Seeking elliptic curves, in LMFDB, with these

j-invariants and with f34.2.b.a as the associated modular form, brings us to the curves E±
listed as 4.1–a8.

E+ : y2 + xy + δ+ y = x3 + ε+δ
2
− x

2 − δ− x− ε+δ2
− , (4.8)
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Figure 10. The elliptic curves E±. The curve E+ is shown in blue while E− is shown in red. Despite

appearances, the curve E+ is smooth. Over the reals, this curve has two components and there is

a gap where, at this scale, the curve appears to have self intersection.

and E− is the curve with conjugated coefficients. We cannot resist reproducing a sketch of

these curves in figure 10.

We record the values of the periods and their derivatives in table 8. Aside from the

fact that the coefficients are in Q(
√

17) and the relevant L-function values are complex,

the periods and their covariant derivatives at ϕ± look very similar to those at ϕ = −1
7 .

There are many interesting and mysterious relations in this table. These include rela-

tions analogous to those of (4.1)

25 ξ0(ϕ+)− 21

π2
ξ2(ϕ+) = 0 ; 13 ξ1(ϕ+) +

5

π2
δ− ξ3(ϕ+) = 0

5 ξ0(ϕ−)− 3

π2
ξ2(ϕ−) = 0 ; 9 ξ1(ϕ−)− 5

π2
δ− ξ3(ϕ−) = 0

and also relations such as the following

ξj(ϕ+)

ξj(ϕ−)
= ε3−

(
7,−1,−5,−13

9

)
and

Dξj(ϕ+)

Dξj(ϕ−)
= −ε8−δ+

(
4,

11

2
,

52

9
,

19

10

)
,

For j = 0, . . . , 3.

A few geometric quantities that can be calculated exactly from the periods are collected

in the following table.
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ϕ = 33 + 8
√

17

j = 0 j = 1 j = 2 j = 3

ξj −7
√

17

23π2
ε2−δ+λ4(2)

5

24
√

17
δ3
−λ4(1)

52
√

17

23·3
ε2−δ+λ4(2)

13π2

24
√

17
δ3
−λ4(1)

Dξj − 15

23π2
ε4−λ2(1)

33

25π
ε4−λ2(1)v⊥−

13

23
ε4−λ2(1) −3·19π

25
ε4−λ2(1)v⊥−

D2ξj − 5

27·17π

ε6−δ−

λ2(1)v⊥−
− 11

29·17

ε6−δ−

λ2(1)

13π

27·3·17

ε6−δ−

λ2(1)v⊥−

19π2

29·17

ε6−δ−

λ2(1)

gϕϕ̄y eKD

(
gϕϕ̄ e−K

y
D2ξj

)
3·7

212
√

17π2

ε10
− δ

2
+

λ4(1)
− 3·5

212173/2

ε8−δ
2
−

λ4(2)
− 52

212
√

17

ε10
− δ

2
+

λ4(1)
− 3·13π2

212173/2

ε8−δ
2
−

λ4(2)

ϕ = 33− 8
√

17

j = 0 j = 1 j = 2 j = 3

ξj

√
17

23π2
ε+δ+λ4(2)

5

24
√

17
ε3+δ

3
−λ4(1)

5
√

17

23·3
ε+δ+λ4(2)

9π2

24
√

17
ε3+δ

3
−λ4(1)

Dξj − 15

26π2
ε4+δ−λ2(1)

3

25π
ε4+δ−λ2(1)v⊥−

9

26
ε4+δ−λ2(1) −15π

25
ε4+δ−λ2(1)v⊥−

D2ξj
5

210·17π

ε6+δ
2
+

λ2(1)v⊥−

1

29·17

ε6+δ
2
+

λ2(1)
− 3π

210·17

ε6+δ
2
+

λ2(1)v⊥−
− 5π2

29·17

ε6+δ
2
+

λ2(1)

gϕϕ̄y eKD

(
gϕϕ̄ e−K

y
D2ξj

)
3

213
√

17π2

ε7+δ
4
+

λ4(1)

15

211173/2

ε9+
λ4(2)

5

213
√

17

ε7+δ
4
+

λ4(1)

33π2

211173/2

ε9+
λ4(2)

Table 8. The values of the ξj and their first three covariant derivatives.

e−K K ′ K ′′

ϕ+
17κ

26π3
ε2−δ

2
−λ4(1)λ4(2)

5

23
√

17
ε2−(2 +

√
17) − 5

26.17
ε4−(135 + 16

√
17)

ϕ−
17κ

26π3
ε4+δ

2
−λ4(1)λ4(2) − 5

23
√

17
ε2+(2−

√
17) − 5

26.17
ε4+(135− 16

√
17)

gϕϕ̄ y Γ′ + Γ2

ϕ+
9

26π
ε6−δ

2
+

λ2(1)2v⊥−
λ4(1)λ4(2)

3κ

211(2πi)3
ε10
− δ−

ε−δ−
26
√

17
(2−
√

17)(8−
√

17)(21+2
√

17) Γ+

+
ε3−δ−
28·17

(9−4
√

17)(206+21
√

17)

ϕ−
9

25π
ε4+

λ2(1)2v⊥−
λ4(1)λ4(2)

3κ

211(2πi)3
ε10
+ δ+

− ε+δ+

26
√

17
(2+
√

17)(8+
√

17)(21−2
√

17) Γ−

+
ε3+δ+

28·17
(9+4

√
17)(206−21

√
17)

Table 9. The values of quantities that enter into the calculation of the covariant derivatives of

table 8. In this table Γ± denotes the Christoffel symbols Γϕϕϕ(ϕ±).
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Λ± Λ⊥±

ϕ+ (4κ,−9κ, 7, 4), (4κ,−30κ,−30,−5) (6κ, −20κ − 5, 2), (3κ, 4κ, 25, 7)

ϕ− (−2κ, 0, 0, 5), (0, 3κ, 1, 0) (0,−2κ, 5, 0), (3κ, 0, 0, 1)

Table 10. Generators for the lattices Λ± and Λ⊥±

We identify generators for the lattices Λ± and Λ⊥± by examining the vectors Π and

DΠ, respectively. The DΠ(ϕ±) have been give previously. For the Π(ϕ±) we have

Π(ϕ+) = − i

25
√

17π
δ3
− λ4(1)


−4κ

30κ

30

5

−
√

17

23π2
ε2−δ+ λ4(2)


4κ

−9κ

7

4



Π(ϕ−) =
i

25
√

17π
ε3+δ

3
− λ4(1)


2κ

0

0

−5

+

√
17

23π2
ε+δ+ λ4(2)


0

3κ

1

0


(4.9)

Given these expressions, we identify the generators of Λ± and Λ⊥±.

The indices of the lattices Λ+⊕Λ⊥+ and Λ−⊕Λ⊥− in H3(X±,Z) are, for both cases, 172κ2.

By taking combinations of generators with coefficients k and ` as our charge vector,

we can calculate the area of the horizon of the black hole

A(ϕ±)

4π
=
k2

32
(9 +

√
17)

(
πλ4(1)

λ4(2)

)
+

(17`)2

8
(9−

√
17)

(
πλ4(1)

λ4(2)

)−1

. (4.10)

It is a surprising fact that the black holes associated with ϕ− and ϕ+ have the same

horizon areas. This is related to the fact that the expressions for the periods Π(ϕ±) in (4.9)

are remarkably similar. The coefficients of the generators for ϕ− are related to those for

Π(ϕ+) simply by multiplication by −ε3+. The parameters for these two lattices are therefore

the same. Let us denote this parameter by τ and write

τ = iv ; with v =
17

4
(9−

√
17)

λ4(2)

πλ4(1)
=

17

2
ε2−δ

4
−
λ4(2)

πλ4(1)
.

We find that the area can, analogously to the case of the attractor point at ϕ=− 1/7, be

written very succinctly in terms of v

A(ϕ±) = 34π

(
k2

v
+ `2v

)
.

