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Projective resolutions associated to projections
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Abstract. In this paper we will describe projective resolutionsdoflimensional Cohen—
Macaulay spaceX by means of a projection of to a hypersurface id + 1-dimensional
space. We will show that for a certain class of projections, the resulting resolution is minimal.

1. Introduction

Let X be a d-dimensional germ of an analytic space andpletx — C9+1
be a finite map. Viap we can consideOx as anO := Ogq«+1-module. If X is
Cohen—MacaulaythenOyx has a free resolution &-module of the form:

0—>GE>F—>OX—>0 Q)

whereF = @) _,0- fy andG = @) _,O - g are free0-modules of rank + 1. The
determinantf of the matrix(®;;) can be used as a defining equation for the image
Y of X in C%*1, see [7]. NowOy is not only a®-module, but even &-algebra

due to the fact thaDy is aring. Let f; be mapped ta; in Ox. We may suppose
thatug = 1. We get a surjection:

Olft,..., fr] > Ox -0 (2)

of O-algebras, or equivalently, an embeddixig— C“4*1 x C”. The equations of
X in this embedding come into two types:

D ®ijfi =0 ®3)
i=0
fifi=Y M fi=0 (4)
k=0
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The equations (4) are the “module-equations” betweenttibat follow from 1.
The equations 4 are the “multiplication-equations”. They express the preduct
in the module basis. Thaf;;; are certain elements @ and could be called the
structure constants, cf. [2], [6]. Another way of looking at the equations (3) and
(4) is to say that the left hand side of these equations generate the kernel of the
surjection of (2) as af := O[ f1, ... , fr-]-module.

In the first part of this article we will extend this to a description of a projective
resolution ofOx as anS-module. It turns out that this resolution has the form:

0> L1~ L —>...> L1 —>S—>0x—>0 (5)

whereLy is a freeS-module of rankk - (;ﬁ) Note that these are the well-known

ranks occuring in the minimal resolutions of varieties of minimal multiplicity, [8],
[3]. Our complex involve®, certain mapg andM describing the algebra structure
of Ox on the complex (1) and a certain homotalyexpressing the associativity
of the multiplication inOx . The construction follows the steps taken in [3], where
a similar complex was constructed associated to akap C¢, representing (in
the case thak is Cohen—-Macaulayy as a freeD.-module.

In the second part of the article we treat the special case that the m&p—
C9+1is generically 1- 1. In that case the image spacsvill contain a subscheme
3, defined by theconductor ideall = Homy (Ox, Oy) C Oy. This subscheme
¥ will be Cohen—Macaulay of codimension 2 @?** and is contained in the
singular locus of. Conversely, whelx C Y is given, we can reconstruit. This
is reviewed in the third section.

If moreover the conductor idedl c O is radical then a hypersurface defined
by ag e I is singular along® if and only if g is in the second symbolic power
1@ This I® contains the ordinary second powEt. So in this situation the
defining function 7 is in 7@, In [4] “generic” mappingsp : X — C2 were
studied, whereX is a normal surface germ. It was shown there that the module
M(X, ¢) := I /(1?2 + (f)) isindependentf the chosem, as it can be identified
with the dual of Ex}((a)x, Ox). (The ideall and the equatiof = 0 of the image
depend very much o#, however.) In particular, one sees from this fact that if
is a Gorenstein singularity, thew (X, ¢) = 0. In other words/® /12 is a cyclic
module with generatof. This was also proved in [6]. Now it is well known that the
minimal resolution of a Gorenstein germ can be taken to be a symmetric complex.
This implies that the complex (5) is in such cases never minimal (unles9),

i.e. X = Y). The other extreme somehow is represented by tiok® which the
invariantM (X, ¢) is as big as possible for a giveéh. In other words, iff e I°.