4.5 Identifying higher derivatives

In calculating the expressions in tables 5 and 8, we have chosen to work with covariant

derivatives instead of ordinary derivatives. We do this for two reasons: the first is that we

obtain cleaner expressions. This is due to the fact that Ω takes values in H3,0 and, owing
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to special geometry relations, DϕΩ takes values purely in H2,1, while ∂ϕΩ takes values in

H3,0⊕H2,1. It follows that the periods of Ω can be expressed purely in terms of weight four

L-values and the periods of DϕΩ only depend on weight two L-values and the modulus of

the relevant elliptic curve. Had we instead computed the periods of ∂ϕΩ, we would have

found that they mix the weight two L-values with the weight four L-values. The second

reason covers for our ignorance; had we calculated the partial derivatives, or even the

covariant derivatives beyond those shown in the table, we would come across unidentified

numbers. This happens first in evaluating the ∂2
ϕ$j . We can apportion the blame for this

in various ways. We find that we need six numbers in order to compute all the covariant

derivatives. Whereas, we have at our disposal only four. Namely, L4(1), L4(2), L2(1) and

the modulus of the relevant elliptic curve. There are two numbers that we are unable to

identify and, at ϕ=− 1
7 , we can take these to be

∂ϕ̄∂ϕ
2K

(
− 1

7

)
= 13.3957566623799144847404045408028493504914256 . . .

∂3
ϕK

(
− 1

7

)
= −345.296197568387252384535830788469867726435775 . . .

Similarly, at ϕ+, we can take the unidentified numbers to be

∂ϕ̄∂ϕ
2K(ϕ+) = −2.11248092812853659831921795886813691685791340 . . .× 10−8

∂3
ϕK(ϕ+) = 6.41299157746065303963342880177316439551792591 . . .× 10−6 .

Finally, at ϕ−, the unknown numbers can be taken to be

∂ϕ̄∂ϕ
2K(ϕ−) = −9401.3272027230698289676141395408315362641649 . . .

∂3
ϕK(ϕ−) = 170631.685809372752493637298347668593555721135 . . . .

Given ∂ϕ̄∂ϕ
2K and ∂3

ϕK at a rank two attractor point, we can identify all the second

and third derivatives at that point. All the higher derivatives are then fixed by invoking

the Picard-Fuchs equation. We could then, for example, identify all the coefficients in an

expansion of the periods about the rank two attractor points.

In the final stages of this work, we received communication from Bönisch and

Klemm [38] who inform us that they are able to express the second and third derivatives

at ϕ =− 1
7 , and so the unrecognized numbers above, in terms of periods and quasi-periods

of the associated weight two and weight four forms.

5 Identities involving the instanton numbers

As foreseen in [4], knowledge of the periods at the attractor points leads to interesting

identities that involve the instanton numbers of the mirror Calabi-Yau manifold. In our

case, we find identities that involve the instanton numbers, the critical values of the L-

functions associated to each rank two attractor point and the modulus of the associated

elliptic curve.
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5.1 Genus zero

The homogeneous genus zero prepotential F0 and the corresponding inhomogeneous pre-

potential F0 are given by

F0 =
F0

(z0)2
; F0 =

1

2
za∂aF0 , (5.1)

where, in the second expression, za and ∂aF0 are components of the vector of periods Π.

In order to compute the genus zero instanton numbers, we must expand F0 in terms of the

complexified Kähler parameter t of the mirror manifold X̃

t(ϕ) =
z1(ϕ)

z0(ϕ)
.

For ϕ =− 1/7, we have already seen in eq. (4.6) that

t∗ = t(−1
7) =

1

2
+

5i

28

πL4(1)

L4(2)

and we find also that

F0(t∗) = − κ

10
(2t∗ − 1)(15t∗ − 4) .

We find similar relations at the other two attractor points, t±=t(ϕ±)

t− =
5i(9 +

√
17)

16 · 17

πλ4(1)

λ4(2)
; F0(t−) =

13κ

10
t−

t+ =
t− − 4

6t− − 7
; F0(t+) =

κ

170

(
−36 + 313 t+ − 480 t2+

)
(5.2)

We can extract instanton numbers nk of genus zero and degree k from the expansion

of F0 near the large complex structure point. For our situation the expansion is

F0(t) = −2κt3 +
1

2
κt+ 4κ

ζ(3)

(2πi)3
− I(t) (5.3)

where I is the instanton sum given by

I(t) =
1

(2πi)3

∞∑
k=1

nk Li3(e2πikt) . (5.4)

The genus zero and genus one instanton numbers of small degree are listed in the

following table.

The attractor point at ϕ−=33 − 8
√

17 lies within the radius of convergence of series

expansion of the periods around ϕ=0 where the expansion in eq. (5.3) is valid which means

that by combining equations (5.2), (5.3) and (5.4) we find a remarkable identity that

involves the instanton numbers and special values of the weight four L-function associated

with ϕ−.

I(t−) = κ

(
−2t3− −

4

5
t− + 4

ζ(3)

(2πi)3

)
.
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k nk

1 12κ

2 24κ

3 112κ

4 624κ

5 4200κ

6 31408κ

7 258168κ

8 2269848κ

9 21011260κ

10 202527600κ

11 2017537884κ

12 20654747200κ

13 216372489804κ

14 2311525544064κ

15 25115533695300κ

16 276942939016224κ

17 3093639869100240κ

18 34957447938066952κ

19 399082284262216044κ

20 4598143339631725920κ

dk

20− 10κ

102− 30κ

1180− 438κ

12096− 4428κ

133780− 48938κ

1511730− 550266κ

17647076− 6407530κ

210201644− 76161400κ

2545255572− 920643442κ

31212421126− 11273118446κ

386727907536− 139494386712κ

4832555488984− 1741106040676κ

60820504439296− 21890039477888κ

770125991800110− 276916193102934κ

9802710122549832− 3521744606381596κ

125345358831091796− 44996106417473728κ

1609189343845395964− 577237489764357422κ

20732103878422556262− 7431797271319182118κ

267947664660167267360− 95989385991015664456κ

3472847998674908410256− 1243366526895209656540κ

Table 11. The first few instanton numbers, nk, for genus zero, and dk, for genus one.

The other two rank two attractors at −1
7 and ϕ+ lie outside the radius of convergence

of the instanton sum and the identities require a little more care. For ϕ = − 1/7 the

partial sums of I give rise to the plot figure 11. Although the sum diverges it responds

well to the techniques of accelerated convergence [39]. The vertical axis in figure 11 is

marked in steps of 10−7, so the simple expedient of computing the partial sum to say 100

terms and then taking half of the next term already gives the desired value to 8 figures.

More sophisticated methods, such as an iterated Shanks transformation, or using a Padé

approximant, give better approximations. The Padé approximant to I, for example, with

numerator and denominator of order 400 in q, satisfies the expected identity to 435 figures.

The point is that while I(t) is defined by (5.4) where the instanton sum converges, it is

defined by (5.3) and (5.1) in terms of the periods, which are analytic throughout the cut

plane. So any method of summation that returns the value of the analytic continuation

will return a value that satisfies the identity. The attractor point ϕ+ is well outside the

region where the instanton sum converges, yet the same Padé approximants converge to

the desired result albeit more slowly. The approximant with numerator and denominator

of degree 400 now gives the desired value correct to 55 figures and this precision improves

as we increase the number of terms in the approximant.

Returning to the identities: note that in addition to computing the value of F0 at the

rank two attractor points, we may also compute the derivative of F0 at these points and

this leads to new identities. For example,

F ′0(t∗) = κ(3− 6t∗) ; F ′0(t−) = 3κ ; F ′0(t+) =
3κ

17
(11− 32t+) .
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Figure 11. A plot of the partial sums of Im I(t∗), for κ = 1, up to order qn for 20 ≤ n ≤ 350.

The expected value is shown in red.

Similarly, the second derivatives are given by

F ′′0 (t∗) =− κ 30(1− 2τ⊥∗ )t∗ + 44τ⊥∗ − 25

5(1− 2τ⊥∗ )t∗ + 5τ⊥∗ − 3
;

F ′′0 (t−) =
17κ

5t− − τ⊥−
; F ′′0 (t+) = − κ

17

480(3− 4τ⊥+ )t+ + 932τ⊥+ − 1107

5(3− 4τ⊥+ )t+ + 9τ⊥+ − 11
,

where τ⊥∗ , τ⊥− and τ⊥+ are the parameters of the lattices Λ⊥ at the attractor points.

We find similar identities for the third derivatives. However, the expression become

more complicated and, for example, we find that we cannot package the L-function val-

ues into t.

5.2 Genus one

The numbers of higher genus instantons can also be computed from a knowledge of the

periods [40, 41]. Thus, we expect identities analogous to those in the previous subsection

to be satisfied by the generating functions of higher genus instanton numbers.