In the fourth section we turn our attention to this case. It turns out that in this case
one can express the mapsM and H explicitly in terms of the matrixb;;. As a
consequence, we get that in this case the resolution (Bnisnal

It is not so clear what the geometric meaning ¢f & 12" is. In any case, it
represents a property & andg, andnotof X alone. The complex considered in [3]
was shown to be minimal in the case that the singularityrhimal multiplicity
with respect to its embedding dimension. Strange enough, the conditiori2
seems to be totally unrelated to this condition. In facy, i€ 72 then in almost all
cases the spacé will notbe of minimal multiplicity. The most optimistic guess
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on minimality is that the complex (5) is always minimahlessf is a generator of
1@ /12 but we have been unable to prove anything more in this direction.

2. A projective resolution

We consider a commutative ring with 1, andE a finitely generated projective
R-module. We puts := >, Sx(E), whereSy is thek-th symmetric power of.
The “diagonal” mapA is the map:

A:ANE) > AME)®E
defined on generators by:

Ae1A ... Aep) = Z(—l)i‘lel/\ AGA . N R e,
i

Here and in the sequel the tensor products are over theRiiNge define for any
S-moduleM a map:

dy : NNEYe M > AFYEYo M

bydy := (1@ m)(A ® 1), wherem : S® M — M is the multiplication map. By
abuse of notation, the malg @ A¥(E) — M ® AF"1(E) defined bysdys, where
s is the swap that interchanges the tensor factors, is also denotig. lNote that
dydy = 0.

Proposition 1. Let M be anS-module which is finitely generated as Ramodule.
PutK; := S AM(E)@M andd := ds®1—1®dy : Ky — Ki—1. Thend? =0
and

KM):0- K, >K, 1—>...K1—>Kg=5S®M — 0

is a resolution ofM as S-module.

Proof. For a proof see [3], Theorem 1.1 (In this theorem it is assumedihist
projective, but this is not needed in the proof of the above statement.)

In case thatM is a projectiveR-module, the above compldg(M) is an S-
projective resolution oM. Special sucts-modules arise aR-algebras of the form
R @ E as considered in [3]. We will consider the casereéilgebrasA given by an
exact sequence of projectiemodules:

Diagram 2.
05G22 ROE->A-O
whererk(E) = r andrk(G) = r + 1. We abbreviat&R @ E to F.
BecauseA is (in general) no longer a projectiv@-module, the resolution in
Proposition 1 withM = A does not give us a projective resolution Afas an

S-module. We will replace by “G 3 F”, but the differential needs special care.
In order to define this differential we introduce some maps expressing the commu-
tativity and associativity ofi. Consider the following commutative diagram:
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Diagram 3.
0 > A%G) —> F®G — S(F) — S$HA4) —> 0
J J m2 yma L m
0 — G — F — A - 0

The first row is a projective resolution of the second symmetric pdipfet) of A,
m is the multiplication map of the algebra structureAfwhich is lifted to maps
m1 andmy of complexes. Becausé = R @ E, we have decompositions:

S2(F) = F & S2(E),
FRIG=GPERG.
Therefore we can decomposg andm as follows:
m1 = Idr & M whereM : S2(E) — F,

mpy=1Idg ® L whereL : EQ® G — G.

By composition we getamap ® E — S»(E) — F that we also denote hys.
In order to express the associativity of the multiplicationqqiwe consider the
following commutative diagram:

Diagram 4.

0 - A2E)®eG 22 \2E)@F — AAE)®A — 0

[L,L]{ M, M] | 0}

0 — G i) F — A —- 0

The map M, M] is defined aM (1 ® M)(A ® 1), so

(M, M](exne2 @ ) :=M(e1 @ M(e2® f)) — M(e2 ® M(e1 ® f)).

The mapL, L] is defined similarly.

The commutativity of the left hand square follows from the commutativity
of Diagram 3, whereas the commutativity of the right hand square expresses the
associativity and commutativity of the algebtalt follows that there is Aaomotopy
H:A%E)® F - Gwith ®H = [M, M]andH(1® ®) = [L, L].

Proposition 5. Let A, = S @ AK(E) @ F & S ® AK"1(E) ® G and

d:= (dl dz) A — A1

d3 da
with
1di=ds®1— (1 M)(A®1IL;
2.do =1Q &;

3.d3=(1H)(A®D(AR;
4.dy=—-ds @1+ (1QL)YAR®D
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Then one has thatd = 0, i.e.A := (A., 9) is a complex.

Proof. This is for the a straightforward calculation, and is an expression of the
various commutations of maps. We indicate what is involved.

1. Ford? + dpdz = 0, usepH = [M, M].

2. Fordsd, +d? = 0,useH(1® &) = [L, L].

3. Fordids + dods = 0, useM (1 ® ®) = OL.

4. The most difficult one is to show thddd, + dsds = 0. For this it turns out that
one has to use the commutativity of the following diagram:

BEyer 2% 2peEerF 2 Eer2E)eF 22 Egc
A®L) L

1
ANEYQERF 28 \2EB)yoF N G

This commutativity can be checked by composing with the injective dap
After doing this, the commutativity comes down to the relatidnd = [M, M]
and®L = M(1® ®), together with the equality of maps’ (E) @ F — F:

M, MIA@m)(ARLD =mi((M,M]® (s @D(A®1)
which is checked by direct computatiom

Lemma 6.Let B = @By be aZ-graded Abelian group with a map of degree
—1. (Not necessarilgs = 0!) Consider the “mapping coneC := (C., d) where

Ci := B, @ By_1andd = < 8 Id

88 —8)' Thend? = 0, andC is an exact complex.

Proof. To show thatd? = 0 is a simple computation. To show th@tis exact,
we establish the homotopy between the zero map and the identity magpf

00
(Ido):ckﬁck_kl. |

Proposition 7. The complex:

A0 A 242 24 Ag=S0F >0
is an S-projective resolution of.

Proof. We apply Lemma 6 withB, = SQ AK(E)@ Gands =ds ® 1 — (1®
L)(A ® 1) and get an exact mapping cone compleXVe have annjectivemap
of complexe<C — A, given in degreé by:

Aed)®Id: SeANE) G SN HE)®G— S Y (E)o Foseorf1(E)®G.

The cokernel of this map can be identified with the coml&X) of Proposition 1.
So we have a short exact sequence of complexes:

0->C—->A—->KMA)—~>0

BecauseC is exact by Lemma 6 and (A) is a resolution ofA by Proposition 1, it
follows from the long exact homology sequence thé anS-projective resolution
of A. O
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3. A smaller resolution

Although the comple@ has the right length, it is usually not minimal. In [3] it is
described how to obtain frotd (A) a smaller complex. We will use their ideas to
prune our compleX in a similar way. We will therefore be brief.

Definition 8. (see also [1], [3]) Letr : F = R® E — E be the Cartesian
projection and define maps:

in:= N7 @DA: ALY F) > ANEYR F
as the compostion of the diagonal map and the induced projection.
The commutative diagram with exact rows:

0> AYE) > ALY > AMLE) >0

=l in| Al
0—> AME) > AMEY®@ F > AM(E)Q E—> O

shows that Cokgin) = CokerA). We denote this common cokernel Bf :=
LY := CokenA : A**1(E) — AK(E) ® E). The moduleL” is projective and has

rankk - (,’(ﬂ)

Consider the inclusio = R ® E — S and the induced map® F — S.
The Koszul comple® := (P., §) on this map with terms, := S ® A*(F) and
the usual differential, is exact.

Proposition 9. Let j be the map:
ji=1®in)®0:SOANTF) - S@ANE) @ F®S®ATYE) ®G

Then the diagram
5
Pry1— P
J R
9
A — Ak
is anti-commutative. We therefore have an induced differeatialC, — Li_1,

k > 2, wherefl; := Cokerj) = S ® L* & S ® A*"1(E) ® G. Note that the rank
of £ is equal tok - (;19).

Proof. The anti-commutativity of the diagram
S@AFLFY A s@ AFF)

1®in | 1®in |
SOANE)QF B S@ AV YE)®F

can be proved as in [3], Lemma 3.1. So to prove the statement of the proposition,
we have to show that the composition:

S ATLYF) B2 s ANMEYQ F - S@ A AE) 9 G
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is the zero map. A direct computation (uB& = [M, M]) shows that the composi-
tion of this map with the injective mapgl® maps the element®eine2A . .. Aeky1
to Zi<j<k(—1)‘+/+ks ® (ejnejAer) ® y Where

y=—M(ei®@M(ejQer)) + M(e; @ M(ex ® ej))
—M(e; @ M(ex ®e;))+ M(ej @ M(e; ® ex))
—M(er @ M(e; ®ej)) + M(er @ M(e; ® e;)).