The genus one free energy can be computed from the holomorphic anomaly equa-

tion [40] and, in the topological limit where t → i∞ and t is kept finite, we recover the

generating function

F1(t) = log

{
ϕ−1−κ$0(ϕ)4− 2κ

3
dϕ

dt
f1(ϕ)

}
where f1 is the holomorphic ambiguity given by

f1(ϕ) = (1− 25ϕ)a(1− 9ϕ)b(1− ϕ)c. (5.5)

F1 has the large volume expansion

F1(t) = −2πiκt−
∞∑
k=1

{
2dk log

( ∞∏
r=1

(
1− qrk

))
+

1

6
nk log(1− qk)

}
+ const. (5.6)
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from which the genus one instanton numbers can be extracted, once the holomorphic

ambiguity is fixed.

The exponents appearing in the holomorphic ambiguity are determined by the singu-

larity corresponding to each factor. For example, at a conifold point where an S3 shrinks,

the exponent is known to be −1
6 . In cases where one considers the quotient of a conifold

singularity by a finite group G, the exponent is given [42, 43] by − |G|6 . From the analysis

of section 2, we see that this happens at all three singularities. At ϕ = 1
25 and ϕ = 1

9 ,

the exponent is determined by the order of the group that fixes the singularity when we

take the quotient. The exponent at ϕ = 1 is complicated by the fact that there are two

singularities on the manifold that are each fixed by a group of order 2
κ . We assume that

the effect of the two singularities is to double the exponent and set

a = −10

6κ
; b = − 2

6κ
; c = − 4

6κ
. (5.7)

Alternatively, one may read off these exponents from the Picard-Lefschetz form of the

monodromy matrices as in eq. (3.5) and table 4 of section 3, see also [43]. Either way, this

yields the integral instanton numbers listed in table 11.

As with F0, we can evaluate F1 at the attractor points. However, our expression for

F1 is not particularly enlightening due to the unknown constant in equation 5.6. We can

however write down identities involving the derivatives of F1.

6 Possible geometrical origin of the splitting

The calculations of this paper provide overwhelming evidence for a splitting of H3(Xϕ)

into a sum of two 2-dimensional pieces for ϕ =− 1/7 and ϕ=33± 8
√

17. Standard conjec-

tures (the Hodge conjecture and the Tate conjecture) imply that there exists a geometrical

explanation which, once identified, would lead to a rigorous proof of our observations on

the splitting of the Frobenius polynomials and the expression of periods in terms of L-

values. For the sake of concreteness, we will concentrate on the variety X := X−1/7, but

the arguments are of a general nature and apply, mutatis mutandis, also to ϕ=33± 8
√

17.

One of the simplest explanations for the splitting would be that X has self-map ι,

acting as 1 on H3,0⊕H0,3 and −1 on H1,2⊕H2,1. Such a transformation might arise from

a self-correspondence of the family Xϕ, for which ϕ = −1/7 is a fixed point, but we have

been unable to find such a map and the properties of the Picard-Fuchs equation make its

existence doubtful. In [44] a very non-trivial example of such a map (defined over Q(
√

2))

was exhibited for a certain Calabi-Yau threefold (defined over Q), which then led to a proof

of Hilbert modularity for that particular variety.

Cusp forms of weight two for Γ0(N) can be identified with holomorphic one-forms on

the modular curve X0(N)=H/Γ0(N), which is the moduli space of elliptic curves with a

subgroup of order N . The union of these elliptic curves makes up the elliptic modular

surface E → X0(N) and weight three modular forms for Γ0(N) can be identified with

holomorphic two forms on E . More generally, a weight k cusp form for Γ0(N) gives a

(k − 1)-form on the Kuga-Sato variety E(k−2), defined as the k − 2 fold fibre product of

elliptic surface E → X0(N).
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The Hodge conjecture would imply the existence of a correspondence between our

variety X and the Kuga-Sato threefold E(2) for Γ0(14), such that the holomorphic three

form of X pulls back to the modular form f14.4.a.a of LMFDB. The correspondences are

expected to exist also for all rigid Calabi-Yau threefolds, but only in very few cases have

these been found explicitly. For an overview of known cases we refer to the thesis of

C. Meyer [45]. As critical L-values of the modular forms are tautologically periods of

the corresponding three-form on E(2), such correspondences also provide the rationale for

Deligne’s conjecture, referred to in section 4.

Note that in our case the modular curve X0(14) =: E is itself an elliptic curve. The

piece H2,1⊕H1,2 of H3(X) corresponds to the weight two modular form, with LMFDB label

14.2.a.a, via a Tate-twist. Now the Hodge conjecture, applied to H4(E × X), predicts

the existence of a surface S inside E ×X, which can be seen as a family of curves in X,

parametrized by E, which leads to a diagram

E ×X ⊃ S
q−→ X

↓ p
E

such that pulling back the (2, 1)-form of X via q and integrating over the fibres of p gives

the holomorphic one-form 14.2.a.a on E. Poincaré dually, taking the image under q of the

inverse image under p of a cycle γ ∈ H1(E) produces elements T (γ) := q∗p
!(γ) ∈ H3(X),

that maps H1(E) to the H1,2 ⊕H2,1-part of H3(X).

Geometrically the simplest scenarios would be that S is the union of rational curves

that are parametrized by E, so that π : S → E it is a ruled surface over E, embedded

in X. Then clearly H3(S)=H1(E)(−1) at the level of Hodge structures, where the (−1)

denotes the Tate-twist, which makes from the weight one Hodge structure H1(E) a Hodge

structure H1(E)(−1) of weight 3, which on the level of arithmetic leads to the extra p in

the factor of R(T ).

As the normal bundle NC to a smooth rational curve C in a Calabi-Yau threefold

always has a degree −2, it follows from the fact that we have a one-parameter family of

such curves that the normal bundle contains a trivial summand, and hence

NC = OC ⊕OC(−2).

This means that each of the lines can be blown down to a point. When we perform this

contraction for all the rational curves of S, we obtain a singular Calabi-Yau threefold Y

that sits in a diagram
S ↪→ X

↓ ↓ p
E ↪→ Y

The elliptic curve can now be seen as the singular locus of Y ; the transverse type of

singularity is a two-dimensional cone, i.e. an A1-singularity, which is resolved by a single

blow-up and which restores the collapsed P1’s. Although Y is singular, its cohomology

(with rational coefficients) is just as that of a smooth manifold: Poincaré duality holds and
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the Hodge structure remains pure. The reason is that the two dimensional A1 singularity

is a quotient singularity; locally it is the quotient of C2 by the Z/2Z acting by identifying

antipodal points. As a result, the space Y also has only quotient singularities, so is what

is sometimes called a V -manifold or a Q-homology manifold. Arithmetically, if we would

count points on Y , the Weil-conjectures would hold, and the factor R(T ) of Y would be of

degree two, and give rise to the weight four modular form.

The variety X sits in a one-parameter family with fibres Xϕ. Under this deformation,

the surface S completely disappears. In general, if we have such a surface over a curve of

genus g, then after deformation one generically ends up with 2g− 2 isolated rational curves

with normal bundle O(−1)⊕O(−1).

The singular variety Y sits in a corresponding one-parameter family Y. If we move

away from the splitting point, each of the transverse cones is smoothed out and the variety

Yϕ becomes smooth. If we denote the total space of the family Xϕ and Yϕ by X and Y

respectively, we get a diagram

X ↪→ X ←↩ Xϕ

↓ p ↓ p ↓ p
Y ↪→ Y ←↩ Yϕ

For general ϕ ( 6= −1/7), the map at the right hand side is an isomorphism, whereas on

the left hand side we have the contraction of the ruled surface S onto its base E. Locally

around each of the singularities, we just have the phenomenon of simultaneous resolution

of the A1-singularty, crossed with the elliptic curve E.

We can describe the change in cohomology between Y and Yϕ in terms of vanishing

cycles. This general formalism also provides control on the level of Hodge structures.

Without going into details, it can be shown that we obtain short exact sequences

0 −→ Hk(Y ) −→ Hk
lim(Y) −→ Hk −→ 0.

The middle term is a group isomorphic to Hk(Yϕ), where ϕ is (infinitesimally) close to −1/7.

It carries a so-called limiting mixed Hodge structure, that is described by the asymptotic

limiting behaviour of the periods if ϕ tend to −1/7. In our case the limiting mixed Hodge

structure is pure. The term Hk decribes the vanishing cohomology. In this situation it can

be shown that

Hk = Hk−2(E)(−1).

In particular for k = 3 we find the sequence

0 −→ H3(Y ) −→ H3
lim(Y) −→ H1(E)(−1) −→ 0 .

We see that in fact we have an isomorphism of Hodge structures

H3
lim(Y) = H3(X) .