This is zero due to the symmetry of the map O

Theorem 10.The complex
L=(£,3): 0Lyl > Ay d i b rg=5>0
withd : Ly — Ly_1,k > 2 as in Proposition 9 and
0:L1=SQS2E)DSRGCG — Log=S

given by:d(s @ e1 @ e2 Dt ® g) = s(erez — M(e1 ® e2)) + td(g) is an S-
projective resolution ofA. Furthermore, if the ringR is local with maximal ideal
m, then the resolution is minimal (after localization @h, E) C S) if ®(G) C
mF, L(E® G) c mG, M(E® E) C mF andH(A%(E) ® E) C mG.

Proof. Asin [3], Theorem 3.2.0

4. Projections

In [4] the following situation was studied:

X
R4
>S5 Y CcZ

HereY = SpecB) is a hypersurface in a smooth ambient spZce SpeR). If

p : X — Yisagenerically + 1 map from a Cohen—Macaulay spate= SpecA)

to Y, thenthe conductar = Homg (A, B) defines a subspae = SpecC); C =
B/I of Y. From the inclusioni : ¥ — Y one can reconstruet as aB-module via
A = Homg(I, B). Thering structureon A is translated into the fact that the ideal
I satisfies theing condition(R.C.):

Lemma 11 (ring condition).

Homg (1, I) = Homg(I, B)
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Conversely, any ideal C B that satisfies this ring condition gives rise to an
algebra structur on the module Herf, B), which as arR-module has a projective
resolution as in Diagram 2. The ring condition can also be interpreted by saying that
the hypersurfac& has to besingularalongx. For example, if for local equation
f = 0forY we have thaf € 12, (wherely is the ideal ofE in R), then® c ¥
satisfies (R.C.). This particular cased will be studied in more detail in Section five.

Below we will describe how, in the case of a “generic” projector> Y C Z,
the algebra structure a# is determined by the mag. So we start with diagram
2. The ideal of the image is constructed as follows: the nbaipduces a map
ANH(®) : A"HY(G) - ATTL(F)and by transposition aninjective mapL < R,
wherel := A"1(G) ® A"HL(F*) is an invertible module. We defing := R/L.
Now A is a B-module. This is Cramer’s rule, and an intrinsic way of saying this is
by looking at the map\" (®) : A"(G) — A" (F), which by transposition and the
natural isomorphism’ (F) = A"1(F*) ® F givesamapl : F ® L — G. One
has®WV = Id ® i, soW is a homotopy expressing the fact that multiplication with
elements of_ is zero onA. From now on we will make the following assumption:

Assumption 12.The canonical map:

Homg(A, B) 25 B

ar a(l)
is injective.
Therefore Homg (A, B) is via “can” anideal in B (and inA) and is called the

conductor of the ring map — A. The map “can” sits in the following diagram
with exact rows and columns:

Diagram 13.
0 0
\ \
0> EoL X Eeor — 0
\ o1l \
0> For %8 G6*@L — Homg(4,B)— 0
lr®l A J can
0— L — R — B -0
\ | \
0 — C — C -0
| \
0 0

The second row is a presentation of Hp(A, B) and can be obtained from
diagram 2 essentially by dualization. The third row is the definitioB ofhe map
p : F* — Risinduced by the inclusioR — F,andthe map\ : G*® L — Ris

induced by the compositioR < F Ny Yo by transposition. The columns
of the diagram are obtained by the snake lemma.
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The decompositio = R & E decomposes the map : G — F into two
maps:

o:G— R,

¢:G— E.

The diagonal map* : £ — G*® L isinduced by by transposition and tensoring
with L.