Dually to the group H3, we have a rank two lattice of vanishing cycles isomorphic to

H1(E), which are now realised geometrically as union of the vanishing two-spheres over a
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1-cycle γ ∈ H1(E). If we use the isomorphism Xϕ=Yϕ, these cycles get mapped to the

cycles T (γ) ∈ H3(X), mentioned above.

There are several alternative scenarios that effectively produce similar phenomena.

Rather then a single surface S, one may have a chain S1, S2, . . . , Sr of surfaces that intersect

in copies of E. The whole chain could collapse, producing a singular threefold Y∗ with an

Ar-singularity. More generally, one may consider collections of such surfaces intersection in

an ADE-graph. In all these cases the phenomenon of simultaneous resolution takes place

and one obtains Q-homology manifolds Y and isomorphisms Xϕ=Yϕ. All this is studied

by Katz, Morrison and Plesser in [46].

In the paper of Hulek-Verrill [47] many splitting Calabi-Yau threefolds are identified by

explicitly exhibiting certain non-trivial surfaces inside them. In these cases one is dealing

with families of elliptic curves inside the threefold and something similar could happen in

our exmples. A natural question seems to be: is there a copy of the elliptic modular surface

E → E=X0(14) inside X? It is not clear to us what exactly we should be looking for; in

fact one of the great problems with the Hodge conjecture is that it does not directly give

geometrical information on the cycle that realises the splitting.

In [48] there is a large collection of Siegel-modular Calabi-Yau varieties with geomet-

rically unexplained splits of H3, that include the earlier examples from [49] and [50]. The

tables of the dissertation of Meyer [45] also contain many examples of varieties which split

on an experimental level and in fact the split at ϕ = −1/7, that we have studied here, was

mentioned already on p.157 of the dissertation! The systematic study of these splits from

the perspective of the attractor mechanism and special L-values seems a natural field of

further inquiry.

7 Conclusion and speculations

We have found examples of rank two attractor varieties by studying the arithmetic struc-

ture of the Calabi-Yau manifold AESZ34. More precisely, one expects that the Frobenius

polynomial associated to the middle cohomology of a one-parameter family of Calabi-Yau

manifolds will factor into two quadrics whenever the parameter solves a certain polynomial

G(ϕ), with integer coefficients. A computer analysis of these factorisations found a linear

and a quadratic factor of G(ϕ) and the associated roots of this polynomial revealed the

examples in this paper.6

In the remainder of this section, we speculate on the physical significance of our results

and certain unanswered questions.

7.1 Entropy and topological strings

A consequence of modularity is that certain physical quantities may be expressed in terms

of critical L-function values, such as the area of the horizon of a black hole, as in eqs. (4.5)

and (4.10). Since this is proportional to the entropy of a black hole, in the limit of large

charges, it is natural to presume that the modular forms are playing a role in the counting

6In fact, many more examples of non-rigid modular Calabi-Yau threefolds can be found in [45] that

should also correspond to attractors of rank two.
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of microstates. A direct count of these, for this class of black holes, should shed light on

the precise role that these modular forms play. This enumeration of microstates, however,

remains a difficult problem for N=2 black holes.

Rigid Calabi-Yau manifolds are trivially rank two attractors and are known to be

modular over Q [25], as a consequence of the proof of the Serre conjecture. Moreover, one

expects that the periods of rigid Calabi-Yau manifolds are given by critical L-values of

the associated weight four form. For example, expressions for the periods, similar to those

presented here, can be found in [37]. So, it is expected that the area of the horizon of a

black hole, associated to a rigid Calabi-Yau manifold, may also be expressed in terms of

ratios of critical L-values.

We have seen, in section 5, that topological string free energies at genus zero and one,

when evaluated at a rank two attractor point, may be expressed in terms of L-function

values and the modulus of an elliptic curve. We expect that these relations have analogues

for all genera. The computation of topological string free energies and the computation of

black hole entropy are not independent. They are related, for example, by the well known

conjecture of Ooguri, Strominger and Vafa [51] which states that one may compute the

entropy of N = 2 black holes, that arise in Type II compactifications, by computing topo-

logical string free energies. We summarise this triangle of ideas with the following diagram:

Entropy of 4d Black Hole

GV Invariants of Mirror CY

OSV Conjecture Modularity of CY

Identities such as F0(t−) = 13κ
10
t−

where t− = 5i
v

S(Qkl) =
17π
2

{
k2

v + `2v
}
+ ...

where v = 17(9−
√
17)

4
λ4(2)
πλ4(1)

7.2 Massless states in Λ⊥

Rank two attractor varieties, in one parameter families of Calabi-Yau manifolds, come with

two rank two lattices

Λ⊕ Λ⊥ ⊂ H3(X,Z)

which we recall are such that

Λ⊗ C = H3,0 ⊕H0,3 and Λ⊥ ⊗ C = H2,1 ⊕H1,2.

In this paper, we have mostly focused on the charge lattice Λ and put less emphasis on Λ⊥,

even though the elements of Λ⊥ define central charges with the same critical point as those

in Λ. The main difference is that the central charges corresponding to the points Λ⊥ vanish

at the attractor point and so lead to “massless black holes”.7 There is an apparent paradox:

7Since Γ ∈ Λ⊥ ⊂ H2,1 ⊕H1,2 =⇒ Z(Γ, ϕ∗) ∝
∫
Xϕ∗

Γ ∧ Ω = 0.
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if Λ⊥ contains BPS states, then these would lead to a singularity in the moduli space at

the attractor point, as in the case of a conifold point. Moreover, if there are infinitely many

BPS states among the points of Λ⊥, then this singularity at the attractor point will be

very severe and, at least conjecturally, will be at infinite distance in moduli space.

A possible resolution of the paradox is that the putative singularities cancel out.8 It

was shown in [52] that, at a point in the moduli space where D-branes become massless,

the genus one free energy develops a logarithmic singularity. This singularity is of the form

F1 ∼ −
1

6

∑
i

(−1)si logm2
i ,

where mi is the mass of a state that vanishes at the singularity and si = 0 or 1 for a

hypermultiplet or a vectormultiplet respectively [46, 53]. For example, at a conifold point

one introduces a single hypermultiplet, which agrees with the exponents in the genus one

holomorphic ambiguity in eqs. (5.5) and (5.7).

As discussed in section 6, a plausible scenario, that explains the geometric origin of

the weight two eigenform and Λ⊥, is that there exists a P1 bundle over an elliptic curve

E such that the total space S is embedded in the attractor variety. The elliptic curves

relevant for our examples are given by eqs. (4.3) and (4.8) and Λ⊥ is identified with the

dual of the image of H3(S,Z). In this scenario, one obtains massless states by wrapping

D3-branes on P1 and either of the 1-cycles of the elliptic curve.

A better understanding of the field theory at a rank two attractor point and the com-

plete resolution of the above paradoxes requires a more involved analysis of the geometry

to which we hope to return elsewhere.

A The polyhedron and its dual for the singular variety

We start by setting X5=1 in the Laurent polynomial (1.1) and listing the 21 monomials

that the polynomial contains. These are

1 ; Xi ;
1

Xj
;

Xi

Xj
, i 6= j ;

where the indices take the values i, j = 1, . . . , 4. Writing these in a multi-index notation

Xv = Xv1

1 Xv2

2 Xv3

3 Xv4

4

we have a list of 21 vectors v in Z4. The convex hull of these points yields a four dimensional

polyhedron ∆. We run this data through a computer code which produces the data shown

in table 12 and table 13. The code numbers the vertices of ∆ in an arbitrary way. However,

it is not possible to order the points of both ∆ and ∇ in a nice way and also have a nice form

for the duality map. So we accept this ordering and at least have a simple duality map.

Table 12 gives the data for ∆. The first sub-table lists and numbers the vertices.

There are 20 of these, so all the points of ∆, apart from the interior point {0, 0, 0, 0},
8We are grateful to Albrecht Klemm for pointing this out and for discussions on the resulting field theory.
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corresponding to the monomial 1, are vertices. We see from the second sub-table that

∆ has 30 three-faces. We will follow the usage of toric geometry and refer to the top

dimensional faces as facets in the following. The table gives the equations of each of these

facets and lists the vertices of ∆ that lie in each of these. The equations of the facets each

have integral coefficients and the constant terms are all 1. This, together with the fact that

there is precisely one interior point, makes the polyhedron reflexive.