The moduleA can be obtained back ds= Homg (Homg (A, B), B) and under
this isomorphims the element 1 corresponds to the maap The ring condition
(R.C.) Homg (1, I) = Homg(I, B) therefore means that every element A,
corresponding to an element

a:Homg(A, B) = B; ¢ — ¢(a)

in HomB(Ho[nB(A, B), B) and represented hyir, ag) can be lifted tabr, bg),
representing € Homg(Homg (A, B), Homg (A, B)), making the following dia-
gram commutative:

0—- F*Q@L—>G*"®L — Homg(A,B)— 0

br /| b /| by, |
0> F*®@L — G*®L — Homg(A,B)— 0

POLIN Jar AN lag can\, |a

By transpositiorbr andbg induce map/(a) : F — F andL(a) : G — G,
representing the multiplication kon A. The maps:r andag are determined by
a as follows:

Proposition 14. 1. The transpositiom . is a lift ofa € A.

2. The transpositioa; € G ® L* is equal tol : F — G ® L* isthe map induced
by .

The proof is left to the reader.
In short, the map<.(a) and M (a) describing the multiplication by € A are
determined by the following steps:

1. Liftatoay € Fandgeur : F*® L — L.

2. Computer; as¥(a}) € G ® £* and getg : G* ® L — R.

3. Lift the mapag overthe mapA : G* ® L — Rtogetamapg : GF @ L —
G* ® L and by transpositiol. (@) : G — G. This is the essential step, and the
condition to be able to do this is of course (R.C.).

4. Liftthe compositiorbg (®*® 1) overd*®@ltogethy : F*QL — F*® L and
by transpositiolM (a) : F — F.As the map “can” is injective, this is possible
for any choice obg in step 3.
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5. A particular case

A particular case in which the ring condition, (see Lemma 11) is satisfied arises as
follows. Suppose that we are given tReresolution of of the form:
* o x A
O-E*—-G*"—R—C—0 (6)

where we assume (for reasons of simplicity) tReandG arefree R-modules. We
choose basesf;} and{gi} (k =0,...,r) for F = R @ E resp.G and assume
that fo = 1 € R. The mapp : G — E has as matrix¢;;), i.e.¢(g;) = ¢ij fi.
Here and in the sequel we use the Einstein summation convention: indices occuring
twice are summed over.

The modulel is trivial and the componem; := A(g;) can be obtained as
thei-th minor of(¢;;). Let I be the ideal iR generated by tha;. The particular
case we want to discuss in some more detail is the gasd 2. We will moreover
assume thaf is a non-zerodivisor in R. Such ghcan always be written as:

f=hijAiA;

whereh;; is a symmetric matrix of elements &f (If one does not want to assume
that E andG are free, then the matrix; should be considered as an elemieof
S2(G*) ® L.) We now takey; = h;;A; and letd : G — F be the map defined
by the following matrix:

o9 ... O
$10... P1r
@)= .
G0 ... Grr

So f = det(®), which is a generator for the ideal of a spataNe will determine
the mapd., M andH of Diagram 4 expressing the ring structureto= Coker ®).
To do this we need some elementary relations between minors of matrices.

Definition 15. Let ® = (®;;)o<;, j<r—1 be a square matrix of size+ 1. Let/ =

(i1, ... ,ip)andJ = (j1,..., jp) be strictly increasing sequences of numbers
smaller tharr. We definal; ; = (—1)f det(®’/), wherek = i1 +...+i, + j1+
...+ j, and @’/ is obtained from the matri®> by deleting columné, ... , i,
and rowsj, ..., j,. They; ; for non-strictly increasing sequences of numbers
are defined by making; ; anti-symmetric in botl and J.

Lemma 16.0ne has the following identities:

1L, @V =det(P)djx

1R. “I/jkcbij =det (D),

2L. (Dijll}jkmn = Wnbim — Wimin,

2R. \ynmqujji = Wbmi — YimkOni,

3L. CDij\yjkmnpq = “I’[kmpq(sin + \Ijkmqnaip + “I'[kmnpaiqv
3R. \Ijqpnmkj <I)ji = \Ijqpmkani + "Ijnqu(spi + \ijnmkaqia
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Proof. 1L is Cramer’s rule. 2L is obtained by expanding the determinadt by
deleting columrk and rowsn andn and concatenating with thieth row of ® with
respect to itg-th column. 3L is obtained similarly. The “R-identities” are obtained
by “reflection”. O

Because of the special shape of the matrixe find it useful to use the following
notation.

Definition 17. We put:
A; = Yo, Ajji = Yijor; Aijkmn = VijkOmn-

Note that theA; are in fact the components of the map G* — R. The ideal
generated by thes&; is exactly/, and the ring condition (R.C.) is exactly that
V;; e I forall i andj. The identities we will use all follow from Lemma 16 by
putting some index equal to zero are are summarized in:

Lemma 18.1. o Agij = V¥ij, j =1,

2. ¢ij A jem = —Aibim,

3. AjjkPrm = Nidjm — AjSim,

4. qunkj¢ji = quksni + Ankq‘spi + Apnk(sqi-

Theorem 19.MatricesL?” and M?, representing multiplication by),, i.e. making
a commutative diagram:

0o- ¢ % F — A — 0
L L? \ Mr Vo fp
0> 6 % F — A —0
are given by
L;-nj = hjkAk,'p
1 forj=0andi =p
M} ={ 3Tr(LPLY)fori=0andj > 0
0 otherwise

Proof. Substitutinge; = hy, A,y in the first identity of Lemma 18 we obtain:
‘Ilip = hgm Am Akip

As explained in the fourth section, the mag* : G* — G* is alift of ¥, overA,
whereW, (g¥) = ¥;;, i.e. we have a commutative diagram:

G*
Le 2 | A

v,
G* — R.
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So we can tadeﬁ; = him Akip. This gives the first statement. To prove the state-
ment aboutM ? we have to show the commutativity of the diagram in the statement
of the theorem. Because of the special shape of the mitfixhis is equivalent to

the statements:

A. (PLP)(gj) = a; [ps
B. The following diagram is commutative:

¢ % E

Ly w
G % R

whereu(f;) = $Tr(LPLY).

Indeed(¢L?);; = ¢l~kL,fj = ¢ikh jm Amip. By the second identity in Lemma 18
this is equal tdz,, A, 8;,. This gives A. To prove B, we calculate:. (g;). This

by definition is equal t@;j ap Apcihca Adap- We use the third identity in Lemma
18 to rewrite this a% 4 Agaphar Ap — Achea Adaphaj. Because of the symmetry
of ;; and the anti-symmetry ok 4, in d anda we see that the above expression
is equal to 2 jd Agapha, Ap Which by definition is aaL[fj which proves B. O

Theorem 20.The homotopy : A2(E) ® F — G has as matrix (€pqij — Egpij)
where€i; = hap Apephea Adaigj -

Proof. We have to proveH(1 ® ®) = [L, L] and®H = [M, M]. It suffices to
prove the first equality because from this it follows thef (1® ) = ®[L, L] =
M, M](1 ® ). We compose with and conclude thabH(1 ® f - Id) =
M, M)(1Q® f -1d). As we assumg to be a non-zerodivisor the second equality
follows. We compute:

5pqim Dy = habAbcphchdaiqm Dk
By the fourth identity in Lemma 18 this is equal to:

habAbcphcd(AdaqSik + Aidqgak + Aaiqadk)
= hahAhcphcd Aa’aq‘sik + thbAbcphchidq

by relabeling the indices in the last term and using the anti-symmetry at'the
Note that the first term in the last expression is symmetrjcamdg, and therefore
vanishes if one computd$ (1 ® ®). On the other hand we compute? L?);;, =
LY LY = hea Agiphis Abeq - After relabeling the indices one sees thiat i mi =

1C Ci

[LP, L1]i.

Remark 21The mapd., M andH can be described intrinsically in terms®fand

h € S2(G*) ® L. However, to prove the commutativities expressed by Theorems
19 and 20 this basis free approach seems to be of no help. Rather, the notation with
diagrammatic tensorfb] is appropriate for this type of calculations.
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Corollary 22. If (R, m) is a local ring, the entries op;; are inm and f < II% as
above, then the compléx of Theorem 10 is a minimal resolution 4f= Cok(®)
as S-module (after localizing atm, E)).

Proof. This follows from Theorem 10 and the explicit formulas forM and H
given in Theorems 19 and 200
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