Given that the constant term of each equation is 1, each facet is specified by listing

the coefficients of the coordinates x[j], j = 1, . . . , 4 in the corresponding equation. These

vectors are the vertices of the dual polyhedron ∇, whose data is given in table 13, with

the dual vertices listed in the order corresponding to the facets of ∆. Thus vertex 1 of

∇ is {−1, 0, 0, 0}, for example. The dual of ∇ is again ∆ so we see, for example, that

the coefficients defining the first dual-face are {−1, 0, 0, 1} which is just vertex 1 of ∆. It

happens that the only lattice point of ∇, apart from the vertices is the origin.

Let us return to considering ∆ and table 12. We see that ∆ has 10 facets that each have

4 vertices, so these are tetrahedra, and 20 facets that have 6 vertices, each of these is a prism

with triangular section. We can hope to gain some understanding of the combinatorics

of the polyhedra by seeing how the faces fit together. A first consideration is how the

symmetries act on the polyhedra. Let us denote by A the Z/5Z generator with the action

A : Xi → Xi+1 .

This acts on the monomials and so on the vertices vr, of the polyhedron via the rule

Av =
{
v1 → v12, v2 → v3, v3 → v15, v4 → v5, v5 → v14, v6 → v11, v7 → v6, v8 → v16,

v9 → v8, v10 → v13, v11 → v18, v12 → v9, v13 → v2, v14 → v17, v15 → v10,

v16 → v1, v17 → v19, v18 → v20, v19 → v4, v20 → v7

}
.

It is an agreeable fact that there is a 4×4 matrix A that represents A as an action on

the vertices, considered as four component column vectors

A : v → Av ; A =


−1 −1 −1 −1

1 0 0 0

0 1 0 0

0 0 1 0


If B denotes the Z/2Z generator with the action

B : Xi →
1

Xi
,

then B permutes the vertices according to the rule

Bv =
{
v1 → v10, v2 → v9, v3 → v8, v4 → v7, v5 → v6, v6 → v5, v7 → v4, v8 → v3,

v9 → v2, v10 → v1, v11 → v14, v12 → v13, v13 → v12, v14 → v11, v15 → v16,

v16 → v15, v17 → v18, v18 → v17, v19 → v20, v20 → v19

}
.
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Vertices

1 {−1, 0, 0, 1 }
2 {−1, 0, 1, 0 }
3 { 0, −1, 0, 1 }
4 { 0, 0, −1, 1 }
5 { 0, 0, 0, −1 }
6 { 0, 0, 0, 1 }
7 { 0, 0, 1, −1 }
8 { 0, 1, 0, −1 }
9 { 1, 0, −1, 0 }

10 { 1, 0, 0, −1 }
11 {−1, 0, 0, 0 }
12 { 0, −1, 0, 0 }
13 { 0, 1, 0, 0 }
14 { 1, 0, 0, 0 }
15 { 0, 0, −1, 0 }
16 { 0, 0, 1, 0 }
17 {−1, 1, 0, 0 }
18 { 1, −1, 0, 0 }
19 { 0, −1, 1, 0 }
20 { 0, 1, −1, 0 }

Faces

1 −x[1] + 1 {9, 10, 14, 18}
2 x[3] + x[4] + 1 {5, 8, 9, 10, 15, 20}
3 −x[3]− x[4] + 1 {1, 2, 3, 6, 16, 19}
4 −x[4] + 1 {1, 3, 4, 6}
5 x[1] + x[4] + 1 {2, 5, 7, 8, 11, 17}
6 −x[1]− x[4] + 1 {3, 4, 6, 9, 14, 18}
7 x[4] + 1 {5, 7, 8, 10}
8 x[1] + x[2] + 1 {1, 2, 3, 11, 12, 19}
9 −x[2]− x[3]− x[4] + 1 {1, 2, 6, 13, 16, 17}

10 x[1] + 1 {1, 2, 11, 17}
11 x[1] + x[2] + x[3] + 1 {1, 3, 4, 11, 12, 15}
12 −x[2]− x[4] + 1 {1, 4, 6, 13, 17, 20}
13 x[1] + x[3] + 1 {1, 4, 11, 15, 17, 20}
14 x[1] + x[2] + x[4] + 1 {2, 5, 7, 11, 12, 19}
15 −x[2]− x[3] + 1 {2, 7, 8, 13, 16, 17}
16 −x[3] + 1 {2, 7, 16, 19}
17 x[2] + x[3] + 1 {3, 4, 9, 12, 15, 18}
18 −x[1]− x[3]− x[4] + 1 {3, 6, 14, 16, 18, 19}
19 x[2] + 1 {3, 12, 18, 19}
20 −x[1]− x[2]− x[4] + 1 {4, 6, 9, 13, 14, 20}
21 x[3] + 1 {4, 9, 15, 20}
22 x[2] + x[4] + 1 {5, 7, 10, 12, 18, 19}
23 x[1] + x[3] + x[4] + 1 {5, 8, 11, 15, 17, 20}
24 x[2] + x[3] + x[4] + 1 {5, 9, 10, 12, 15, 18}
25 x[1] + x[2] + x[3] + x[4] + 1 {5, 11, 12, 15}
26 −x[1]− x[2]− x[3]− x[4] + 1 {6, 13, 14, 16}
27 −x[1]− x[2]− x[3] + 1 {7, 8, 10, 13, 14, 16}
28 −x[1]− x[3] + 1 {7, 10, 14, 16, 18, 19}
29 −x[1]− x[2] + 1 {8, 9, 10, 13, 14, 20}
30 −x[2] + 1 {8, 13, 17, 20}

Table 12. The data for the Newton polyhedron, ∆. The first table lists the vertices of ∆, while

the second lists the three-faces. The lists on the right of the second table give the vertices of the

corresponding face.

As a linear action on v we have simply

B : v → −v .

Since A and B act on the vertices of ∆, they act also on the facets. The action of A
is given by

Af =
{
f1→ f30, f2→ f27, f3→ f11, f4→ f25, f5→ f18, f6→ f23, f7→ f26, f8→ f17,

f9→ f8, f10→ f19, f11→ f24, f12→ f14, f13→ f22, f14→ f6, f15→ f3, f16→ f4,

f17→ f2, f18→ f13, f19→ f21, f20→ f5, f21→ f7, f22→ f20, f23→ f28,

f24→ f29, f25→ f1, f26→ f10, f27→ f9, f28→ f12, f29→ f15, f30→ f16

}
. (A.1)
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Dual Vertices

1 {−1, 0, 0, 0 }
2 { 0, 0, 1, 1 }
3 { 0, 0, −1, −1 }
4 { 0, 0, 0, −1 }
5 { 1, 0, 0, 1 }
6 {−1, 0, 0, −1 }
7 { 0, 0, 0, 1 }
8 { 1, 1, 0, 0 }
9 { 0, −1, −1, −1 }

10 { 1, 0, 0, 0 }
11 { 1, 1, 1, 0 }
12 { 0, −1, 0, −1 }
13 { 1, 0, 1, 0 }
14 { 1, 1, 0, 1 }
15 { 0, −1, −1, 0 }
16 { 0, 0, −1, 0 }
17 { 0, 1, 1, 0 }
18 {−1, 0, −1, −1 }
19 { 0, 1, 0, 0 }
20 {−1, −1, 0, −1 }
21 { 0, 0, 1, 0 }
22 { 0, 1, 0, 1 }
23 { 1, 0, 1, 1 }
24 { 0, 1, 1, 1 }
25 { 1, 1, 1, 1 }
26 {−1, −1, −1, −1 }
27 {−1, −1, −1, 0 }
28 {−1, 0, −1, 0 }
29 {−1, −1, 0, 0 }
30 { 0, −1, 0, 0 }

Dual Faces

1 −y[1] + y[4] + 1 {3, 4, 8, 9, 10, 11, 12, 13}
2 −y[1] + y[3] + 1 {3, 5, 8, 9, 10, 14, 15, 16}
3 −y[2] + y[4] + 1 {3, 4, 6, 8, 11, 17, 18, 19}
4 −y[3] + y[4] + 1 {4, 6, 11, 12, 13, 17, 20, 21}
5 −y[4] + 1 {2, 5, 7, 14, 22, 23, 24, 25}
6 y[4] + 1 {3, 4, 6, 9, 12, 18, 20, 26}
7 y[3]− y[4] + 1 {5, 7, 14, 15, 16, 22, 27, 28}
8 y[2]− y[4] + 1 {2, 5, 7, 15, 23, 27, 29, 30}
9 y[1]− y[3] + 1 {1, 2, 6, 17, 20, 21, 24, 29}

10 y[1]− y[4] + 1 {1, 2, 7, 22, 24, 27, 28, 29}
11 −y[1] + 1 {5, 8, 10, 11, 13, 14, 23, 25}
12 −y[2] + 1 {8, 11, 14, 17, 19, 22, 24, 25}
13 y[2] + 1 {9, 12, 15, 20, 26, 27, 29, 30}
14 y[1] + 1 {1, 6, 18, 20, 26, 27, 28, 29}
15 −y[3] + 1 {2, 11, 13, 17, 21, 23, 24, 25}
16 y[3] + 1 {3, 9, 15, 16, 18, 26, 27, 28}
17 −y[1] + y[2] + 1 {5, 9, 10, 12, 13, 15, 23, 30}
18 y[1]− y[2] + 1 {1, 6, 17, 18, 19, 22, 24, 28}
19 −y[2] + y[3] + 1 {3, 8, 14, 16, 18, 19, 22, 28}
20 y[2]− y[3] + 1 {2, 12, 13, 20, 21, 23, 29, 30}

Table 13. The data for the dual polyhedron, ∇.

While the action of B is given by

Bf =
{
f1→ f10, f2→ f3, f3→ f2, f4→ f7, f5→ f6, f6→ f5, f7→ f4, f8→ f29, f9→ f24,

f10→ f1, f11→ f27, f12→ f22, f13→ f28, f14→ f20, f15→ f17, f16→ f21,

f17→ f15, f18→ f23, f19→ f30, f20→ f14, f21→ f16, f22→ f12, f23→ f18,

f24→ f9, f25→ f26, f26→ f25, f27→ f11, f28→ f13, f29→ f8, f30→ f19

}
. (A.2)

Now we may think of the facets of ∆ as the vertices of ∇ and the vertices of ∆ as the

facets of ∇, so the above rules determine how A and B act on ∇. It is now an easy check
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Figure 12. These pentagons display some of the connections between the facets. The vertices of

the pentagons correspond to facets that are tetrahedra. Each prism has two triangular facets and

each of these is joined to a tetrahedron. The lines of the pentagons correspond to these prisms and

show how they link to the tetrahedra. The two pentagons are interchanged by B , and A acts by

rotation by 2π/5.

that

A : f → Ãf ; Ã =


0 0 0 −1

1 0 0 −1

0 1 0 −1

0 0 1 −1


and as a linear action for B we again simply have

B : f → −f .

The following two figures give some insight into the combinatorics of the faces. In

figure 12, the first pentagon corresponds to 15 facets which comprise 3 orbits of A . The

five vertices are facets which are tetrahedra. Each facet of a tetrahedron is joined to a

triangular facet of a prism and the other triangular facet is joined to another tetrahedron.

The lines of the pentagon correspond to the prisms and show these connections. The action

of A on the pentagon corresponds to a 2π/5-rotation in the positive sense. The image,

under B , of the pentagon on the left, is the pentagon on the right, which rotates in the

same way under A .

In figure 13, we give a partial realisation of, say, the first pentagon in 3 dimensions.

We start with a tetrahedron, say f1, that is shown on the left in figure 13 in red. To this

are attached 4 prisms, three of which are visible in the figure and are coloured blue, green

and yellow. Note that we refer to these solids as prisms and indeed they each have two

triangular and three quadrilateral faces, but they are not regular prisms. The four prisms

that have been attached to f1 are f29, f28, f6 and f24. We make, in this way, a bigger

tetrahedron. To each face of this big tetrahedron is attached another tetrahedron. These

are f30, f16, f4 and f25. This corresponds to the figure on the right.
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Figure 13. This figure shows a partial construction in 3 dimensions of the 4 dimensional situation

depicted in figure 12.

So far we have accounted for the four lines that emanate directly from f1 in figure 12.

There remain six lines, in the first pentagon and these correspond to six further prisms

each of which connects two of the triangular faces visible in the figure on the right. These

are not easily added to a three-dimensional figure.

We turn now to the combinatorics of the facets of ∇. Two sketches follow in figure 14

and figure 15. Each shows a Z/10Z orbit, with generator A2B of the facets of ∇, with

facets of the same colour corresponding to orbits of A . We refer to, and draw, the facets as

cubes when they are in reality hexahedra. The facets are numbered in large boldface and

the vertices, which are vertices of the facets and also of ∇, are numbered in eight-point font.

The figures are superficially different: in figure 14, for example, a dual facet v meets

A2Bv in an edge, while in figure 15 a dual facet v meets A2Bv in a facet of each. There

are however additional identifications to made in these figures. In figure 14 a facet v meets

a facet three steps on, so (A2B)3v=ABv in a common facet. Thus v14 meets v6 in the

common facet with vertices {f6, f18, f26, f20} and v6 meets v4 in the facet {f6, f20, f12, f4},
for example, and all three of v14, v6 and v4 meet in the common edge {f6, f20}. With these

identifications, the two figures reveal the same reality. Note also that, despite appearances,

two dual facets never meet in just a vertex. So in figure 15 the dual facets v12 and v10,

for example, appear to meet in just f24, but in fact meet in the edge {f24, f22}, which has

to be identified between the two cubes. This identification ensures that cubes of different

colours do, in fact, meet in an edge as in figure 14.

From the dual polyhedron we can read off a polynomial that defines ∇ and is the

analogue of (1.1). Note that the vectors corresponding to the vertices of ∇ in table 13

have the property that the components are all 0 or ±1 and that the components, within a

given vector, all have the same sign. Thus, introducing coordinates Yr, r = 1, 2, 3, 4, the

dual vertices, together with the interior point, correspond to the 31 Laurent monomials

1 , Yr , YrYs , YrYsYt , Y1Y2Y3Y4 ,
1

Yr
,

1

YrYs
,

1

YrYsYt
,

1

Y1Y2Y3Y4
,

where, in each monomial, the indices take distinct values.
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We need to combine the monomials into a Laurent polynomial that is invariant under

the symmetries. The action of B on the coordinates is simply Yr → 1/Yr. The action

of A is slightly more involved. Consider an orbit of A that starts with f10, say. We see

from (A.1) that this induces the following action on the coordinates

Y1 → Y2 → Y3 → Y4 →
1

Y1Y2Y3Y4
→ Y1 → . . . .

We can simplify this rule by introducing a fifth coordinate

Y5 =
1

Y1Y2Y3Y4
,

so that Y1Y2Y3Y4Y5=1, then the rule is Yr → Yr+1, with the indices understood mod 5.

The most general polynomial invariant under A is

P̃ =A0 +A1

∑
Yr +A2

∑
YrYr+1 +A3

∑
YrYr+2 +A4

∑
YrYr+1Yr+2

+A5

∑
YrYr+1Yr+3 +A6

∑
YrYr+1Yr+2Yr+3 .

There is no need to separately include inverse powers of the Yr, since these are already

included through the Y5’s. If we now require also that P̃ should be invariant under B then

we find that

A6 = A1 , A5 = A3 , A4 = A2 .

The fixed points of the symmetries occur at certain discrete points of the embedding space.

For example, the fixed points of A are where all the Yr are equal to the same fifth root of

unity. For a generic choice of the free coefficients A0, A1, A2, A3 these points will not lie

on the locus P̃=0.

B Are there other rank two attractor points for AESZ34?

It is natural to ask if one can find further rank two attractor points in the moduli space of

AESZ34. A satisfactory answer to this question is probably contingent on a good under-

standing of the geometry of AESZ34 and answering the questions raised in section 6. In

lieu of this, we make some observations about the interpretation of the data on factorisa-

tions, that we have, and the prospects for computer searches for other attractor points of

rank two, in this moduli space. We study also the statistical distribution of the a and b

coefficients and ask how many factorisations can be attributed to chance.

The reader is warned, from the outset, that we prove no theorems here and that

statistical trends that appear compelling might be reversed by the acquisition of more data.

B.1 Brute-force searches and the Chebotarëv theorem

A brute-force search over degree n polynomials

cnϕ
n + cn−1ϕ

n−1 + · · ·+ c0 = 0
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Figure 14. A Z/10Z orbit of the dual facets. The generator A2B runs through these dual facets,

in the order given, from top to bottom. The facets shown in yellow and purple are distinct A
orbits. The dual facets are numbered in large boldface, according to table 12 and the dual vertices

are numbered in eight point font. The edge {f20, f29} of v20 is identified with the corresponding

edge of v14.
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Figure 15. The remaining dual facets form a second orbit of A2B , descending from v13, in this

figure. The facet {f15, f30, f29, f27} of v8 is identified with the corresponding facet of v13.

rapidly becomes onerous as the degree and the search space of the coefficients is increased.

However, we can, to some extent, see whether it is likely, for a given degree, that there

should be a polynomial as above, based on the frequency of factorisations in figure 5. We

have already observed that the fact that there is at least one factorisation, for AESZ34, for

each p in the range 7 ≤ p ≤ p502, where pj denotes the j’th prime, makes it highly likely

that there should exist a linear equation c1ϕ + c0=0, corresponding to an attractor point.

A converse is that the fact that there is no factorisation for the mirror quintic threefold,

for many p, makes it very unlikely that there should exist a linear equation in that case.

If such an equation were to exist, then c1 would have to be divisible by all the primes for

which there is no factorisation and so by the product of these, which is an integer with

1217 digits!

Passing to quadratic equations: recall that a quadratic equation has two roots in Fp
if the discriminant ∆=c2

1 − 4c0c2 is a nonzero square mod p, none, if ∆ is not a square,

and one root if p|∆. For given ∆, this last condition is satisfied for only finitely many p.

– 60 –



J
H
E
P
1
0
(
2
0
2
0
)
2
0
2

1

2

3

4

5

6

7

8

9

10

400 800 1200 1600 2000 2400 2800 3200 3600

p

Figure 16. The residual factorisations for AESZ34 after the factorisations for ϕ = − 1/7 and

ϕ = ϕ± have been removed.

For a large set of primes, a quadratic equation will have no roots or two roots, each with

frequency that approaches 1/2. So, if there is a quadratic factor to G(ϕ), we would expect

R(T ) to factorise at least twice, with frequency at least 1/2. For the mirror quintic the plot

of figure 5 gives a frequency of 16/500, and which is moreover decreasing as p increases.

So it seems very unlikely that there is a quadratic factor to G(ϕ), for this space.

For equations of degree n > 2, we can have recourse to a consequence of the Chebotarëv

density theorem. This states that such an equation will have n roots in Fp with frequency

1/|G|, where G is the Galois group of the equation. Since this group is always a subgroup

of Sn, the group of permutations of n objects, we know that an equation of degree n has

n roots in Fp with frequency at least 1/n!. This would seem to rule out cubic and quartic

equations for the mirror quintic, since three is the largest number of factorisations, in our

data, and this occurs for only three primes. For higher n, we really need data for several

times n! primes to draw a conclusion.

Let us see how these considerations may apply to AESZ34. figure 16 shows the number

of residual factorisations for AESZ34 after the factorisations for ϕ =−1/7 and ϕ=ϕ± have

been removed. Note that, even so, there are many more factorisation than for the mirror

quintic. We can plot the proportion of primes 5 ≤ pmax for which there are at least n

factorisations for 2 ≤ n ≤ 9, and do this in bins of 50, that is for pmax=p52, p102, . . . , p502.

In this way, we can see how the frequencies evolve with pmax. The result is figure 17.

The blue horizontal line corresponds to 1/2 and we see that the proportion of times for

which there are at least two residual factorisations passes below this value, and appears to

be decreasing, so it seems unlikely that there is a second quadratic equation. The yellow

horizontal line corresponds to 1/3! and it seems that the proportion of times that there are

at least 3 residual factorisations is about to pass below this line.

The evolution of the frequencies has a long tail that is dominated by the large number

of factorisations for small primes. If we eliminate the primes up to p200, say, we are left

with a distribution that still corresponds to 302 primes but is more uniform.

The number of times that there are at least two factorisations, in this plot, is

71/302=0.235, and for at least three factorisations it is 21/302=0.0695; in each case less

than half the lower bound suggested by the Chebotarëv theorem. For at least four fac-
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Figure 17. The frequencies for which there are at least n factorisations for the primes 5 ≤ p ≤ pmax,

with increasing pmax, in steps of 50 primes. The blue dashed line has height 1/2! and the yellow

dashed line has height 1/3! .
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Figure 18. The residual factorisations for AESZ34 after eliminating the primes up to p200 = 1223.

torisations, the frequency is 2/302=0.00662 which is about 1/6 of 1/4!, the lower bound

suggested by the Chebotarëv theorem. For degrees of 5 and above we cannot say more

without more extensive data.

B.2 Random factorisations

We wish to ask now what frequency of factorisation is to be expected “at random”. To

this end, consider again the factorisation

1 + a T + b pT 2 + a p3T 3 + p6T 4 = (1− αpT + p3T 2)(1− β T + p3T 2) .

We are interested in the cases that the coefficients a, b, α, β are integers, but let us tem-

porarily take them to be merely real. Over R, factorisation, as above, is always possible

and we have the relations

a = −(pα+ β) , b = 2p2 + αβ , (B.1)
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a/p3/2

b/p2

S̃

S̃0

S̃ ′0

Figure 19. The allowed regions for the (a, b) and (α, β) coefficients. The region on the left maps

2–1 onto the region on the right. Either of the two triangular regions shown can be taken to be a

fundamental region for the (α, β) coefficients.

which we rewrite as

ã = −(α̃+ β̃) , b̃ = 2 + α̃β̃ , (B.2)

with

ã =
a

p3/2
, b̃ =

b

p2
, α̃ =

α

p1/2
, β̃ =

β

p3/2
.

Now, in the case that R(T ) arises from the ζ-function, then, quite apart from the

question of factorisation, the point (ã, b̃) is constrained by the Weil Conjectures to lie

within a region, S, bounded [28, 54] by the curves

b̃ = 2|ã| − 2 and b̃ =
ã2

4
+ 2 .

The preimage of S in (α̃, β̃)-space is the square

|α̃| ≤ 2 , |β̃| ≤ 2 .

Owing to the symmetry of (B.2) under interchange of α̃ and β̃, the map to S is generically

2–1 with (α̃, β̃) and (β̃, α̃) mapping to the same point of S. We can divide the square into

two triangles by the diagonal α̃=β̃; either the lower triangle, S0, or the upper triangle, S ′0,

can be taken to be a fundamental region for parametrizing the points (ã, b̃). These regions

are sketched in figure 19.

Now if (α, β) are integers, then, as we see from (B.1), so are (a, b). The converse how-

ever is not true in general, which is just the statement that R(T ) factorises only ocaisionally

over Z. figure 20 sketches, for p=13, how these integral (α, β) points lie in S̃. Individual

points are plotted but, at this scale, they run together to form lines. These lines, which are
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Figure 20. The images of the points of S̃0, that correspond to integral (α, β)-points, in S̃, plotted

for p = 13. At this scale, the points run together to form lines.

the images of horizontal and vertical lines in S̃0, are tangent to the to the upper boundary

of S̃. Let S and S0 denote the regions of (a, b)-space and (α, β)-space that correspond to S̃
and S̃0. The numbers of integral points in these regions is, for large p, closely approximated

by their areas. We have∫
S

da db = p7/2

∫
S̃

dã db̃ =
32

3
p7/2 and

∫
S0

dα dβ = p2

∫
S̃0

dα̃ dβ̃ = 8p2 .

Let us denote by ρ, in this appendix, the modulus of the jacobian of the transformation

between (α, β) and (a, b)

ρ =

∣∣∣∣∂(α, β)

∂(a, b)

∣∣∣∣ =
1

|pα− β|
.

We have

ρ dadb = dαdβ ;

so, since the factorisations over Z are distributed with density one with respect to (α, β),

they are distributed with density ρ with respect to (a, b). Let us suppose now that the

(α, β) are distributed with a probability density function h, then the (a, b) are distributed

with frequency ρh and the density of factorisations, for the (a, b) coefficients, is then ρ

times this, so ρ2h. Let us write µ/p for the ‘probability’ that there is a factorisation for a

given p and ϕ. We have

µ

p
=

∫
S
ρ2h dadb = p2

∫
S̃0
ρh dα̃dβ̃ . (B.3)

In figure 22 we plot a histogram for the frequency of points in S̃0. This uses the data

for all 500 primes p3 ≤ p ≤ p502.

We write the probability as µ/p, since, for a given p there are p − 1 values of ϕ in

our tables. We take p to be large, in the following, so we will not distinguish between
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Figure 21. A cumulative plot for the 75 primes p428 ≤ p ≤ p502 showing how the (a, b)-points lie

in S̃ and how the preimages of these points lie in S̃0. Note how the frequency declines near the

diagonal boundary of S̃0.

Figure 22. On the left: a histogram of the frequency of (α̃, β̃)-points using data for the 500 primes,

p3 ≤ p ≤ p502. On the right: a plot of the function p2h from (B.5).

p − 1 and p. The expected number of factorisations, for given p, is then p times the

probability above, so µ. The probability that there are precisely k factorisations, for a

given p, assuming that p is large compared to k, is then(
p

k

) (
µ

p

)k (
1− µ

p

)p−k
∼ e−µ

µk

k!
,

which characterizes a Poisson process with parameter µ. For such a process, the mean and

variance are both µ.

It remains to estimate the frequency h and so µ.

– 65 –



J
H
E
P
1
0
(
2
0
2
0
)
2
0
2

Figure 23. An overlay of the histogram and function p2h from the previous figure.

In order to discuss the form suggested by this histogram we make a further change of

variables by writing

α̃ = −2 cos θ1 , β̃ = −2 cos θ2 .

Then

h dαdβ = p2h dα̃dβ̃ = 4p2h sin θ1 sin θ2 dθ1dθ2 (B.4)

The quantity that is plotted in the histogram is p2h and it is compelling to suppose that

this quantity takes the form

p2h =
4

π2
sin θ1 sin θ2 (cos θ1 − cos θ2)2 , (B.5)

the constant corresponding to the need to normalize the total probability to unity. This

function is plotted on the right in figure 22. The correspondence seems remarkably close:

we overlay the two plots in figure 23

The corresponding frequency relative to the coordinates (θ1, θ2) is given by the last

term in (B.4); let us denote this by f

f =
16

π2
sin2 θ1 sin2 θ2 (cos θ1 − cos θ2)2 .

The factors of sin2 θ1 and sin2 θ2 are reminiscent of the Sato-Tate probability density

function that describes the distribution of the analogue of α for a large class of elliptic

curves. The factor of (cos θ1− cos θ2)2 owes to the fact that the fundamental region S̃0 is a

triangle, rather than the full square and at least one power of (cos θ1− cos θ2) is required

to cancel the singularity introduced by the factor of ρ on the right hand side of (B.3).

– 66 –



J
H
E
P
1
0
(
2
0
2
0
)
2
0
2

1

2

3

4

5

6

7

8

9

10

1200 1600 2000 2400 2800 3200 3600

p

Figure 24. The residual factorisations for the mirror quintic, after eliminating the primes up

to p200.

The probability density function f is intriguing because this corresponds to the eigen-

value distribution of USp(4) matrices that are distributed randomly with respect to the

Haar measure. This being so, and given the closeness of the fit of the, admittedly limited,

statistical data, we conjecture that f is the true density function. A probability density

function corresponding to randomly distributed USp(2g) matrices has appeared in relation

to the distribution of the coefficients of the Frobenius polynomials for hyperelliptic curves

of genus g ≤ 3, see [55].

The following tables express the bivariate moments 〈α̃mβ̃n〉 for m+n ≤ 8. The first

table gives the value of the moments calculated from the assumed probability density

function, the second gives the values calculated from the data, the third gives the ratios

of the corresponding entries in these terms and shows that these differ by at most 3 parts

per thousand.

Returning to the estimation of µ: by using (B.5) we compute

µ =
256

45π2 p1/2
.

While this suggests an explanation for the tendency for the number of factorisations to fall

off as p increases. It does not explain the number of factorisations, even for the mirror

quintic. Consider the numbers of factorisations for the mirror quintic for p200 ≤ p ≤ p502

as shown in figure 24. The single factorisations at the high p end of the plot, if random,

represent more than 9σ deviations.

C Review of special geometry

We recall here the essential features of the special geometry of the moduli space of Calabi-

Yau manifolds given the prominent role it plays in this paper. A detailed account, in the

spirit of the present discussion may be found in [32].

Denote by Ω and ω the holomorphic 3-form and Kähler form of X respectively. There

are natural Kähler geometries on the space of complex structures and space of Kähler
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0 1 2 3 4 5 6 7 8

0 1 − 214

32527π2
3
2 − 21611

3352π2
7
2 − 218233

34527211π2
19
2 −

22061·389
34527211213π2 28

1 214

32527π2 −1 216

33527π2 −2 21843
33527211π2 −5 220101

34527213π2 −14

2 3
2 − 216

33527π2 2 − 21813
32527211π2

9
2 − 220137

34527·11·13π2 12

3 21611
335272π2 −2 21813

32527211π2 −4 220281
33527211·13π2 −10

4 7
2 − 21843

33527211π2
9
2 − 220281

33527211·13π2 10

5 218233
34527211π2 −5 220137

34527·11·13π2 −10

6 19
2 − 220101

34527213π2 12

7 22061·389
34527211213π2 −14

8 28

0 1 2 3 4 5 6 7 8

0 1.0000 −1.0547 1.5010 −2.2099 3.5019 −5.6728 9.5032 −16.156 28.003

1 1.0547 −1.0018 1.4077 −2.0037 3.1443 −5.0085 8.3314 −14.021

2 1.5008 −1.4071 2.0016 −2.8496 4.5018 −7.1830 12.000

3 2.2103 −2.0033 2.8503 −4.0050 6.3170 −10.008

4 3.5041 −3.1455 4.5061 −6.3221 10.011

5 5.6782 −5.0114 7.1920 −10.019

6 9.5170 −8.3413 12.025

7 16.184 −14.040

8 28.061

0 1 2 3 4 5 6 7 8

0 1.0000 0.9993 0.9993 0.9993 0.9995 0.9995 0.9997 0.9998 0.9999

1 0.9994 0.9982 0.9983 0.9982 0.9984 0.9983 0.9985 0.9985

2 0.9995 0.9987 0.9992 0.9992 0.9996 0.9997 1.0000

3 0.9991 0.9983 0.9989 0.9988 0.9992 0.9992

4 0.9988 0.9980 0.9986 0.9984 0.9989

5 0.9986 0.9977 0.9984 0.9981

6 0.9982 0.9973 0.9979

7 0.9981 0.9972

8 0.9978

Table 14. The first table gives the moments 〈α̃mβ̃n〉 for m+n≤ 8, calculated from the distribution

function (B.5). The second table gives the same moments calculated from the data of [28]. The

third table gives the result of dividing the entries of the first table by the corresponding entries of

the second. For the cases shown, these ratios differ from unity by less than 3 parts per thousand.
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forms. The Kähler potential for the space of complex structures is given by

K = −log

(
−i
∫

Ω Ω

)
A fundamental observation is that Ω is defined only up to a parameter dependent scale

transformation

Ω→ f(ϕ) Ω

for any holomorphic f , so Ω should be understood as a section of a line bundle on the

parameter space. Indeed, it is this observation that leads to the choice of K as the natural

choice of Kähler potential.

Although we are here concerned with one parameter spaces, let us allow for several

complex structure parameters and denote these by zα. Consider also a quantity Ψ(a,b),

which transforms under scale transformations with weight (a, b), by which we mean

Ψ→ faf̄ b Ψ .

Thus Ω has weight (1, 0) and e−K has weight (1, 1). We define a covariant derivative for

this gauge transformation by

DαΨ = ∇αΨ + a (∂αK) Ψ

Dβ̄Ψ = ∇β̄Ψ + b (∂β̄K) Ψ

where ∇α is the Levi-Civita connection. The virtue of this derivative is that DαΨ trans-

forms in a manner parallel to Ψ

DαΨ→ faf̄ bDαΨ .

Note that e±K has weight (∓1,∓1) so

Dαe±K = 0 and Dβ̄e±K = 0 .

Now Ω ∈ H3,0 and ∂αΩ ∈ H3,0 ⊕ H2,1, however the covariant derivatives DαΩ lie

entirely in H2,1 and form a basis for this cohomology group. In a similar way, the second

and third covariant derivatives of Ω lie entirely in H1,2 and H0,3 respectively.

It is a standard exercise to derive the special geometry relations

DαΩ = χα DαΩ = χα

Dαχβ = −i yαβγ eK χ̄γ Dαχβ = −yαβγ χ̃γ

Dαχ̄
γ = δα

γ Ω Dαχ̃
γ = δα

γ Ω̃

DαΩ = 0 DαΩ̃ = 0 ,

where, in these relations,

χ̃γ = i eKgγβ̄χβ̄ ; Ω̃ = i eKΩ ; yαβγ = −
∫

Ω ∂αβγΩ

and gαβ̄ is the metric that derives from K.
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The Kähler potential is simply written in terms of the integral periods, in virtue of (3.3)

and (3.4) we have

e−K = −i Π†ΣΠ (C.1)

where

Σ =

(
0 1

−1 0

)
.
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